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1 Stochastic Calculus for Finance I: The Binomial Asset Pricing Model

1. The Binomial No-Arbitrage Pricing Model
1.1.

Proof. If we get the up sate, then X1 = X1(H) = AquSo + (1 4 r)(Xo — A¢Sp); if we get the down state,
then X7 = X1 (T) = AogdSy + (1 4+ 7)(Xo — ApSp). If X7 has a positive probability of being strictly positive,
then we must either have X;(H) > 0 or X;(T") > 0.

(i) If X;(H) > 0, then AguSy + (1 4+ 7)(Xo — ApSp) > 0. Plug in Xo = 0, we get ulg > (1 + r)Ap.
By condition d < 14 r < u, we conclude Ay > 0. In this case, X1(T) = AgdSy + (1 4+ 7)(Xo — AoSy) =
Aoso[d — (1 + ’I“)} < 0.

(i) If X1(T) > 0, then we can similarly deduce Ag < 0 and hence X;(H) < 0.

So we cannot have X7 strictly positive with positive probability unless X is strictly negative with positive
probability as well, regardless the choice of the number Ay.

Remark: Here the condition Xy = 0 is not essential, as far as a property definition of arbitrage for
arbitrary Xy can be given. Indeed, for the one-period binomial model, we can define arbitrage as a trading
strategy such that P(X; > Xo(1+ 7)) =1 and P(X; > Xo(1+ 7)) > 0. First, this is a generalization of the
case Xy = 0; second, it is “proper” because it is comparing the result of an arbitrary investment involving
money and stock markets with that of a safe investment involving only money market. This can also be seen
by regarding X as borrowed from money market account. Then at time 1, we have to pay back Xo(1 +7)
to the money market account. In summary, arbitrage is a trading strategy that beats “safe” investment.

Accordingly, we revise the proof of Exercise 1.1. as follows. If X; has a positive probability of being
strictly larger than Xo(1 + ), the either Xy (H) > Xo(1 4 7) or X1(T) > Xo(1 + r). The first case yields
ApSo(u—1—71)>0,1e. Ag>0. So X1(T)=(14+7r)Xo+A0So(d—1—7) < (1+7)Xo. The second case can
be similarly analyzed. Hence we cannot have X strictly greater than Xo(1 4 r) with positive probability
unless X7 is strictly smaller than Xo(1 + r) with positive probability as well.

Finally, we comment that the above formulation of arbitrage is equivalent to the one in the textbook.
For details, see Shreve [7], Exercise 5.7. O

1.2.



Proof. X1(u) = Agx8+T¢x3—2(4A¢+1.200) = 3A¢+ 1.5T, and X;(d) = Ag x 2— 2(4A¢ +1.20T) =
—3Ay — 1.5Tg. That is, X7 (u) = —X;1(d). So if there is a positive probability that X; is positive, then there
is a positive probability that X; is negative.

Remark: Note the above relation Xi(u) = —Xi(d) is not a coincidence. In general, let V; denote the
payoff of the derivative security at time 1. Suppose Xy and Ay are chosen in such a way that Vi can be
replicated: (1 +7)(Xo — ApSo) + A¢S1 = V1. Using the notation of the problem, suppose an agent begins

with 0 wealth and at time zero buys A shares of stock and T'y options. He then puts his cash position
—ApSy — T'pXg in a money market account. At time one, the value of the agent’s portfolio of stock, option
and money market assets is

X1 =ApS1 + TV — (1 =+ ’I“)(A()So + FQXO).

Plug in the expression of V7 and sort out terms, we have

= So(B0 + Bolo) (5 — (1+7))

Since d < (1+7) < u, X;(u) and X (d) have opposite signs. So if the price of the option at time zero is X,
then there will no arbitrage. O

1.3.

Proof. Vo = lir [lgrdds (H) + “1=28(T )] = % [Hr Lir—d, 4 u= u—l=rq| = Sy. This is not surprising, since
this is exactly the cost of rephcatmg S1.

Remark: This illustrates an important point. The “fair price” of a stock cannot be determined by the
risk-neutral pricing, as seen below. Suppose S1(H) and S;(T) are given, we could have two current prices, Sy
and S)). Correspondingly, we can get u, d and v/, d’. Because they are determined by Sy and S}, respectively,

it’s not surprising that risk-neutral pricing formula always holds, in both cases. That is,

SO: 11_22(151(1'{)4-" 1— TSl( ) S/ _ 1:,_/2_(;/1/51(H) uu,—ld/rsl( )
1+7r 770 1+7r

Essentially, this is because risk-neutral pricing relies on fair price=replication cost. Stock as a replicating
component cannot determine its own “fair” price via the risk-neutral pricing formula.

O
1.4.
Proof.
Xo1(T) = ApdS,+ (1 +7)(Xn —ALSn)
= ASp(d=—1-71)+(1+1m)V,
H) — T D H q T
u—d 1+7r
= P(Vas1(T) = Vas1(H)) + pVoy1 (H) + Vi (T)
= pVar1(T) 4+ ¢Voia (T)
= Vn+1(T)
O
1.6.



Proof. The bank’s trader should set up a replicating portfolio whose payoff is the opposite of the option’s
payoff. More precisely, we solve the equation

(14 7)(Xo — AgSo) + ApS1 = —(S1 — K)T.

Then Xy = —1.20 and Ay = f%. This means the trader should sell short 0.5 share of stock, put the income
2 into a money market account, and then transfer 1.20 into a separate money market account. At time one,
the portfolio consisting of a short position in stock and 0.8(1 + r) in money market account will cancel out
with the option’s payoff. Therefore we end up with 1.20(1 4 r) in the separate money market account.
Remark: This problem illustrates why we are interested in hedging a long position. In case the stock
price goes down at time one, the option will expire without any payoff. The initial money 1.20 we paid at
time zero will be wasted. By hedging, we convert the option back into liquid assets (cash and stock) which
guarantees a sure payoff at time one. Also, cf. page 7, paragraph 2. As to why we hedge a short position
(as a writer), see Wilmott [8], page 11-13.
O

1.7.

Proof. The idea is the same as Problem 1.6. The bank’s trader only needs to set up the reverse of the
replicating trading strategy described in Example 1.2.4. More precisely, he should short sell 0.1733 share of
stock, invest the income 0.6933 into money market account, and transfer 1.376 into a separate money market
account. The portfolio consisting a short position in stock and 0.6933-1.376 in money market account will
replicate the opposite of the option’s payoff. After they cancel out, we end up with 1.376(1 + )3 in the
separate money market account.

O
1.8. (i)
Proof. v,(s,y) = %(vn+1(28, Y+28) +vnpa(5,y+ 35)) O
(if)
Proof. 1.696. 0
(i)
Proof.
50 (5,) = i1 (us,y + 122)_—;),:1((13, y +ds) .
O
1.9. (i)

Proof. Similar to Theorem 1.2.2, but replace r, v and d everywhere with r,,, u,, and d,,. More precisely, set

Dn = 71;”[;‘1” and ¢, =1 — p,. Then

_ ﬁnVn—H(H) + anvn—Fl(T)

Va
1+7r,

(i)

Proof. A, = Va1 (H)=Vni1 (T) Va1 (H)=Vnia (T) 0

Sny1(H)=Sn4+1(T) (tn—dn)Sn :

(iii)



n+1(H Spna1 (T _
Proof. un_%—S;w_Hwandd = Sapi(M) _ 8,10 _ 9 10

. So the risk-neutral probabilities

S, S, Sn
at time n are p, = uln_dgn =3 Land G, = 5. Risk-neutral pricing implies the price of this call at time zero is
9.375. 0
2. Probability Theory on Coin Toss Space
2.1. (i)
Proof. P(A°) + P(A) =3 cac P(w) + 2 ea Pw) =2 cq P(w) = 1. [

(ii)
Proof. By induction, it suffices to work on the case N = 2. When A; and A, are disjoint, P(4; U Ay) =
ZwGAlqu Pw) = ZweAl P(w) + ZWGAQ P(w) = P(A1) + P(A2). When A; and Ay are arbitrary, using
the result when they are disjoint, we have P(A; U As) = P((A; — A2) U A3) = P(A; — As) + P(As) <
P(Ay) + P(A2). O

2.2. (i)

Proof. P(S3=32) =% =
(if)

Proof. E[S;] = 8P(S; = 8) +2P(S; = 2) = 85+ 2§ = 5, E[So] = 160> +4-2pG+ 1 - ¢2 = 6.25, and

E[Sg} =32 é + 8- % +2- % +0.5- % = 7.8125. So the average rates of growth of the stock price under P
are, respectively: 79 = g —1=025,71 = 828 25 —1=025and 7 = & 8125 —1=0.25.

P(S;=8)=3p?G= 23, P(S3=2)=3p¢° = 2, and P(S3 =0.5) = ¢° =

OO\»—!

O
(iii)

Proof. P(S3=32)=(3)*> =5, P(S3
Accordingly, E[S1] = 6, E[S2] =

=8)=3-(2)2 1 =35 P(S3=2)=2-%=2 and P(S3=05) =
9 and E[S3] = 13.5. So the average rates of growth of the stock prlce

under P are, respectively: rofgfl 0.5, r = 771*05 and ry *@ 1=0.5. O
2.3.
Proof. Apply conditional Jensen’s inequality. O
2.4. (i)
Proof. Ep[Mpt1] = My, + Ep[Xni1] = My, + E[Xp41] = M,. O
(i)
Proof. E,] "“] = E,[e7Xn+1 ea_fe,g] = ea_fe,aE[e"X"“] =1. O
2.5. (i)
Pmof 2L, = 230 M;(Mjq — M) = 23075 M;Mjy, Z”1M2 ST M2 =200 MM +
S MR M = MR S (Mg — My = M2 - S X2 = M2 =

(11)

Proof. En[f(ln-ﬁ-l)} n[ (I + M, (Mn-H _Mn))] = En[f(ln+Man+l)] = %[f(ln+Mn)+f(In_Mn)}
g(I,), where g(z) = %[ (x4++v2x+n)+ f(x — 2z + n)], since /2I,, + n = |M,|.

2.6.

O
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PT‘OOf. En[In+1 - In] = En[An(Mn+1 - Mn)] = AnEn[MnJrl - Mn] = 0. O
2.7.

Proof. We denote by X, the result of n-th coin toss, where Head is represented by X = 1 and Tail is
represented by X = —1. We also suppose P(X = 1) = P(X = —1) = . Define S; = X; and S,41 =
Sn+bn (X1, , Xn)Xnt1, where by, (+) is a bounded function on {—1,1}", to be determined later on. Clearly
(Sn)n>1 1s an adapted stochastic process, and we can show it is a martingale. Indeed, E,[S,+1 — S,] =
b (X1, , Xn)En[Xnt1] = 0.

For any arbitrary function f, E,[f(Spi1)] = 3[f(Sn+bn(X1, -+, X))+ f(Sp —bn(X1, -+, X3))]. Then
intuitively, Fy,[f(Snh+1] cannot be solely dependent upon S,, when b,’s are properly chosen. Therefore in
general, (S,,)n>1 cannot be a Markov process.

Remark: If X,, is regarded as the gain/loss of n-th bet in a gambling game, then S,, would be the wealth
at time n. b, is therefore the wager for the (n+1)-th bet and is devised according to past gambling results.

O

2.8. (i)
Proof. Note M,, = E,[My] and M], = E,[My]. O
(if)

Proof. In the proof of Theorem 1.2.2, we proved by induction that X,, = V,, where X, is defined by (1.2.14)
of Chapter 1. In other words, the sequence (V,,)o<n<n can be realized as the value process of a portfolio,

which consists of stock and money market accounts. Since (uir(i?)n)ogng ~ is a martingale under P (Theorem

2.4.5), (u:_/i;yx)ognSN is a martingale under P. O
(iii)

Proof. % =F, [(1‘_‘{%]7 so Vj, %7 S Ufﬁﬁ’ (13_/% is a martingale under P. O
(iv)

Proof. Combine (ii) and (iii), then use (i). O

2.9. (i)

Proof. uy = SlsfoH) =2,dy= %f) =2, u(H) = ngleIi) =1.5,di(H) = 5521(517;) =1, w((T) = ng{g) =4

and dy(T) = 2550 = 1

=~ _ ltrg—dy _ 1 ~ _ 1 = _ nmHE)-di(H) _ 1 = _1 = — Hn(M)-—di(T) _ 1
Sopo = it =500 = 5 mH) = Ziata i = 2 0H) = 5, 01(T) = = —a . = 60 and

@(T) = g

Therefore P(HH) = pop1(H) = %, P(HT) = poqi(H) = %, P(TH) = ¢op\(T) = 3 and P(TT) =
Q0 (T) = 75

The proofs of Theorem 2.4.4, Theorem 2.4.5 and Theorem 2.4.7 still work for the random interest
rate model, with proper modifications (i.e. P would be constructed according to conditional probabili-

ties P(wpi1 = Hlwy,- - wn) = Pp and P(wpy1 = Tlwr, -+ ,wn) := Gn. Cf. notes on page 39.). So

the time-zero value of an option that pays off V5 at time two is given by the risk-neutral pricing formula

VoeE|l— Y ]
0 (I4+ro)(14r1) |

(i)

Proof. Vo(HH) =5, Vo(HT) = 1, Vo(TH) = 1 and Va(TT) = 0. So Vy(H) = PUDV2UIIEG NI

2.4, Vi(T) = BEOSEUINTT) _ | ong vy = BALHBAE :




(ii)
Proof. Mg = YWD=V(T) _ 245 _ g4 L ~(.3815. 0

Si(H)—5.(T) — 8
(iv)
_ Vo(HH)-V(HT) _ 5-1 __
Proof. Ai(H) = So(HH)—So(HT) — 12—8 — L. =
2.10. (i)
E I [AnYni1Sn 147)(Xn—An Sy nSn__I1 n o —
P?”OOf E [W] = En[ (1+7‘)+"1+1 + (+ ()1(+T)n,+l )] = (1_A,_T)S;L+1 En[Yn-i-l] + (1+AT)HS (1+r)”+1 (up +
Xn=AnSy _ ApSn+Xn—AnSy _ Xy
dq) + =g = T = T 0

(i)
Proof. From (2.8.2), we have

AntuSy + (1+7)(Xn — AnSy) = Xpi1(H)
AndS, + (1+7)(X, — A X

So A, = W and X,, = En[ lr;l]. To make the portfolio replicate the payoff at time N, we

must have Xy = Vy. So X,, = E,, [W] - E, [ﬁ] Since (X, )o<n<n is the value process of the
unique replicating portfolio (uniqueness is guaranteed by the unlqueness of the solution to the above linear

equations), the no-arbitrage price of Viy at time n is V,, = X, = E, [W] O
(iii)
Proof.
~ S 1 ~
E, = ——FE,[(1-A4,41)Yn+15,
[(1 +T)n+1] (1 _’_T)nJrl [( +1) +1 ]
Sh ~ ~
= W[p(l = Aps1(H))u+q(1 — Apy1(T))d]
Sh -
__on d
< A5y [Pu + qd]
— Sn
 (I+7)
IfAn+1 is a constant a, then E,, [(H_T)jﬂ] (H_T)nﬂ (1—a)(pu+qd) = (1_”)” (1—a). So E"[MW] =
T =
2.11. (i)
Proof. FN—I—PN:SN—K-F(K—SN)JFZ(SN—K)+=CN. O
(i)
Proof. Cp = En|3 k=) = Eulgrsiv=] + Enlqi=] = Fa + Pa. O
(iii)
_m[_Fn 7 _ 1 _ K
PT'OOf. FO_E[(1+T)N]_(1+T)NE[SN_K]_SO_W- O
(iv)



Proof. At time zero, the trader has Fy = Sy in money market account and one share of stock. At time N,

the trader has a wealth of (Fy — So)(1+ 7)Y + Sy = —K + Sy = Fy. O
(v)
Proof. By (i), Co = Fo + Py. Since Fy = S — % —0,Cy = P,. 0

(vi)

Proof. By (ii = i i = — B SxcK g g _dnTS _ g n
. By (ii), C), = P, if and only if F,, = 0. Note F,, = E”[(l-i-r)N—"] =5, == = Sp—So(14+7)".

So Fj, is not necessarily zero and C,, = P, is not necessarily true for n > 1. O
2.12.

Proof. First, the no-arbitrage price of the chooser option at time m must be max(C, P), where

That is, C' is the no-arbitrage price of a call option at time m and P is the no-arbitrage price of a put option
at time m. Both of them have maturity date N and strike price K. Suppose the market is liquid, then the
chooser option is equivalent to receiving a payoff of max(C, P) at time m. Therefore, its current no-arbitrage

price should be E[%]

By the put-call parity, C = S,, — (H—r% + P. So max(C,P) = P+ (S,, — ﬂ-ﬁ%)+ Therefore, the
time-zero price of a chooser option is

~ P ~ (Sm—ﬁﬁ = [(K - Sy)* ~ (Sm—ﬁﬁ
E[w}”[ T R e R e el

The first term stands for the time-zero price of a put, expiring at time N and having strike price K, and the
second term stands for the time-zero price of a call, expiring at time m and having strike price

K
(A+r)N=—m-
If we feel unconvinced by the above argument that the chooser option’s no-arbitrage price is E[%],
due to the economical argument involved (like “the chooser option is equivalent to receiving a payoff of

max(C, P) at time m”), then we have the following mathematically rigorous argument. First, we can

construct a portfolio Ag, -+, Ap,—1, whose payoff at time m is max(C, P). Fix w, if C(w) > P(w), we
can construct a portfolio A/, ---, Ay_; whose payoff at time N is (Sy — K); if C(w) < P(w), we can
construct a portfolio A, -+, A% _, whose payoff at time N is (K — Sy)*. By defining (m <k < N —1)

_ (AL (w) i Cw) > Pw)
Ag(w) = {Az(w) if C(w) < P(w),

we get a portfolio (A,,)o<n<n—1 Whose payoff is the same as that of the chooser option. So the no-arbitrage
price process of the chooser option must be equal to the value process of the replicating portfolio. In

particular, Vo = X = E[(lj_(:sm] — E[“ai(gf)] -

2.13. (i)

Proof. Note under both actual probability P and risk-neutral probability ﬁ, coin tosses wy’s are i.i.d.. So

without loss of generality, we work on P. For any function g, E,[g(Sn+1, Ynt+1)] = Enlg( Sg“Sn,Yn +

Sg—:lSn)] = pg(uSy, Y, + uSy) + qg(dS,, Y, + dS,), which is a function of (S,,Y,). So (Sn,Yn)o<n<n is
Markov under P. O

(i)




N+1
Vi = En[%] = En[%] = ﬁ[ﬁvn-l—l(usnvyn + USTL) + avn+1(dsnvyn + dSn)] = Un(Snyyn)7
where

Proof. Set vn(s,y) = f(NL_H) Then vy (Sn,Yy) = f(w) = Vn. Suppose v,11 is given, then

Upt1(us,y +us) + Upp1(ds,y + ds)
Un(87y): +( 1+,},,+ :

2.14. (i)

Proof. For n < M, (S,,Y,) = (Sn,0). Since coin tosses wy’s are i.i.d. under ﬁ, (Sns Yn)o<n<ar is Markov
under P. More precisely, for any function h, E,, [h(Sn+1)] = ph(uS,) + %(dSn), forn=0,1,--- , M — 1.

For any function g of two variables, we have Eu [9(Snr1, Yarg1)] = Eu [9(Snr+1, Sar41)] = pg(uSar, uSar)+
Gg(dSar,dSyr). And for n > M+1, Ey[g(Sns1, Yas1)] = Enlg(Z5L S, Y+ 22228,)] = pg(uSn, Yo +uSy) +

q9(dSy, Y, +dSy), so (Sn, Y, )o<n<n is Markov under P. O
(i)
N
Proof. Set vn(s,y) = f(5257)- Then vy (Sn,Yn) = f(%) = V. Suppose v, is already given.
a) Iftn> M7 then En[vn-l-l(sn-‘rla Yn-‘rl)] = ﬁvn+1(usna Yn + USTL) + E]vvn-&-l(dsna Yn + dsn) So Un(sa y) =
ﬁanrl(usa y+ ’LLS) + Z]an+L(dsv Y+ ds)
b) If n = M,L then EM[UM+1(SM+1,YM+1)} = ﬁUMJrl(uSM,’LLS]\/[) + 5n+1(dSM,dSM) So 'UM(S) =
pum+1(us,us) + quar41(ds, ds).
c) If n < M, then E,[vn+1(Snt1)] = DVnt1(wSn) 4+ Gua1(dSy). So v,(8) = pvpyi1(us) + quas1(ds). O

3. State Prices

3.1.
Proof. Note Z(w) = % = ﬁw) Apply Theorem 3.1.1 with P, P, Z replaced by P, P, Z, we get the
analogous of properties (i)-(iii) of Theorem 3.1.1. O

3.2. (i)

Proof. P(Q) =3 ,cq P(w) = 3 cq Z(w)P(w) = E[Z] = 1. O
(i)

Proof. E[Y] =Y e Y @)P) = ¥yeq Y (@) Z(w)Pw) = E[Y Z]. O
(iii)

Proof. P(A) =Y, 4 Z(w)P(w). Since P(A) =0, P(w) = 0 for any w € A. So P(A) = 0. O

(iv)

Proof. If P(A) = 3 1 Z(w)P(w) = 0, by P(Z > 0) = 1, we conclude P(w) = 0 for any w € A. So
P(A) =3 caPw)=0. O

v)
Proof. P(A)=1 < P(A°) =0 <= P(A%) =0 < P(4) =1. O
(vi)
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0, ifw;«éwg
1

if w=wyg.

Then P(Z > 0) =1 and E[Z] =

Proof. Pick wg such that P(wg) > 0, define Z(w) = {
P(wo)’

Clearly P(2\ {wo}) = E[Z1o)\{we}] = Doty Z(W)P(w) = 0. But P(2\ {wo}) = 1 — P(wp) > 0 if
P(wp) < 1. Hence in the case 0 < P(wg) < 1, P and P are not equivalent. If P(wy) = 1, then E[Z] =1 if

and only if Z(wo) = 1. In this case P(w) = Z(wo)P(wo) = 1. And P and P have to be equivalent.
In summary, if we can find wy such that 0 < P(wg) < 1, then Z as constructed above would induce a

probability P that is not equivalent to P. O
3.5. ()
Proof. Z(HH)ZI—Q67 Z(HT)zg,Z(TH)zéand Z(TT)z%. O

(ii)
Proof. Z\(H) = E\[Z5](H) = Zy(HH)P(w2 = Hlwy = H) +Z2(HT)P3(W2 =Tl = H) = 3. Z:i(T)
2

o

EN[Zo|(T) = Zo(TH)P(we2 = Hlwy =T) + Zo(TT)P(wy = Tlwy =T) = 5.
(ii)
Proof.
Vi(H) = (Z2(HH)Va(HH)P(ws = H|¢Z(Z§2 1_7«212((15)?%(HT)P(L02 =T =T)] _ 2.4,
Vi(T) = [22(TH)Vo(TH) Plwy = Hlwr = T) + Zy(TT)Vo(TT)Plwy = Tlwy =T)] _ 1
Z1(T)(1 + (7)) 9
and
AL T L L L
O
3.6.

Proof. U'(x) = L, so I(x

T

= 1. (3.3.26) gives E[g5w (1§;>N] = Xo. So A = x-. By (3.3.25), we

)
N ~ ~ n ~
have Xy = (112) = %0(1 4+ )N, Hence X, = 7L[(1+)7"()A[V*"] _ ETL[XO(12+T) ] = X0(1—|—7’)"En[%] _
Xo(1+r)"5-EnlZ - 3]

%, where the second to last “=" comes from Lemma 3.2.6. O
3.7.
Proof. U'(z) = 2P~ and so I(z) = 27 7. By (3.3.26), we have BlEw (25 )51] = Xo. Solve it for A,
we get
p—1
e | Ko _ XN
B [ zrtt } (E[Z757))p—1
(1) -1
1 _1_ Np_ 1 1
So by (3.3.25), Xy = ()7t = AZE T - Xollen)P ] g7 ()" XoZ7 0
o by ( ), Xn ((1+T)N)p (1+r)pr1 E[ZP-1] (1+r)% E[ZP-1]

3.8. (i)



Proof. “L(U(z) —yz) = U'(z) —y. So x = I(y) is an extreme point of U(z) — yz. Because 45 (U(m) yr) =
U'(x) <0 (Uis concave) x = I(y) is a maximum point. Therefore U(z) —y(x) < U(I(y)) —yI(y for every
x. O

(i)

Proof. Following the hint of the problem, we have

BUCXN)) = BUON fesse) < BV s )] = Bl ()
ie. BE[U(XN)] —AXo < EUX{)] — E[WX}Q,] = E[U(X%)] — AXo. So E[U(Xy)] < E[U(X%)]. O
3.9. (i)
Proof. X, = Ey[qi==]. So if Xy >0, then X, > 0 for all n. O

(ii)
Proof. a) f 0 <z < yand 0 < y < %, then U(z) —yx = —yz < 0and U(I(y)) —yI(y) = U(y) —yy =
1—yy>0. So U(x) —yz < U(I(y)) — yI(y)-

b)If0 <z <~vandy> %, then U(z) —yx = —yx < 0 and U(I(y)) — yI(y) = U(0) —y-0=0. So
Ux) —yz <UI(y)) —yl(y).

c)lfz>yand 0 <y < %,then Ul)—yz=1—yzand U (y)) —yl(y) =U(y)—yy=1—yy > 1—yz.
So U(x) —yz < U(I(y)) — yI(y).

) Ifz>vandy > %7 then U(z) —yzr = 1 —yx < 0 and U(I(y)) —yI(y) = U0O) —y -0 =0. So

Ux) —yz <UI(y)) - yI(y)- -
(iii)
Proof. Using (ii) and set ¢ = Xy, y = (1+r)N7 where X is a random variable satisfying E[(lﬁv)l\,] = Xy,
we have \z \Z
X — Bl——XnN| < E[U(XX)] — E[———=Xx].
That is, E[U(Xy)] — AXo < E[U(X%)] — AXo. So E[U(Xn)] < E[U(X%)]- 0

(iv)
Proof. Plug p,, and &, into (3.6.4), we have
2N 2N
Xo = Z pmfml()‘gm) = Z mem’Yl{Agmgi}-
m=1

So % = Z?nN 1Pm&mlpne, < 1} Suppose there is a solution \ to (3.6.4), note ¢ > 0, we then can conclude
{m : A < ,1y} # 0. Let K = max{m : X\, < ,1y} then \g < % < )\§K+1. So £k < k41 and
% = Zﬁzl Pmém (Note, however, that K could be 2V. In this case, £x 1 is interpreted as co. Also, note
we are looking for positive solution A > 0). Conversely, suppose there exists some K so that {x < {x41 and
Zranl EmbDm = % Then we can find A > 0, such that {x < 717 < &g 1. For such A, we have

z \Z 2
E I m ml - msm X
[(1+r)N ((1+r) T;p Smlpe,<1y7 = mE I:P Emy = Xo-
Hence (3.6.4) has a solution. O
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(v)
lom , ifm<K
Proof. Xj(w™) = I(\m) = Vag, <1y = {g e a1 m

4. American Derivative Securities

Before proceeding to the exercise problems, we first give a brief summary of pricing American derivative
securities as presented in the textbook. We shall use the notation of the book.

From the buyer’s perspective: At time n, if the derivative security has not been exercised, then the buyer
can choose a policy 7 with 7 € §,,. The valuation formula for cash flow (Theorem 2.4.8) gives a fair price
for the derivative security exercised according to 7:

N
~ 1 ~ 1
Va(T) = ;En [1{7—]6}(1_'_7,,)]6_7LG]€} =E, |:1{T§N}WLGT

The buyer wants to consider all the possible 7’s, so that he can find the least upper bound of security value,
which will be the maximum price of the derivative security acceptable to him. This is the price given by
Definition 4.4.1: V,, = max,cs, En[l{rgN}WGrL

From the seller’s perspective: A price process (Vy,)o<n<n is acceptable to him if and only if at time n,
he can construct a portfolio at cost V,, so that (i) V,, > G, and (ii) he needs no further investing into the
portfolio as time goes by. Formally, the seller can find (A, )o<n<n and (Cp)o<n<n so that C,, > 0 and

Vie1 = ApSpyr + (1 +7)(V, — C, — A, S,). Since (u_fijyl)ogngjv is a martingale under the risk-neutral
measure ﬁ, we conclude

TE T O

= Vn+1 _ Vn . Cn
(1 r)ntl
ie. ((1}:77-)")096 N is a supermartingale. This inspired us to check if the converse is also true. This is exactly

the content of Theorem 4.4.4. So (V,,)o<n<n is the value process of a portfolio that needs no further investing

if and only if (L) is a supermartingale under P (note this is independent of the requirement

A+ Jo<n< N
Vi, > Gp). In summary, a price process (V,,)o<n<n is acceptable to the seller if and only if (i) V,, > G,,; (ii)
((13:77”)") is a supermartingale under P.
0<n<N

Theorem 4.4.2 shows the buyer’s upper bound is the seller’s lower bound. So it gives the price acceptable
to both. Theorem 4.4.3 gives a specific algorithm for calculating the price, Theorem 4.4.4 establishes the
one-to-one correspondence between super-replication and supermartingale property, and finally, Theorem
4.4.5 shows how to decide on the optimal exercise policy.

4.1. (i)

Proof. V¥(HH) =0, V¥ (HT) = V¥ (TH) = 0.8, V¥ (TT) = 3, VP (H) = 0.32, V//(T) =2, V{ =9.28. O
(if)

Proof. V£ = 5. O
(iif)

Proof. gs(s) = |4 — s|. We apply Theorem 4.4.3 and have Vi’(HH) = 12.8, V5°(HT) = V&' (TH) = 2.4,
VS (TT) =3, VP (H) = 6.08, V*(T) = 2.16 and V;® = 3.296. O

(iv)

11



Proof. First, we note the simple inequality
max(aq,by) + max(as, ba) > max(a; + ag, by + ba).

“>” holds if and only if b; > a1, bs < ag or by < ay, by > as. By induction, we can show

+ VS
VS — +1 n+l
- max {gs , e
pVE L +VE Ve, +VE
< n4+1 n+1 n+1 n+1
max{gp )+ 9c(Sn), e e

IN

VEL +VE PV + Vil
max gp(Sn),W} + max {QC(Sn) —W}

= VP+ve.

As to when “<” holds, suppose m = max{n : V7 < V,¥ + V.¢}. Then clearly m < N — 1 and it is possible
that {n: V> < VP +VC} = (Z) When this set is not empty7 m is characterized as m = max{n cgp(Sp) <

+dVi, +dV, +av, +aV,
% and go(Sp) > % orgp(Sy) > % and go(S,) < 2 *hg +1} O

4.2.
Proof. For this problem, we need Figure 4.2.1, Figure 4.4.1 and Figure 4.4.2. Then

Ay(H) = Vo(HH) = Vo(HT) 1 AVT) = Vo(TH) — Vo(TT)

Sy(HH) — Sy(HT) 12’ =1

So(TH) — So(TT) ’

and
Vi(H) = Vi(T)

S1(H) = Si(T)

The optimal exercise time is 7 = inf{n : V,, = G,,}. So

Ay = ~ —0.433.

T(HH) =00, 7(HT) =2, 7(TH) =7(TT) =

Therefore, the agent borrows 1.36 at time zero and buys the put. At the same time, to hedge the long
position, he needs to borrow again and buy 0.433 shares of stock at time zero.

At time one, if the result of coin toss is tail and the stock price goes down to 2, the value of the portfolio
is X1(T) = (1+7)(—1.36 —0.4335) + 0.4335,(T) = (1+ i)(—1.36 —0.433 x 4) 4+ 0.433 x 2 = —3. The agent
should exercise the put at time one and get 3 to pay off his debt.

At time one, if the result of coin toss is head and the stock price goes up to 8, the value of the portfolio
is X1(H) = (1+r)(—1.36 — 0.4335;) + 0.4335,(H) = —0.4. The agent should borrow to buy 15 shares of
stock. At time two, if the result of coin toss is head and the stock price goes up to 16, the value of the
portfolio is Xo(HH) = (1+r)(X1(H) — 7551(H)) + 7552(HH) = 0, and the agent should let the put expire.
If at time two, the result of coin toss is tail and the stock price goes down to 4, the value of the portfolio is
Xo(HT) = (14 7)(X1(H) — 551(H)) + £S2(HT) = —1. The agent should exercise the put to get 1. This
will pay off his debt. O

4.3.

Proof. We need Figure 1.2.2 for this problem, and calculate the intrinsic value process and price process of
the put as follows.

For the intrinsic value process, Go = 0, G1(T) = 1, Go(TH) = %, Go(TT) = g, G3(THT) = 1,
G3(TTH) = 1.75, G3(TTT) = 2.125. All the other outcomes of G is negative.

12



For the price process, Vo = 0.4, Vi(T) =1, Vi(TH) = 2, Vi(TT) = 2, V3(THT) = 1, V3(TTH) = 1.75,
V3(TTT) = 2.125. All the other outcomes of V is zero.
Therefore the time-zero price of the derivative security is 0.4 and the optimal exercise time satisfies

() = o ifw =H,
TW=11 ifw =T.

4.4.

Proof. 1.36 is the cost of super-replicating the American derivative security. It enables us to construct a
portfolio sufficient to pay off the derivative security, no matter when the derivative security is exercised. So
to hedge our short position after selling the put, there is no need to charge the insider more than 1.36. [J

4.5.

Proof. The stopping times in Sy are

T(HT)=7(HH) =1, 7(TH), 7(TT) € {2,00} (4 different ones);
T(HT), 7(HH) € {2,00}, 7(TH) = 7(TT) = 1 (4 different ones);
T(HT),7(HH),7(TH),7(TT) € {2,000} (16 different ones).
When the option is out of money, the following stopping times do not exercise
(i) 7 =0;
(ii) 7(HT) € {2,00}, 7(HH) = 00, 7(TH), 7(TT) € {2,00} (8 different ones);
(i) 7(HT) € {2,000}, 7(HH) = 00, 7(TH) = 7(TT) = 1 (2 different ones).

For (i), E[1{;<2(3)"G+] = Gy = 1. For (ii),NE[l{ng}(g)TG ] < E[1{T*<2}(§) G+, where 7*(HT) =
2, T (HH) = oo, 7*(TH) = 7*(IT) = 2. S0 E[l{;+<5y(5)" Gro] = §[(5)* - 1+ (5)*(1 + 4)] = 0.96. For
(iii), E[1{;<2}(2)7G,] has the biggest value when 7 satisfies 7(HT) = 2, 7(HH) = oo, 7(TH) = 7(TT) = 1.
This value is 1.36. O

4.6. (i)

Proof. The value of the put at time N, if it is not exercised at previous times, is K — Sy. Hence Vy_1 =
max{K — Sy_1, EN_l[l‘:_T}} max{K — Sy_1, 1+T —Sn-1} = K — Sn_1. The second equality comes from
the fact that discounted stock price process is a martingale under risk-neutral probability. By induction, we
can show V,, = K — S,, (0 < n < N). So by Theorem 4.4.5, the optimal exercise policy is to sell the stock
at time zero and the value of this derivative security is K — Sp.

Remark: We cheated a little bit by using American algorithm and Theorem 4.4.5, since they are developed
for the case where 7 is allowed to be co. But intuitively, results in this chapter should still hold for the case

7 < N, provided we replace “max{G,,0}” with “G,”. O
(i)

Proof. This is because at time N, if we have to exercise the put and K — Sy < 0, we can exercise the

European call to set off the negative payoff. In effect, throughout the portfolio’s lifetime, the portfolio has

intrinsic values greater than that of an American put stuck at K with expiration time N. So, we must have
VAP <V + VFC < K — Sy + VFC. O

(iii)
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Proof. Let V{¥F denote the time-zero value of a European put with strike K and expiration time N. Then

~ Sy — K K
AP - yEP _ yyEC _ prP2N = 2y, EC _K
et i [(1+T)N] Yo SO+(1+T)N
O
4.7.
Proof. Viy = Sy — K, V-1 = max{Sx_1 — K, Ey_1[y2]} = max{Sy_1 — K, Sy-1 = £} = Sv-1 — 15
By induction, we can prove V,, = S, — ﬁ (0<n<N)and V, > G, for 0 <n < N —1. So the
time-zero value is So — m—Lr)N and the optimal exercise time is V. 0
5. Random Walk
5.1. (i)
Proof. Ela™] = Ela(™~™)17] = E[o(m~™)|E[a™] = E[a™]?. O

(i)
Proof. If we define M™ = Myyr, — M, (m=1,2,---), then (M.(m))m as random functions are i.i.d. with

distributions the same as that of M. So 7,41 — Ty = inf{n : M,(lm) = 1} are i.i.d. with distributions the
same as that of 7. Therefore

E[aTm] _ E[a(Tm—Tm—l)"r(Tm—l—7'm—2)+"'+7'1] _ E[aﬁ]m.

O
(i)
Proof. Yes, since the argument of (ii) still works for asymmetric random walk. O
5.2. (i)
Proof. f'(0) = pe® — qe?, so f'(0) > 0 if and only if o > 2(Ing — Inp). Since i(lng — Inp) < 0,
f(o) > f(0) =1 for all ¢ > 0. O
(if)
Proof. En[sg—:l] = E,[e7Xn+ f(la)] = pe"ﬁ + qef"ﬁ =1. O

(iii)

Proof. By optional stopping theorem, E[S,rr,] = E[So] = 1. Note Spar, = e"Mﬂ“l(ﬁ)”/\T1 < e’

o =

by bounded convergence theorem, E[li; <o}Sr| = Ellim, oo Snar] = lim, oo E[Spar] = 1, that is,
E[1{71<w}eg(ﬁ)“] =1 Soe 7 = E[l{n«x;}(f(lg) )™]. Let o | 0, again by bounded convergence theorem,
1 = E[l{7, <o} (357)™'] = P(11 < 00). O
(iv)
Proof. Set a = ﬁ = W, then as o varies from 0 to oo, o can take all the values in (0,1). Write o
in terms of o, we have e? = Ii;p%;p(w (note 4pga® < 4(2£2)? .12 = 1). We want to choose o > 0, so we
should take o = ln(w). Therefore E[a™] = 2pa = oVidpao? O
2pa 1+\/1_4qu2 2qa
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(v)
Proof. 2 E[a™] = E[;Za™] = E[ra™"}], and

< 1 — 4pqoz2 >

1 11
= — — V1 —4pga?)a ]

2q
1 1 1 _
- ?[_5(1 — dpga®)~ 7 (—4pg2a)at + (1 — /T — dpga?)(~1)a?],
So B[] =limap 5 Elo™] = [~ 3(1 — 4pg) % (=8pq) — (1 — VT = 4pg)] = 57 O
5.3. (i)
Proof. Solve the equation pe® + ge~ = 1 and a positive solution is In 21 =4P¢ V21p_4pq =1In 1_77’ =Ing —Inp. Set
0o =Ing —Inp, then f(op) =1 and f'(¢) > 0 for o > g¢. So f(c) > 1 for all o > 0y. O

(if)
Proof. Asin Exercise 5.2, S,, = e?Mn (-1-)" is a martingale, and 1 = E[Sg] = E[Spnr, ] = E[e?Mnnm ()47,

f(o) f(o)
Suppose o > 09, then by bounded convergence theorem,

1
1=FE[lim e"Mmn(— """ = B[l _.ve® (—)™].
Let o | 0g, we get P(1; < 00) = e~ 90 = % < 1. O

(ii)
o _ 1:|:\/1—4pqa2. We

Proof. From (ii), we can see E[1{71<Oo}(ﬁ)“] =e 7, foro > 0¢. Set a = ﬁ, then e 5pa

— 2 —a/1—= 2
need to choose the root so that e” > e?° = %, S0 0 = 1n(%), then Ela™ 17 <o0y] = #.

(iv)
Proof. Elmil{z <oc}] = 5 El0™ Lir cootllamt = g7 — (1= VT —4pg)] = 5[52% — 1+ 20— 1] =
z 171' =
q 4«q
5.4. (i)
Proof. Ela™] =32, P(m2 = 2k)a®* = 352 (2)?*P(my = 2k)4*. So P(mp = 2k) = b (gjﬂ)!k!. O

(if)
Proof. P(1y =2) = 1. For k > 2, P(1y = 2k) = P(15 < 2k) — P(15 < 2k — 2).

P(ngzk‘) = ( :2)+P(M2k>4)+P(TQ<2]€ M2k<0)
= P(Msp =2)+2P(Msy, > 4)
= ( 2% = 2) P(Myy, > 4) + P(May, < —4)

- P(Myy, = —2) — P(My, = 0).

15



Similarly7 P(TQ S 2k — 2) =1- P(Mgk,Q = —2) — P(MQ]C,Q = 0) So

P(TQ = Qk) = P(MQk_Q = 72) + P(MQk_Q = 0) — P(Mgk = 72) — P(Mgk = 0)

1, [(2k—2) 2k — 2)! 1, (2k)! (2k)!
= " {k!(k:—2)! * (k:—l)!(k—l)!] -G {(k+1)!(k¢—1)! * k:!k!]

2k)! 1 4 )
- 4k(1<(: +)1)!k! [21@(% —1) (k4 Dk(k — 1) + 2k(2k — 1) (bt DA =k = (k+ 1)]
k) [2k2—1) 2k2+k) 4k2—1
- 4k(k+1)!k![ ok~ 1  2%h-1 2k—1]
(2k)!
ARk + )R

5.5. (i)

Proof. For every path that crosses level m by time n and resides at b at time n, there corresponds a reflected
path that resides at time 2m — b. So

1
P(My = m, Mn:b):P(Mn:2m_b):(§)n

O
(i)
Proof. |
! n—b ntb
P(M} >m, M, =b) = o %_b)?(n%b _m),p””Tq o

O
5.6.
Proof. On the infinite coin-toss space, we define M,, = {stopping times that takes values 0,1,--- ,n,o0}

and M., = {stopping times that takes values 0,1,2,---}. Then the time-zero value V* of the perpetual
American put as in Section 5.4 can be defined as sup, ¢, E[l{r<w}%}. For an American put with

~ _S)+t
the same strike price K that expires at time n, its time-zero value V(™ is max, ¢y, E[1{7<w}%].

Clearly (V(n))nZ() is nondecreasing and V(™ < V* for every n. So lim,, V(™ exists and lim,, V(") < V*.
oo, ifrT=o00

(n) § i i (n)
FAn, i< oo’ then 7\ is also a stopping time, 7' € M,

For any given 7 € M, we define 7(") = {

and lim,, . 7™ = 7. By bounded convergence theorem,

. (K - sm}

E | 1{rcoo} Tk < lim V.

= lim F
L+4r) ™ n—00

n—oo

(K = Srom)”
1{T(n><oo}(7

Take sup at the left hand side of the inequality, we get V* < lim,_.oc V(™). Therefore V* = lim,, V(™).
Remark: In the above proof, rigorously speaking, we should use (K — S, ) in the places of (K —S;)*. So

this needs some justification.
O

5.8. (i)
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Proof. v(S,) =S, > S,—K = ¢g(S,). Under risk-neutral probabilities, W’U(Sn) = (15?)7@ is a martingale

by Theorem 2.4.4. O
(if)

Proof. 1If the purchaser chooses to exercises the call at time n, then the discounted risk-neutral expectation

of her payoff is E [(S‘lﬁr%fﬂ =5y — (HLU" Since lim,, s [SO — ﬁ} = Sp, the value of the call at time

zero is at least sup,, {So - ﬁ] =5p. O

(iii)

Proof. max { 9(s), pu(us)+gqu(ds) Putiv

1+4+7r 1+4+r
satisfied. Clearly v(s) = s also satisfies the boundary condition (5.4.18). O

(iv)

Proof. Suppose 7 is an optimal exercise time, then E [(Slgr%l;flh<oo}] > Sp. Then P(r < o0) # 0 and

} = max{s — K, s} =max{s — K, s} = s = v(s), so equation (5.4.16) is

= K [ s.—K = s, : S . .
E [Wl{TQX)}} > 0. So FE {Wl{TQ)O}} < F [W1{7<°°}]' Since (W)n>0 is a martingale

under risk-neutral measure, by Fatou’s lemma, E [(1_‘?_7;),1{7«)0}} < liminfnﬁooE [(15—;%1{7<00}} =
liminfnﬁocﬁ [(15%] = liminanOOE[SO] = Sp. Combined, we have Sy < E [%1{T<O@}} < Sp.
Contradiction. So there is no optimal time to exercise the perpetual American call. Simultaneously, we have

shown E [ul{TQ)O}] < Sy for any stopping time 7. Combined with (i¢), we conclude Sy is the least

(I+m)7
upper bound for all the prices acceptable to the buyer. O
5.9. (i)
Proof. Suppose v(s) = sP, then we have s? = %2”5” + %;—Z Sol= % + 21T_p Solve it for p, we get p =1
orp=—1. O
(if)
Proof. Since lim,_.oc v(s) = lim,_.c (As + £) = 0, we must have 4 = 0. O

(iii)
Proof. fp(s) = 0if and only if B +s? —4s = 0. The discriminant A = (—=4)? —4B = 4(4— B). So for B < 4,
the equation has roots and for B > 4, this equation does not have roots. O

(iv)
Proof. Suppose B < 4, then the equation s? — 4s + B = 0 has solution 2 4+ /4 — B. By drawing graphs of

4 — s and g,WeshouldchooseB:4andsB=2+\/4—B:2. O
)
Proof. To have continuous derivative, we must have —1 = —g‘ Plug B = s% back into s% —4sp + B =0,
°B
we get sp = 2. This gives B = 4. O

6. Interest-Rate-Dependent Assets
6.2.
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Proof. Xi = Sk — Ex[Dm(Sm — K)|Dy, ' — 5= B for n < k < m. Then

Ey_1[DpXy] = Ey_1[DpSk — Ex[Dm(Sm — K)] — ‘i”m BiomDy]
= Dyp_1Sk—1 — Ex—1[Dm(Sm — K)] — i”m Ep_1[Ex[Di]]
= DS B DS KD - B
= Dp_1Xp_1. ’
O
6.3.
Proof.
D%En[DmHRm} = DinEn[Dm(l +Rn) 'Ry = En[Dm—Difmﬂ] — Buy — Bomin.
[
6.4.(i)
Proof. D1Vi = E1[D3V3] = Ei[DaVa] = DaEy[Va]. So Vi = %El[vﬂ = ﬁEl[Vz]. In particular,
%(H):m%(HH)P(wzilel:H):%,Vl(T):o_ -

(i)

Proof. Let Xy = 22—1 Suppose we buy Ay shares of the maturity two bond, then at time one, the value of

our portfolio is X1 = (1 4+ Ro)(Xo — ABy2) + AgBj 2. To replicate the value V7, we must have

{V1(H) = (14 Ro)(Xo — A¢Bo2) + Ao B1,2(H)
Vi(T) = (14 Ro)(Xo — AoBo,2) + Ao B12(T).
So Ay = % = %. The hedging strategy is therefore to borrow %Bo’g — % = % and buy %
share of the maturity two bond. The reason why we do not invest in the maturity three bond is that
Bi3(H) = B13(T)(= %) and the portfolio will therefore have the same value at time one regardless the
outcome of first coin toss. This makes impossible the replication of Vi, since Vi (H) # Vi (T). O

(iii)
Proof. Suppose we buy A; share of the maturity three bond at time one, then to replicate V5 at time

two, we must have Vo = (1 + Rq)(X1 — A1B13) + A1Baz. So A(H) = Vo(HH)=Va(HT) 2,4

Bg 3(HH)—B32 3(HT) 3
A(T) = B:zgg;:;z(g)T(TT)T) = 0. So the hedging strategy is as follows. If the outcome of first coin toss is

T, then we do nothing. If the outcome of first coin toss is H, then short % shares of the maturity three
bond and invest the income into the money market account. We do not invest in the maturity two bond,
because at time two, the value of the bond is its face value and our portfolio will therefore have the same

value regardless outcomes of coin tosses. This makes impossible the replication of V5. O

6.5. (i)
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Proof. Suppose 1 <n < m, then

E;njll [an] = Enfl[Br:,}n+1(Bn,m - Bn,m+1)Zn,m+1Z;—11,m+1}

- Bn m Bn m Dn
_ B K m_ 1) 1
Bn,erl anl,eranfl

D - = ~
= —nEn7 D;lEn D,,] — D;lEn D,,
Bn—l,m-&-an_l 1[ [ ] [ +1]]
E’IL—I[D'HL - Dm+1]
anl,ml Dn71

anl,m - anl,erl

Bn—l,m+1
- Fn—l,m~

6.6. (i)

Proof. The agent enters the forward contract at no cost. He is obliged to buy certain asset at time m at
the strike price K = Fory , = B“z—"m. At time n + 1, the contract has the value E,11[Dp(Sm — K)] =
Sn+1 — KBpi1,m = Snt+1 — % So if the agent sells this contract at time n + 1, he will receive a cash

SnBnii,m ]

flow of Sj+1 — 5

(i)

Proof. By (i), the cash flow generated at time n + 1 is

S’I’LBTL m
(e (S”“ ST )
Sn
m—n— 14+p)ym—n—1
= (1+7) 1<Sn+l_(+)1 )
(1+T)7n—n
= (1+r)™ " 1S — (1 +r)™ "8,
~ Sm ~ Sm
(1+7) 1[(1+r)m]+( +7) [7(1“,),“]

= Futpyi,m — Futy, .

6.7.
Proof.

’(/}nJrl(O) = E[DnJernJrl(O)]
~ D,
E[ml{#mwlww):m]

= Bl L =t Lon=r)]

1~ D,
- §E[1+rn(0)]
¥ (0)
2(1+ 7, (0))
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For k=1,2,--- ,n,

~ D
nt1(k) = E i 1 W1 w1 )=
Vi1 (k) {1+rn(#H(w1~~wn)) {#H( nt1) k}]

= K [HI:, ) {#H(m-~wn)—k}1{wn+1—T}] +E {M(Z_D1{#H(u1~~un>_k}1{%“_1{}
1 E[D Vo (k)] | 1 E[D,Vi(k—1)]
2 1+ 7,(k) 2 14+r,(k—1)
wn( ) wn(k B 1)
21 +rn(k) ' 2(L+rn(k—1))

Finally,

~ ~ D, P (n)
1) = EID N=F|—2—1 1 951 L (m))
Ypy1(n+1) [Dnt1Vat1(n +1)] 1+ ry(n) @ w)=n} Hona=H} 2(1 +7(n))

Remark: In the above proof, We have used the independence of wy, 11 and (w1, - ,wy). This is guaranteed
by the assumption that p = q~— s (note & L n if and only if E[¢|n] = constant). In case the binomial model

has stochastic up- and down- factor u, and d,, we can use the fact that P(wn+1 H|wy, - ,wn) = pp and

P(wn+1 = T|wi, - ,wn) = qn, where p, = Hn=du and ¢, = "17;7: (cf. solution of Exercise 2.9 and

Up —dnp, Un —

notes on page 39). Then for any X € F,, = (w1, - ,wp), we have E[X f(wpt1)] = E[XE[f(wns1)|Fn]] =

E[X (pnf(H) + quf(T))]- O
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2 Stochastic Calculus for Finance II: Continuous-Time Models

1. General Probability Theory

1.1. (i)

Proof. P(B) = P((B— A)UA) = P(B — A) + P(A) > P(A). O
(i)

Proof. P(A) < P(A,,) implies P(A) < lim, . P(4,) =0. So 0 < P(A) <0, which means P(A) =0. O

1.2. (i)
Proof. We define a mapping ¢ from A to Q as follows: ¢(wiws--+) = wiwsws - --. Then ¢ is one-to-one and
onto. So the cardinality of A is the same as that of €2, which means in particular that A is uncountably
infinite. O

(if)
Proof. Let A, ={w =wjwy- -1 w1 =wa, +* ,wap_1 =wan}. Then A, | Aasn — co. So

P(A) = lim P(A,) = lim [P(w; = ws) -+ P(wan_1 = wa,)] = lim (p* + (1 —p)*)".

Since p? + (1 — p)? < 1 for 0 < p < 1, we have lim,, . (p?> + (1 — p)?)® = 0. This implies P(A) = 0. O
1.3.

Proof. Clearly P(@) = 0. For any A and B, if both of them are finite, then A U B is also finite. So
P(AUB) =0= P(A)+ P(B). If at least one of them is infinite, then AU B is also infinite. So P(AUB) =
00 = P(A) + P(B). Similarly, we can prove P(UN_ A,) = 32N P(A,), even if A,,’s are not disjoint.

n=1

To see countable additivity property doesn’t hold for P, let A, = {%} Then A = U921 A, is an infinite
set and therefore P(A) = co. However, P(A,) = 0 for each n. So P(A) # > 7, P(A,). O
1.4. (i)

Proof. By Example 1.2.5, we can construct a random variable X on the coin-toss space, which is uniformly

2
distributed on [0,1]. For the strictly increasing and continuous function N(z) = [*__ ée’%df , we let

Z = N7Y(X). Then P(Z < a) = P(X < N(a)) = N(a) for any real number a, i.e. Z is a standard normal
random variable on the coin-toss space (o0, Foo, P). O]

(i)
Proof. Define X,, = 31| ¥, where
1, if W; = H
Yi(w) = {0, if w; = T.
Then X, (w) — X (w) for every w € Qo where X is defined as in (i). So Z,, = N~ }(X,,) - Z = N~ 1(X) for

every w. Clearly Z,, depends only on the first n coin tosses and {Z,, },>1 is the desired sequence. O

1.5.

21



Proof. First, by the information given by the problem, we have

The left side of this equation equals to

//X(Lu dzdP(w /X )dP(w) = E{X}.

The right side of the equation equals to

/ / Lipex(w)dP(w )dzf/ Pz < X)dz = /Ooo(lF(x))dx.
So E{X} = [;°(1 - F(z))dz. O
1.6. (i)
Proof.

By = [T er e
e = e e 20 X
5o o2

oo 1 2 2
_(e—w)?-202%ux
= / —e 202 dx
0o OV 2T

* 1 e (uto?w)]2— (202uptotu?)
—e 202 dxr
oo OV 2T

o242 [ 1 r—(uto2wi?
= Ut / — e 202 dx
2T

2,2
=  euntip=
O
(ii)
Proof. E{$(X)} = B{e"X} = w5 > e = 6(E{X}). =
1.7. (i)
Proof. Since | f,(z)| < \/21177, f(z) =lim, o fn(z) = 0. O
(i)
Proof. By the change of variable formula, ffooo fu(x)de = f - \/7 _%dx = 1. So we must have
lim fulx)dz = 1.
n—oo J_
O

(iii)
Proof. This is not contradictory with the Monotone Convergence Theorem, since {fy,},>1 doesn’t increase
to 0. O
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1.8. (i)

et X _gsnX

Proof. By (1.9.1), |Y,| = [&5=5 ‘ = | XefX| = XefX < Xe?X. The last inequality is by X > 0 and the

fact that 6 is between t and s,, and hence smaller than 2t for n sufficiently large. So by the Dominated
Convergence Theorem, ¢'(t) = lim,,_,o, E{Y,} = E{lim, o Y, } = B{Xe!X}. O

(i)
Proof. Since E[e”ﬁl{xzo}} + Ele™ 1{x<0}] = E[e'¥] < 00 for every t € R, E[e!l¥]] = E[etX+1{X20}] +
Ele=(9% 1 x0y] < oo for every t € R. Similarly, we have E[|X|e!*] < oo for every t € R. So, similar to

(i), we have |Y,| = | XefX| < | X|e?!IX] for n sufficiently large, So by the Dominated Convergence Theorem,
o () = limy oy B{Y,} = E{limy_.. Yy} = E{Xe!X}. 0

1.9.

Proof. If g(x) is of the form 1g(x), where B is a Borel subset of R, then the desired equality is just (1.9.3).
By the linearity of Lebesgue integral, the desired equality also holds for simple functions, i.e. g of the
form g(z) = >°I", 1p,(x), where each B; is a Borel subset of R. Since any nonnegative, Borel-measurable
function ¢ is the limit of an increasing sequence of simple functions, the desired equality can be proved by
the Monotone Convergence Theorem. O

1.10. (i)

Proof. Tf {A;}22, is a sequence of disjoint Borel subsets of [0, 1], then by the Monotone Convergence Theorem,
P(U2,A;) equals to

n—o00 4

/1U§1AiZdP:/ lim 1up 4, ZdP = lim [ 1p 4,ZdP = lim Z/ ZdP =" P(A)).
e e - i=17Ai i=1

Meanwhile, P() = 2P([1,1]) = 1. So P is a probability measure. O

(if)
Proof. 1f P(A) = 0, then P(A) = [, ZdP =2 [, |,  dP = 2P(AN [},1]) = 0. O

(i)
Proof. Let A=10,3). O
1.11.
Proof.

E{e"Y} = E{e"Y 2} = E{e“XJr“ee_QX_%} = e“e_gE{e(“_e)X} = e“e_ge(u;mrz — e,
O

1.12.

2

Proof. First, Z = /Y =% = HXHO—G _ G H0X g1 Second, for any A € F, P(A) = Ia ZdP =
[(142)ZdP = [14dP = P(A). So P = P. In particular, X is standard normal under P, since it’s standard
normal under P. O

1.13. (i)
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Proof. LP(X € B(z,¢)) =1 fj; ﬁe‘gdu is approximately %%ﬂe‘g €= ﬁe‘ == O
(i)
Proof. Similar to (i). O
(i)
Proof. {X € B(z,e)} ={X € B(y—0,¢)} ={X +6 € B(y,e)} ={Y € B(y,¢)}. O
(iv)
Proof. By (i)-(iii), lfzg; is approximately
e Y@
Norae x22<@> - y2<@);x2<@) . <X<w>+e>22—x2<w> _ e_ex(@)_%.
T
O
1.14. (i)
Proof. N N
P(Q) = /Xe*(;‘*/\)XdP = i/ooo e~ OV \o=re gy — /000 Ne Mdz = 1.
O
(if)
Proof.
P(X <a)= / ée_(;‘_’\)XdP = /a ée_(:\_’\)c”)\e_’\7“'c1l33 = /a Xe Mdy =1 — e,
(X<a} 0o A 0
O
1.15. (i)
Proof. Clearly Z > 0. Furthermore, we have
B{Z}=F {Mg(;(()))(g)'(X)} - /_o; h(g(]f()gl(m)f(x)dm = [ htatndgta) = [ nawiu =1
O

g7 (a)

5 _ Me(X)g'(X) 1y _ (7 Mgy (@) 0 ol
Puv<a= [ MO ap— [ RIS i = [ b))

By the change of variable formula, the last equation above equals to ffoo h(u)du. So Y has density h under
P. O
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2. Information and Conditioning

2.1.

Proof. For any real number a, we have {X < a} € Fy = {0,Q}. So P(X < a) is either 0 or 1. Since
limg 0o P(X < a) =1 and lim, o P(X < a) =0, we can find a number z such that P(X < zy) = 1 and
P(X <z) =0 for any x < x9. So

P(X =) = lim Pz - % < X <o) = lim (P(X < 29) — P(X <z - %)) =1
O
2.2. (i)
Proof. o(X)={0,9Q,{HT,TH},{TT,HH}}. O
(i)
Proof. o(S1) = {0,Q, {HH,HT},{TH,TT}}. O

(iii)
Proof. P{HT, TH}Y N {HH,HT}) = P({HT}) = }, PUHT,TH}) = P{HT}) + P{TH}) = 1 + 1 = L,
and P({HH,HT}) = P{HH}) + P({HT}) = 1 + 1 = 1. So we have

P{HT,THYN{HH,HT}) = P{HT,TH})P({HH, HT}).

Similarly, we can work on other elements of o(X) and o(S;) and show that P(A N B) = P(A)P(B) for any

A€ o(X)and B € o(S1). So o(X) and o(S1) are independent under P. O
(iv)

fmo{, Pg{HT, TH}N{HH,HT}) = P({HT}) = 2, P{HT,TH}) = 2 + 2 = % and P({HH,HT}) =

iraTe P{HT,THYN{HH,HT}) # P({HT,TH})P({HH, HT}).

Hence o(X) and o(S7) are not independent under P. O
(v)

Proof. Because S7 and X are not independent under the probability measure P, knowing the value of X

will affect our opinion on the distribution of 5. O

2.3.

Proof. We note (V, W) are jointly Gaussian, so to prove their independence it suffices to show they are
uncorrelated. Indeed, E{VW} = E{—X?sinfcosf+ XY cos?§— XY sin? §+Y?sinf cos 0} = —sin 6 cos+
0+ 0+sinfcosd = 0. O

2.4. (i)

25



Proof.
E{euXJrvY} _ E{euXJruXZ}
= E{XT X7 =13P(Z=1)+ E{e"X X2 = —1}P(Z = 1)

1 1
— §E{euX+vX}+§E{6uX7vX}

1 (u+2u)2 + ('u,—2'u)2]
= —le e
2
w2402 YV UV
= e 2z -— -
2
O
(ii)
Proof. Let u = 0. O

(iii)

Proof. E{e"X} = e’ and E{e?Y} = e . So E{e*XtvY} £ E{e*X}E{e*Y}. Therefore X and Y cannot
be independent. O

2.5.
Proof. The density fx(x) of X can be obtained by

2lz| +y _ cleitw?
) =/fx,y(x,y)dy=/ —— e dy:/
{y>—lzl} V27T {e>2]}

The density fy(y) of Y can be obtained by

i

Frly) = / Fxv (@, y)de

2\z|+y _ @lal+n)®
= | Yalz-py == o dx

/OO 2z + Y- <2m+y>2 /0/\7’ —2z + Y, _(c2e4p)?
= 2 dr
ov(—y) V2T

s [

y) 2z + y _ (ata)?

24y _eoiw?
= e 2 d(—x)
/ov<y> v2m
(oo}
§ _e &
= 2 e~ 7d(2)
yl V27 2
1 2

So both X and Y are standard normal random variables. Since fx y (z,y) # fx(z)fy(y), X and Y are not
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W2
independent. However, if we set F(t) = [ %e’Tdu, we have

BE{XY} = [ [ ryfxy (v, y)dzdy

Rl e 2zl +y _eleity?
TYliy>_1z e 2 dzd
[m [m Yi{y>—|z|} /o Y
° 2z +y _Cclliw?
a:dx/ Yy———€ 2 dy
/;oo 7|m| \/27T
= /00 acdx/oo(f —2|z|) 3 e‘gdé
—0 |z| \/27T
oo [oe] §2 _i e
= xdx e 2df - 2lx|—
/. </m| % i~ 2jal S )
o0 [e’e} 52 7& /0 /oo 62 7&
= T e 2 dédr + T ——e 2z dédx
/0 /p V2T : oo Sz V2T ¢
e} 0

= /0 xF(x)dx+/7me(fx)dx.

22

So E{XY} = [ aF(x)dx — [;° uF(u)du = 0.

2.6. (i)

Proof. 0(X) ={0,9,{a,b},{c,d}}.
(i)

Proof.

E{Y]- X=« }
E{Y|X}= ) ﬁl{X:a}w
ae{a,b,c,d}

(iii)
Proof.

E{} l{X:a}}
F{iZIX} =X+ FE{Y|X} =X+ E — " 1ix—0t-
{ ‘ } { | } e P(X j) {X=a}

(iv)

Proof. E{Z|X} — E{Y|X} = E{Z - Y|X} = E{X|X} = X.
2.7.
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Proof. Let p=E{Y — X} and £ = E{Y — X — u|G}. Note £ is G-measurable, we have

Var(Y = X) = FE{(Y - X —p)*}
= E{(Y - E{Y[G}) + (E{Y|G} - X — p)]*}
Var(Err) +2E{(Y — E{Y|G})¢} + E{&%}
= Var(Err) +2E{Y¢ - E{Y|G}¢} + E{£?}
VaT(ETr) + E{§2}
ar(Err).

(AVAI

2.8.

Proof. Tt suffices to prove the more general case. For any o(X)-measurable random variable £, E{Y>{} =
E{(Y = E{Y|X})¢} = E{Y¢{ — E{Y[X}¢} = BE{Y ¢} — E{Y ¢} = 0.
O

2.9. (i)

Proof. Consider the dice-toss space similar to the coin-toss space. Then a typical element w in this space
is an infinite sequence wiwows -+, with w; € {1,2,--- 6} (: € N). We define X(w) = w; and f(x) =
Liodd integers} (). Then it’s easy to see

o(X)={0,0%{w:w =1},--+ {w:w =6}}
and o(f(X)) equals to

{0, {w:w =1}U{w:w1 =3} U{w:w; =5} {w:w; =2} U{w:w =4} U{w:w; =6}}.

So {0,9Q} C o(f(X)) C o(X), and each of these containment is strict. O
(i)

Proof. No. o(f(X)) C o(X) is always true. O

2.10.

Proof.

/A g(X)dP = E{g(X)1p(X)}
/_ " g@)1p(@) fx ()

= //Mdle(fﬂ)fX(x)dx

//y13 Vxy (z,y)drdy

E{Y1p(X)}
= EBE{Yla}

/ YdP.
A
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2.11. (i)

Proof. We can find a sequence {W tn>1 of o(X)-measurable simple functions such that W,, T W. Each W,
can be written in the form ZZ L ailan, where A7’s belong to o(X) and are disjoint. So each A} can be
written as {X € B['} for some Borel subset B of R, i.e. W, ZZ Lailixepry = Zf{l ailpr(X) = gn(X),

where g, (x) = ZZK1 aj'lpn(x). Define g = limsup g,,, then g is a Borel function. By taking upper limits on

both sides of W, = g,(X), we get W = g(X). O
(ii)

Proof. Note E{Y|X} is o(X)-measurable. By (i), we can find a Borel function g such that F{Y|X} =
9(X). O

3. Brownian Motion

3.1.
Proof. We have F; C F,, and W,,, — W, is independent of F,,. So in particular, W,,, — W,,, is independent
of ft. O]
3.2.

Proof. E[W? — W2|F,| = E[(W, — W.)% + 2W, W, — 2W2|F,] =t — s+ 2W,E[W, — W,|F] =t —s. [

3.3.

Proof. <p(3 ( ) =20 ueé"2“2+(0 +04u2)02ue%"2“2 = 20"’ (3c*u+o*u?), and o (u) = o2uer? v’ (3otu+
o*u?) + €277 % (304 4 204u). So E[(X — )4 = o™ (0) = 30*. O
3.4. (i)

Proof. Assume there exists A € F, such that P(A) > 0 and for every w € A, lim,, Z;L;ol Wi, — Wi, |[(w) <
co. Then for every w € A, Z;L &(Wtﬁl 1,)?(w) < maxo<p<p—1 Wi, — Wi, |(w )Zn_l Wi, — Wt |(w) —

0, since lim,,—,cc maxo<k<n—1 [Wi,,, — Wi, [(w) = 0. This is a contradiction with lim, oo Y72, (Wt]+1 -
Wtj)2 =T a.s.. O

(i)

Proof. Note Z?;&(Wtjﬂ —Wy,)? < maxo<p<n—1 Wi,y — Wi, | Z?;&(Wtjﬂ —Wy,)? — 0 as n — oo, by an
argument similar to (i). O

3.5.
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Proof.

Ble™" (St — K)*]

= —rT = (rflo'Q)TJro':L’ o 67&2%
= e (Spe'" "2 K) dz
/;(m;g(r;a’zm V2T
2
= e*TT/ (506(7“**0 )T+ovVTy _ K) ei?dy
= (In £ —(r—302)T) Vor
o 1 y2 > 1
— 5067%0271/ 6*7+U\/Tydy o KefrT/
0\1/7(111 S—I;f(rféat")T) V2T L,(T,%UQ)T) V2
°° 1 1 S 1
= S e de — K—”N< (In @—ﬁﬁg
Uf(ln— (r—%02) YT =T V 2w Uf K 2

Ke "' N(d(T,Sy)) — Ke "' N(d_(T, Sp)).

3.6. (i)
Proof.
Elf(X)|F] = E[f(We =W+ a)|Fla=w,+ut = E[f(Wi—s + a)lla=w,+pt
= / flz+ Wy —&-/ﬂf)mda@

%
= d
/ =
= 9(Xy).

So E[f(X}:)|Fs) f fly — 8, X, y)dy with p(1,z,y) = Qlﬂ.reiw
(ii)
Proof. B[f(SOIF] = Elf(Soe”™ )| 7] with = . So by (i),
E[f(st)l}-s] = / f Soe ﬂ_( = S)e 2(t—s) dy
A <>;** 2" ax
0 27(t — s) oz
(n F —w(t—s)?
| e
gzm
= / f(z —5,8,2)dz
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Proof. B[4, = Blesp{o(W, —~ W,) + ou(t = 5) — (o + 5t~ 5)}] = 1 a

(ii)
Proof. By optional stopping theorem, E[Z;i.,, | = E[Zp] = 1, that is, Elexp{oXirr,, — (op + %Q)t ANTm}] =
1. O

(iii)
Proof. If p >0 and o > 0, Zirr,, < e°™. By bounded convergence theorem,

B, <0} Zr] = E[tlgglo Zinry,) = tlgglo E[Zips,,] =1,
since on the event {7, = 00}, Zinp, < €729t — () as t — co. Therefore, E[e"m_("”“‘é)“’i] =1. Let
o | 0, by bounded convergence theorem, we have P(7,, < c0) = 1. Let ou + %2 = a, we get
Ele=*™m] = 7" = em‘“m\/m.
O

(iv)

Proof. We note for a > 0, E[r,e” %] < oo since ze
to Exercise 1.8, Ele~*™] is differentiable and

—Qax

0 2 —m
—_Ele %™ = _F 7_me—oc‘rm — MH—m 20+ .
5o 1= e Ve

Let a | 0, by monotone increasing theorem, E[r,;,] = ot < oo for 1> 0.

(v)

Proof. By 0 > —2u > 0, we get ou + %2 > 0. Then Zia,,, < e’™ and on the event {7,, = 00}, Zirs, <

eTm=(F O, 0 st — oo, Therefore,
0.2
Eleom=lont )ty ] = E[lim Ziny,] = lim E[Zin,,] = L.
t—o0 t—oo
Let 0 | —2u, then we get P(7,, < 00) = €2 = ¢ 2Itlm < 1. Set a = op + %2 So we get

E[B_aTm] = E[e_aTml{Tm<oo}] = T = MHTMYV 2a+”2.

3.8. (i)
Proof.

(i)

31
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Proof.

t
2 —ox 2 ox z2
| ue [Tzt +1—e g [T F1—€ @
L‘Oﬁ (’U,) - |:6 ( eoT _ 0T ) —¢€ ( eoT _ =0T )

So,
t _(rx2 4 1)(67“: _ efuz) + e(Ufu)w _ ef(afu)x
lnapﬁ(u) = ﬁln _ T ——
_t In [(ra? + 1) sinhux + sinh(o — u)x
o x2 sinh ox
_t In [ (ra? + 1) sinh ux + sinh ox cosh uxr — cosh o sinh ux
ox2 | sinh ox
- ) B .
_ iln cosh uz + (ras+1 .coshox) sinh ux '
x2 sinh ox
O
(iii)
Proof.
24+ 1 — cosh inh
cosh uz + (re® + cos ox) sinh ux
sinh oz
202 ra2 4+1—1- 22 4+ 0(z*)) (uz + O(23
e o | £+ 0(at) (wr + 06
2 ox + O(z3)
w2r? (r— Z)uad + 0(2®)
=1 . ( O(z*
+ 2 + ox + O(z3) +0G)
u?x?  (r— ”—z)uxg(l + O(2?))
= 1 2 O 4
Tt T arowy o)
2,2 2
1
= 14+ 28 T w4+ 0.
2 2
O
(iv)
Proof.
t u?z?  ru 5,  ouz? 4 t u?z?  ru o, oux? 4
lncpm%:ﬁln(l—k 5t~ +O(w)):ﬁ( 5 P O(z"))

So limg o Inpa (u) = #H(% + T — 2u) and Ele v Mren] = o, (u) — 1tu® + t(£ — %)u. By the one-to-one

correspondence between distribution and moment generating function, (ﬁan)n converges to a Gaussian

random variable with mean ¢(Z — Z) and variance ¢. Hence (ﬁMntn)n converges to a Gaussian random

variable with mean ¢(r — %2) and variance o2t. O

4. Stochastic Calculus
4.1.
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Proof. Fix ¢ and for any s < t, we assume s € [t,, t;m11) for some m.

Casel. m = k. Then I(t)—I(s) = Ay, (My—My, )=y, (Ms—My, ) = Ay, (M—M,). So E[I(t)—I(s)|F] =
Ay E[M; — M| F,] = 0.

Case 2. m < k. Then t,, < s <tpmi1 <t <t <tpy1. So

I(t)—I(s) = Z Ay, (M, — M) + Ay (Mg — My,) — Ay, (My — M,,)
j=m
= Y AL (My,, — My) + Ay (My — My,) + Ay, (M, — M,).
j=m+1
Hence
E[I(t) — I(s)|Fs]
k—1
= E[AtjE[Mtj+1 Mt] |‘7:t]]|f ] + E[Atk [ Mtk ‘ftkHj: ] + AtmE[thJrl - MS‘FS}
j=m+1
= 0.
Combined, we conclude I(t) is a martingale. O
4.2. (i)

Proof. We follow the simplification in the hint and consider I(t;) — I(¢;) with ¢t; < tg. Then I(ty) — I(t;) =
Z?;ll Ay, (Wy,,, —Wy,). Since A4 is a non-random process and Wy, , — W, L Fy, D Fy, for j > 1, we must
have I(tk) - I(tl) 1 ftl. O]

(if)
Proof. We use the notation in (i) and it is clear I(tx) — I(#;) is normal since it is a linear combination of
independent normal random variables. Furthermore, E[I(tx) — I(t;)] = E?;ll Ay, EWy, ., — Wy, ] = 0 and

Var(I(ty) — I(t) = X0 A2 Var(Wy,,, — Wi,) = S5 A2 (t0 — 1)) = [{* A2du. O
(iif)

Proof. E[I(t) —I(s)|Fs] = E[I(t) — I(s)] =0, for s < t. O
(iv)

Proof. For s < t,
/AQdu (I*(s) — /Azdu)|f}
= E[I*(t) /A2du\f
= E[(I(t)—1(s))*+2I(t)I(s) — 2I*(s)|F] /A%lu

= BII(t) — 1(s))2) + 21 () E[I(t) — 1(5)|F] /A%zu

= /AQdu—FO /AQdu
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4.3.

PTOOf I(t) I ) AO(WU WO) + At1 (Wtz th) AO(th - WO) = Atl (Wtz - th) = WS(Wt - WS)
(i) I(t) — I(s) is not independent of Fy, since Wy € F;.
(i) BI(I(1) - 1(s))"] = EWVABIV, — W) = 35 3(t = 5) = 95(t — 5)
SEWZIE[(W, — W,)?] = 35(t — s). Since B[(I(t) — I(s))"] # 3E[(I(t) — 1(s))?],
distributed.

(111) E[I(t) - I(S)U:s] = WSE[Wt - Ws|}—s] =0

(iv)
/AQdu (I*(s /AQdu )| Fs)

= E[(I(t)—I(s))*+2I(t)I(s) — 2I*(s / W2du|F)

nd 3E[(I(t) — I(s))}] =

a
I(t) — I(s) is not normally

= BW2(W, — W.)* + 2W,(Wy — W,) — W2(t — 5)| 7]
W2E[(W, — W)?] + 2W.E[W, — W,|F] — W2(t — s)
— W2t—s) - W2(t—s)

0.

4.4.
Proof. (Cf. Qksendal [3], Exercise 3.9.) We first note that

Z Btj+;j+1 (Btj+1 - Btj)

J
— 2
= Z [Btﬁ;jﬂ (Bt]-+1 - Btj+;j+1 ) + Btj (Btﬁ;jﬂ - Btj )} + Z(Btj+;j+1 - Bt,-) .
J J

The first term converges in L?(P) to fOT B.dB,. For the second term, we note

B 2
2 (Z (Busy - B.) - 2)
J

J J

2 t.: —t. 2 t —t
= (Bt +t]+l Bt-) _ (Btk+tk+1 _Btk> _ k1 Tk
T ’ 2 - 2

2
b+t
J+1 tj 9
2. ( j+1 _t )

7 oA [tj+1 —t;| — 0,

2
= F (Z (B,,j+;j+1 _Btj)2_ztj+12_tj>

E

|
HMM

IN
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since E[(B? —t)?] = E[B} — 2tB? + t?| = 3E[B?]?> — 2t> + t?> = 2t2. So
t t t t

T
T 1
S Biio (B, — Biy) — / BB, + 5 = 5B in IX(P).
X 2 0

2
J
[
4.5. (i)
Proof.
o dSt 1 d<S>t . QStdSt — d<S>t . QSt(OétStdt + O'tStth) — O'tzszdt o 1 2
[
(i)
Proof.
t t 1
InS; =1In Sy +/ o dW, +/ (s — §U§)ds.
0 0
So S; = Sy exp{fot o dWy + fot(aS — Z02)ds}. O
4.6.
Proof. Without loss of generality, we assume p # 1. Since (2P)’ = paP~L, (2P)"” = p(p — 1)2P~2, we have
_ 1 _
d(st) = pSPTlds+ FP(p = 1)5¢ 2d(S),
1
= pSP N aSydt + oS dWy) + 3P0 = 1)SP 262524t
1
= SPlpadt + pedW; + ip(p — 1)o?dt]
-1
= SPpledW: + (o + b 5 o?)dt].
O

47. (i)

Proof. AW} = AW3dW, + L - 4. 3W2d(W), = AW3dW, + 6W2dt. So Wi = 4 [] W3dW, +6 [,/ W2dt. O
(i)

Proof. E[W4] =6 [, tdt = 3T>. O
(i)

Proof. dW§ = 6WpdW, + 1 -6-5Widt. So WE =6 [) WpdW, +15 [ Widt. Hence E[WE] = 15 [ 3t%dt =
1573, O

4.8.
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Proof. d(ePtR;) = BePtRydt + ePtdR, = ePtedt+odWe)  Hence

0 g
and R; = Rpe Pt 4+ %(1 —e Pt + Ufg e~ Bi=s)qw,.

i t
e’ Ry = Ry + / e (ads + odW,) = Ry + 2(ePt — 1) + a/ P dw,
0

4.9. (i)
Proof.
a?
Ke_r(T_t)N’(d,) — Ke—T(T—t)e_iT
ous
([ —ovT=D)?
— Ke—T(T—t) € 2
V2T
= Ke T teovT—tds - G N'(dy)
= Ke—r(T—t)%6(%%)@—&6—7"2(57” N'(dy)
= I'N/(d+)
(if)
Proof.
/ 9 —r(T—t) nr/ 9
¢z = N(dy)+zN'(dy)=—di (T —t,z) — Ke N'(d_)=—d_(T — t,z)
ox ox
0 0
= N(dy)+ xN/(d+)8xd/+(T —t,z) — :EN’(d+)8xd+(T —t,x)
= N(dy).
(iii)
Proof.
y 0 —r(T—t) —r(T—t) A7t 9
¢t = aN (d+)%d+(Tft,m)ere N(d-)— Ke N(d_)&d_(T—t,x)
0 o (T— 0 o
= JTN/(dJ,_)adJ,-(T—t,ZU) —TKe (T t)N(d_) —le(d+) atd+(T—t,$)+m
= —rKe "TON(d_) — ——=_N'(d,).
e ()~ s = N'(d))
(iv)
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Proof.

1 55
ct—|—m:cm+§a T7Copyp

0

oxr

1
— —rK 7T(T7t)N _ _7N/ N -2 2N/ 7 T —
rene (d ) 2\/7Tt (d+)—|—’/’$ (d+)+20' z (d+)€)xd+(
ox 1 1
= — ———N'(dy)+ =0*2’N'(d} ) ——c—
T oUT =1 (d) 27 " (+)0 T—tx

= rc

(v)
Proof. For x > K, dy (T —t,z) > 0 and limyp dy (T —t,2) = lim, g d4 (7, 2) = oo. limyrd_(T —t,x)
lim;gd_(7,z) = lim, o (T\lﬁ In % + %(T + %UQ)ﬁ — Uﬁ) = oo. Similarly, lim¢rdy = —oo for z
(0, K). Also it’s clear that limyypdy =0 for x = K. So
- K, if K
lime(t, #) = aN(limdy) — KN(limd_) = ¢ ° 0 2228 @ _ g+,
1T T tTT 0, ife <K

(vi)

t,x)

m

Proof. Tt is easy to see limy o dy = —o0. So for ¢ € [0,T7], limy o c(¢, z) = limy o xN(limy) dy (T — t,x)) —

Ke "= N(limy o d_(T — t,x)) = 0.
(vii)
Proof. For t € [0,T), it is clear lim,_, o dy = co. Note

N'(dy)-2d N'(d)—2—
i s(V(dy) - 1) = tm Y @0FEd o N Eer

T—00 T—00 —x72 T—00 —.’Eil

By the expression of d, we get v = K exp{ov/T — td; — (T —t)(r + 30%)}. So we have

2
lim 2(N(ds) —1) = lim N'(d,)——~ i =% _KeoVTtds—(T—)(r+}0%)
Jim z(N(dy) —1) = lim N'( +)ﬁ = Jim Yo =
Therefore
lim [c(t7 :c) —(z — e—T(T—t)K)]
xr—00
- hm [l’N(d_;’_) — Keir(T*t)N(d*) —x+ Ke*’l‘(Tft)}
= lim [¢(N(d+) = 1) + Ke "T79(1 = N(d-))]
= lim #(N(dy) — 1) + Ke 79 (1 = N(lim d_))
= 0.
4.10. (i)
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Proof. We show (4.10.16) + (4.10.9) < (4.10.16) + (4.10.15), i.e. assuming X has the representation
Xi = AS; + T't My, “continuous-time self-financing condition” has two equivalent formulations, (4.10.9) or
(41015) Indeed, dXt = AtdSt+Ftht+(StdAt+d5tdAt+MtdFt+thdFt) So dXt = AtdSt+Ftht <
SidA; + dSidAy + Mydly + dMdTy = 0, ie. (4.10.9) <= (4.10.15). O

(i)
Proof. First, we clarify the problems by stating explicitly the given conditions and the result to be proved.

We assume we have a portfolio X; = AyS; + Ty M. We let ¢(t, S¢) denote the price of call option at time ¢
and set A; = ¢, (t, S¢). Finally, we assume the portfolio is self-financing. The problem is to show

1
rNdt = |ee(t, St) + 5025}20”(15, St) | dt,

where Nt = C(t, St) - AtSt.
Indeed, by the self-financing property and A; = ¢,(¢,S;), we have ¢(t,S;) = X; (by the calculations in
Subsection 4.5.1-4.5.3). This uniquely determines T'; as
Xt — AtSt C(t, St> — Ca;(t, St)St . Nt

F = =
! M, M, M,

Moreover,

[ 1
dNt = Ct (t, St)dt + Cy (t, St)dSt + §Cxx (t, St)d<St>t — d(AtSt)

[ 1
= Ct(t, St) + icm(t, St)O'QStQ:| dt + [Cx(t, St)dSt — d(Xt — FtMt>]

[ 1
= et S) + 5cm(zt, St)oﬂsf} dt + MydUy + dMydUy + [coo(t, S¢)dSy + TedM; — dXy).

By self-financing property, ¢, (t,St)dt + T'ydMy = ArdS; + T'edM; = d Xy, so

1
Ct(t, St) + icxx(t, St)O'QStz:| dt = dNt - Mtdft - thdFt = Ftht = FtT’Mtdt = TNtdt.

4.11.

Proof. First, we note c(t,x) solves the Black-Scholes-Merton PDE with volatility oq:

) 0 15,0 _
<8t+7'$6x+2$ 01@ 71) C(tax)_o'

So
1
ci(t,8y) + rSice(t,Sy) + iafocm(t, Sy) —re(t,Sy) =0,

and
1
dC(t, St) = Ct (t, St)dt + Cy (t, St)(OéStdt + UQStth) + icm (t, St)O'SStht

= |:Ct(t, St) + O[Cz(t, St)St + %J%Sfcm(t, St):| dt + O'QStCz(t, St)th

= |:7"C(t, St) -+ (Oé — T)Cm(t, St)St + %SE(O’% — U%)me(t, St):| dt + CTQStCm(t, St)th
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Therefore

dX; = |re(t,St) + (a—r)cy(t,5)S: + %Sf(og — Uf)om(t, Se) + Xy — re(t, Sy) + rSica(t, St)

1
*5(0'2 0'1)5 Cmm(t St) (t, St)OéSt dt + [O'QSth(t, St) — C:E(t, St)O'QSt]th
= TXtdt.
This implies X; = Xoe"*. By Xo, we conclude X; = 0 for all ¢ € [0,7].

4.12. (i)

Proof. By (4.5.29), (t,a:) pt,x) = 2 — e TTVK. So p,(t,z) = cp(t,x) —1 = N(dp(T — t,x)) — 1,
pa‘x(tax) = Cacm(t7x) o’z\/TiN/(d"'( t,.fC)) and

o)

pe(t,x) = ct(t,x)—l—re_r(T_t)K

= —rKe "IN (T — t,2)) - N'(dy (T —t,z)) + rKe "T=0

ox
2vT —t

= rKe " TON(—d_(T —t,2)) — 2\/%z\f’((z+(T —t,2)).
O
(if)
Proof. For an agent hedging a short position in the put, since A; = p,(¢,2) < 0, he should short the
underlying stock and put p(t, S;) — p(t, S;)S¢(> 0) cash in the money market account. O
(i)

Proof. By the put-call parity, it suffices to show f(t,z) = z — Ke 7T~ satisfies the Black-Scholes-Merton
partial differential equation. Indeed,

0 + 102‘%2872 + T:Cﬁ —r f(t x) _ —TKe_T(T_t) + 10'2.%2 O4+7rz-1— r(x _ Ke—r(T—t)) -0
ot Ox? Ox ’ 2 '

Remark: The Black-Scholes-Merton PDE has many solutions. Proper boundary conditions are the key
to uniqueness. For more details, see Wilmott [8]. O

4.13.

Proof. We suppose (W1, Ws) is a pair of local martingale defined by SDE

dW1(t) = dB(¢) 1)
dWs(t) = a(t)dB1(t) + B(t)dBa(t).
We want to find «(t) and §(t) such that
(dWa(t))? = [2(t) + B*(t) + 2p(t)a(t) B(t)]dt = dt @)
AW, (£)dWa(2) = [a(t) + B(E)p(D)dt = 0.
Solve the equation for a(t) and ((t), we have 8(t) = m and a(t) = —%. So
Wi(t) = Bu(t) 3)
Wg(t) = fot %()dBl +f0 1 5 ( BQ(S)
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is a pair of independent BM’s. Equivalently, we have

{Bl(t) = Wi (¢) @
Ba(t) = [ p(s)dWi(s) + [ /T — p?(s)dWa(s

4.14. (i)

Proof. Clearly Z; € Fy,,,. Moreover

E[Zj|Fi;) = f" (Wi ) E[(Wi,, — Wi,)? = (b1 — )| F,] = "W )(BIWE ] = (t11 — t5)) =0,

J

since Wy,,, — Wy, is independent of F;, and W; ~ N(0,t). Finally, we have

E[Z}|F,] = [f"W,)PE(Wy,,, — Wi)* =2t — t) (Wi, — Wi)? + (tjp — £5)°] F, ]

[f" (W,
[F" Wi )P(EWE, ] = 20t — ) E[WE )+ (b1 — 15)7)
= [f"W)PPB(tj41 — ) = 2(tj41 — ) + (41 — t5)°]

= 20f"(Wi)PP(tjs1 — ;)%

where we used the independence of Browian motion increment and the fact that E[X*] = 3E[X?)? if X is

Gaussian with mean 0. O
(ii)
Proof. E[Y'~5 Z;] = E[Y.}=y E[Z;|F:,]] = 0 by part (i). O
(iii)
Proof.
n—1 n—1
Varl) 2] = EQ_ %)%
§=0 j=0
n—1
= ED_Zj+2 Y. ZiZ)
§=0 0<i<j<n—1
n—1

= Y EBEZF,)+2 > EZE[Z]|F,)

j=0 0<i<j<n—1
= iE[Q[f”(Wtj)]z(th*tj)Q]
j=0
. 2E[(f"(Wi,)?)(tj41 — t5)?
j=0
< 2 <IJnaX |t3+1 —t; | ZE H Wtj)) J(t J+1 _tj)
7=0
— 0,
since Y120 E(F"(W, )2)(ts 1 — t5) — S BI( (Wo)?Jdt < oo, 0

4.15. (i)
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Proof. B; is a local martingale with

2
d d 2
dB;(t))? = %5 | = U gt = dt.
(AB(1)) (Z 20 g >) >
So B; is a Brownian motion. O

(ii)
Proof.

{d oij(t) ] ld o (t) ]
dBi(t)dBi(t) = |>_ —2dWy(t) ZU dW(t)

X0 2 o (t)
= > 2O gy awio
—_, oiltho(t)
1<j, 1<d
d
> 0ij ()ow; (1) .,
= oit)or(t)
= pir(t)dt.
O
4.16.
Proof. To find the m independent Brownion motion Wi (t), ---, Wy, (), we need to find A(t) = (a;;(t)) so
that

(dB1(t), -+, dBu (1) = A(t)(dWi(t), -, dWn (1),
or equivalently
(AW (), dWin (1) = A(t)" (dB1(t), -+ ,dBm(t)",
and

(dWi(t), -, dWin ()" (dW(t), -, dWin (1))
A)THdB1(t), -+ dBn (1) (dBa(t), - . dBp (1)) (A(t) )" dt
= Imxmdt7

where I, x., is the m x m unit matrix. By the condition dB;(t)dBy(t) = pi(t)dt, we get
(dBi1(t), ,dBy ()" (dB1(t), -+ ,dBn(t)) = C(t).

So A()7LC(#)(A(t)™ 1) = Lxm, which gives C(t) = A(t)A(t)"". This motivates us to define A as the
square root of C. Reverse the above analysis, we obtain a formal proof. O

4.17.

Proof. We will try to solve all the sub-problems in a single, long solution. We start with the general X;:

X;(t) = X;(0) +/0 0;(u)du —|—/0 oi(u)dB;(u), i =1,2.
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The goal is to show

lim __G@ = p(to).
cl0 \/Vi(€e)Va(e)
First, for 1 = 1,2, we have
Mi(e) = E[X;(to+¢€) — Xi(to)|Fio)
to+e to+e
_E [ / 0 (w)du + / ai(u)dBi(u)fto}
to to

— Oi(ty)e+E Uwé(@i(u) _ @i(to))du|fto} .

to

By Conditional Jensen’s Inequality,

‘E {/tﬁe(@i(u) - 9i(f0))du|fto}

to

<E UtH 104(u) — @i(t0)|du|fto}

Since %ﬂ?ﬂ |©;(u) — ©;(to)|du < 2M and lim,_q * ft°+€ i(u) — O;(to)|du = 0 by the continuity of ©;,
the Dominated Convergence Theorem under Condltlonal Expectation implies

1 fote 1
to e—

0e€

to+e
/ 10;(u) — @i(t0)|du|}}0} —o.
to

So M;(e) = ©;(to)e + o(e). This proves (iii).
To calculate the variance and covariance, we note Y;(t fo oi(u (u) is a martingale and by It&’s

formula Y;(¢ fo o;(u)o;(u)du is a martingale (i = 1 2) So
El(Xi(to + €) — Xi(t0))(X; (o + €) — X;(t0))[Fuo]
to+e to+e
= F [(Yi(to +¢) — Yi(to) +/ O;(u )du) ( i(to +€) — Y;(to) +/ @j(u)du) |ft0}

to to

to+e to+e
- E[<n<to+e>—n<to>>m<to+e>—Yj<to>>|fto]+E[/ o:(wiu [ @Au)dumo}

to to

+B | (lto +9 - Yitwo)) [ o 05 ()l | + B |(¥;(t0-+ ) - Vi) [ o Oi(udul

to to

= I+0+00+1V.

to+e
I = Eilto + Yy (to +€) — Yilto)Y;(to)|Fos] = E [ / Ui(U)Uj(U)pij(t)dtlfto] |

to

By an argument similar to that involved in the proof of part (iii), we conclude I = o;(to)o;(to)psj(to)e+ o(€)
and

i

E [/t0+6(@i(u) — 0,(ty))du /WE @j(U)d“mO] + Oulio)e Utw @j(u)dmgo}

to to to

= o(€) + (Mi(e) — ofe)) M;(e)
= Mi(e)Mj(e) + oe).

42



By Cauchy’s inequality under conditional expectation (note E[XY|F] defines an inner product on L?()),

to+e
m o< E [mm +o =Yl [ 18wz,
< MeyE[(Yi(to + €) — Yi(to))2|Fr)
< MeVEYi(to + €)? — Yi(to)?|F
to+e
< Me\/E[/ Oi(u)?du|Fy,]
< Me-My/e
= o9

Similarly, IV = o(e). In summary, we have
E[(Xi(to + €) — Xi(to))(X; (to + €) = X; (o)) Fr, ] = Mi(e)M;(€) + 0i(to)o;(to)pi;(to)e + o(€) + o(e).
This proves part (iv) and (v). Finally,

i —C0) — i P(t0)a1(to)az(to)e + oe) — lto).
clo \/Vi(e)Vale) €0 \/(a%(to)e + o(€)) (a3 (to)e + o(e))

This proves part (vi). Part (i) and (ii) are consequences of general cases.

O
4.18. (i)
Proof.
2 2
d(e’r‘tct) _ (defewtfée t) — *679Wt7%9 tath _ *g(ertCt)th,
where for the second “=”, we used the fact that e~Wi=30% golves dX; = —0X;dW;. Since d(e"(;) =
reTtCtdt + e”dCt, we get dct = —HCtth — ’/‘Ctdt. ]
(ii)
Proof.
d(GXy) = GdXy + XpdG + dXdG
= Ct(’f'Xtdt + At(OZ - ’]")Stdt + AtO'Stth) + Xt(_gctth - TCtdt)
—|—(T'Xtdt + At (O[ - T‘)Stdt + AtorStth)(—HCtth - T’Ctdt)
= Ct(At(a — T)Stdt + AtO'Stth) — QXtCtth — eAtO'StCtdt
= CtAtUStth - QXtCtth.
So (¢ X; is a martingale. O
(iii)
Proof. By part (ii), Xo = (¢ Xo = E[(rX:] = E[{rVr]. (This can be seen as a version of risk-neutral pricing,
only that the pricing is carried out under the actual probability measure.) O
4.19. (i)

Proof. By is a local martingale with [B]; = fot sign(Ws)2ds = t. So by Lévy’s theorem, B, is a Brownian
motion. O
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(i)
Proof. d(BiWy) = BydWy + sign(Wy)WidW; + sign(W;)dt. Integrate both sides of the resulting equation
and the expectation, we get

t ) t 1 1
E[BtWt]:/ E[szgn(Ws)]ds:/ Ellw, 0 — Low,<oplds = 51— 26 =0,
0 0

O
(iii)
Proof. By Ito’s formula, dW? = 2W,;dW, + dt. O
(iv)
Proof. By Itd’s formula,
d(BiW?) = BidW? +W72dB; + dBydW?
= B2WdW; + dt) + Wisign(W;)dW; + sign(Wy)dW; (2W,dW; + dt)
2BtWtth + Btdt + szgn(Wt)WthWt + ZSZgn(Wt)Wtdt
So
¢ ¢
E[BW? = E[/ Bgds] + 2E[/ sign(W,)Wds]
0 0
t ¢
= / E[B;lds + 2/ E[sign(W4)W;]ds
0 0
t
= 2/ (EWsliw,>0] = E[Wslw, <0])ds
0
t ee] e-%
= 4 x dzds
/0 /0 V2ms
tls
= 4/ —ds
o V2m
# 0=E[B] - EW}].
Since E[B;W}?] # E[By] - E[W?], B; and W are not independent. O
4.20. (i)
1 ifae>K
r—K, ife>K ’ 0 ifex#£K
Proof. = ’ - So f'(x) = defined, if z =K and f"(z) =}
roof. /() {O7 ifx < K. o /') :)m cned, ?f:r <K and f(z) {undeﬁned, ifr=K.
, if «

(if)

z2
Proof. E[f(Wr)] = [ (z — K) f;;%dx = 1/%6_% — K@(—%) where @ is the distribution function of
standard normal random variable. If we suppose fOT f"(Wy)dt = 0, the expectation of RHS of (4.10.42) is

equal to 0. So (4.10.42) cannot hold. O
(iii)
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Proof. This is trivial to check. O
(iv)

Proof. It x = K, lim,, 00 frn(x) = % = 0; if z > K, for n large enough, z > K + ﬁ, 50 limy, 00 fn(z) =

lim, ,o(x — K) =2 — K; if x < K, for n large enough, x < K — %, S0 liMy— oo frn(2) = limy, 00 0= 0. In

summary, lim, oo fn(z) = (x — K)T. Similarly, we can show

0, ifz<K
lim f;(z) =<3, ifz=K (5)
1, ife>K

O
(v)

Proof. Fix w, so that Wi(w) < K for any t € [0,T]. Since Wi(w) can obtain its maximum on [0, T], there
1

exists ng, so that for any n > ng, maxo<i<r Wi(w) < K — 5-. So

n—oo 2n> 2n

T
Li(T)(w) = lim n /0 Lt aes ) (Welw))dt = 0.

O
(vi)
Proof. Take expectation on both sides of the formula (4.10.45), we have
E[Lg(T)] = E[(Wr — K)¥] > 0.
So we cannot have Li(T) =0 a.s.. O

4.21. (i)

Proof. There are two problems. First, the transaction cost could be big due to active trading; second, the
purchases and sales cannot be made at exactly the same price K. For more details, see Hull [2]. O

(i)

Proof. No. The RHS of (4.10.26) is a martingale, so its expectation is 0. But E[(St — K)*] > 0. So
Xr # (Sp — K)*. O

5. Risk-Neutral Pricing

5.1. (i)
Proof.
FG) = X+ o (K)dX),
= SX)EX0+ (X))
= f(Xy) |owdWy + (o — Ry — %af)dt + %det
= f(Xt)(agx — Ry)dt + f(X)ordWy.
This is formula (5.2.20). 0
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(i)

PT‘OOf. d(DtSt) = Stht + DtdSt + thdSt = —SthDtdt + DtOétStdt + DtO'tStth = DtSt(OZt - Rt)dt +
D;Sio:dW;. This is formula (5.2.20).

5.2.

O

Proof. By Lemma 5.2.2., E[D;Vy|F] = E {%TZTU-}] Therefore (5.2.30) is equivalent to D;V;Z; =

E[DrVrZr|F).
5.3. (i)
Proof.

¢z (0, )

(if)

Proof. If we set Zp = eoWr=30"T and Z, = E[Zp|Fy), then Z is a P-martingale, Z, > 0 and E[Zr]

d ~ —
@E[e_rT(xe”WTJ’(’“_%”z)T — K)7]
~ d W 1

E |:6_Tdeh(x€oWT+(r_2”2)T):|

~ W 1_2
E [e—TTeJWT+(7”—§tT )Tl ~ }
{IEUWT+(T7%02)T>K}

127 [ oW
e 2 E [e Tl{WT>%(ln%—(T—%02)T)}]

—i527 5 U\/TW% B
e 2 E [6 TI{WT%,U\/T> 1 (ln’:(rédz)T)U\/T}:|

ovT

—1527 >~ 1 _z2 oVTz
e * [ e e 1{z—oﬁ>—d+(T,x)}dZ

oo V21
1 _GmevD)?
A Neevmemaaan

O

E‘[e”WT*%"QT] = 1. So if we define P by dP = ZpdP on Fr, then Pisa probability measure equivalent to

]5, and A R
61(071') = E[ZTl{ST>K}] = P(ST > K)
Moreover, by Girsanov’s Theorem, W, = W, + fot (—o)du = W, — ot is a P-Brownian motion (set © = —0
in Theorem 5.4.1.) O
(i)
Proof. St = xeo'WT“r('f’*%a'?)T _ ZGUWT+(T+%02)T. So
5 Do Wrt(r+io?)T 5 W\T
P(St > K) = P(xe'T 2 >K)=P|—=>—-di(T,z) | = N(d+(T,x)).
VT
O
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5.4. First, a few typos. In the SDE for S, “J(t)dW(t)” — “a(t)S(t)dW(t)”. In the first equation for
¢(0,5(0)), E — E. In the second equation for ¢(0,.5(0)), the variable for BSM should be

BSM | T, 5(0);}{,% / ' r(t)dt,,/% / T02(t)dt
0 0
(i)

Proof. dIn Sy = ds—‘? — 5ezd(S); = rydt + o dW,; — 1oidt. So St = Sy exp{fOT(rt — 1o?)dt + fOT o, dW,}. Let

X = fOT(rt — iod)dt + fOT o,dW,. The first term in the expression of X is a number and the second term

is a Gaussian random variable N (0, fOT o2dt), since both 7 and ¢ ar deterministic. Therefore, ST = Spe*,

with X ~ N([) (r, — Lo?)dt, [ odt),. O
(ii)

Proof. For the standard BSM model with constant volatility 3 and interest rate R, under the risk-neutral

measure, we have S7 = Spe¥, where Y = (R—33%)T+SWrp ~ N((R—1X%)T,%%T), and E[(Spe¥ —K)T] =

e BSM(T, So; K, R,¥). Note R = £ (E[Y] + 3Var(Y)) and ¥ = y/#Var(Y), we can get

E[(Spe¥ — K)T] = eEYI+3Var) paps <T, SO;K,% (E[Y} + ;Var(Y)) ,\/;Var(Y)> .

So for the model in this problem,

c(0,80) = e P E[(Spe™ — k)]
1 1 1
= e Jo rdt BXIH3Ver(X) gy (T, Soi K, (E[X] + 2Var(X)> : TVar(X)>
1 T
= BSM | T,S;K, —/ redt,
T 0
O
5.5. (i)
Proof. Let f(z) = 1, then f'(z) = —% and f”(z) = %. Note dZ;, = —Z,0,dW,, so
1 1 12 5.5 CH o7
d <Zt) == f/(Zt>dZt + §f”(Zt)dthZt - —Zitz(—Zt)@tth + 5?3275 @tdt - Zth + Zdt
O
(ii)
Proof. By Lemma 5.2.2., for s,t > 0 with s < t, M, = E[M,|F,] = E [%m} That is, E[Z,M,|F,] =
ZSMS. So M =ZM is a P-martingale. O

(iii)
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Proof.

dM, = d (Mt . th> = Zth + Mfd— + thd—t = %th - Mt@t AW, + Mft dt + FtZ(?t dt
O
(iv)
Proof. In part (iii), we have
dM, = Zth + Mft AW, + Mff dt + FtZ(?td 7 “L(dW; + ©dt) + g)t (dW; + ©,dt).
Let ft = F”'Zij\ft@‘, then dl\z = ftth. This proves Corollary 5.3.2. O

5.6.

Proof. By Theorem 4.6.5, it suffices to show Wl( t) is an Fi- martingale under P and [WZ,W 1(t) = téy

(4,7 =1,2). Indeed, fori =1,2, WZ( t) is an Fy-martingale under P if and only if Wit (t)Z; is an Fy-martingale
under P, since

~ Wi(t)Z
BwIF) = 2| V0% g,
By Itd’s product formula, we have
AWi(t)Z,) = Wi(t)dZ, + ZedWi(t) + dZ,dWi(t)
Wi(t)(—=Z)O(t) - AW, + Zy(dW;(t) + O;(£)dt) + (—Z,0y - AW, (dW; (1) + O;(t)dt)

d
= W,(t)(~2) D=0, (1AW, (1) + Zo(dWi(1) + ©u(1)dt) — Z,O.(1)dt

1

.
Il

M=

= Wilt)(=20) 3 0;()dW; (1) + ZudWi(t)

.
Il
—

This shows W; (t)Z; is an Fi-martingale under P. So ,V[v/l(t) is an Fi-martingale under P. Moreover,
(W, W;](t) = {Wi +/ Oi(s)ds, W; +/ G)j(s)ds] (t) = [Wi, W;](t) = t6;.
0 0

Combined, this proves the two-dimensional Girsanov’s Theorem. ]
5.7. ()
Proof. Let a be any strictly positive number. We define X»(t) = (a + X1(t))D(t)~!. Then

X»(0)
(T)

and P (Xg (1) > )g"((TO))) P(X1(T) > 0) > 0, since a is arbitrary, we have proved the claim of this problem.

Remark: The intuition is that we invest the positive starting fund a into the money market account,
and construct portfolio X7 from zero cost. Their sum should be able to beat the return of money market
account. O

(i)

P<X2(T)2 )P(a+X1(T) a)=P(X:(T) >0) =1,

-
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Proof. We define X (t) = X2(t)D(t) — X2(0). Then X;(0) =

P(Xy(T) 20)=P (Xz(T) > X2(0)> =1, P(Xy(T) >0) =P <X2(T) > X2(0)> > 0.

O

5.8. The basic idea is that for any positive ]S—martingale M, dM; = M, - ﬁtht- By Martingale Repre-

sentation Theorem, dM; = ftth for some adapted process f‘t. So dM; = Mt(]%)dwt, i.e. any positive
martingale must be the exponential of an integral w.r.t. Brownian motion. Taking into account discounting
factor and apply It6’s product rule, we can show every strictly positive asset is a generalized geometric
Brownian motion.

(i)
Proof. V;D; = ~[ -Jo Ruduy/n| 7] = [DTVT|]-}] So (D¢Vy)i>0 s aP—martlngale By Martmgale Represen-
tation Theorem, there exists an adapted process Ft, 0 <t <T,suchthat D, V; = fo F dWs, or equlvalently,
V, =D; ! fo [, dW,. Differentiate both sides of the equation, we get dV, = R, D ;! fo L dW,dt + Dy T, dW,,
Le. dVi = RiVydt + 5-dW,. O

(ii)
Proof. We prove the following more general lemma.

Lemma 1. Let X be an almost surely positive random variable (i.e. X > 0 a.s.) defined on the probability
space (2, G, P). Let F be a sub o-algebra of G, then Y = E[X|F] > 0 a.s.

Proof. By the property of conditional expectation ¥; > 0 a.s. Let A = {Y = 0}, we shall show P(A4) = 0. In-
deed IlOteAGJ: 0= [YIA]— [ [X|f]IA]:E[XIA]:E[XlAm{XZH]+Z?:1E[X1Am{%>x> 1 ]2

>t

PAN{X > 1H)+X02 g P(AN{: > X > 251). So P(AN{X > 1}) = 0and P(AN{L > X > 25}) =
Vn > 1. This in turn implies P(A) = P(AN{X > 0}) = P(AN{X > 1})+ > P(An{: > X > n%_l}) =

0. O

By the above lemma, it is clear that for each ¢t € [0,7], V; = E[e~ I Ruduy| 7] > 0 a.s.. Moreover,
by a classical result of martingale theory (Revuz and Yor [4], Chapter II, Proposition (3.4)), we have the
following stronger result: for a.s. w, Vi(w) > 0 for any ¢ € [0, 7. O

(iii)

Proof. By (ii), V > 0 as., so dV; = Vi -dV; = Vi (RtthtJr ldﬁ) VthdH—VtV* AW, = R,Vidt +

otV}th, where oy = VD
9.9.

Proof. ¢(0,T,z,K) = xN(d,) — Ke7""N(d_) with dy = %(lnl + (r £ 30%)T). Let f(y) = —=e" 7,
then f'(y) = =y f(y),

0,70, K) = () 5E e TN - Ke T ) G
= af(d) = TN + e T () =
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and

cxk(0,T, 2z, K)
— )~ e ) d) S — T A+ )
) e ) — e )~ S )
= i - ey S,
- %f(df)cu — o f(ds)d

5.10. (i)

Proof. At time tg, the value of the chooser option is V(tg) = max{C(to), P(to)} = max{C(to),C(to) —
F(to)} = C(to) + max{O, —F(to)} = C(to) + (G_T(T_tD)K - S(to))+. O

(i)
Proof. By the risk-neutral pricing formula, V(0) = E[e~"V (tg)] = E[e """ C(to)+ (e "TK —e "0 S (to) 1] =
C(0) + Ele~"to (e "(T=t) K — S(ty))*]. The first term is the value of a call expiring at time T with strike

price K and the second term is the value of a put expiring at time ¢, with strike price e "(T=t) K
O

5.11.

Proof. We first make an analysis which leads to the hint, then we give a formal proof.
(Analysis) If we want to construct a portfolio X that exactly replicates the cash flow, we must find a
solution to the backward SDE

dXt = AtdSt + Rt(Xt — AtSf)dt — Ctdt
Xr=0.

Multiply D; on both sides of the first equation and apply Ito’s product rule, we get d(D:X;) = Ayd(DySt) —
CiDydt. Integrate from 0 to T, we have DXt — DyXy = fOT Ayd(DySy) — fOT CiDydt. By the terminal

condition, we get Xy = Dal(fOT CyD,dt — fOT Ad(DySt)). Xo is the theoretical, no-arbitrage price of
the cash flow, provided we can find a trading strategy A that solves the BSDE. Note the SDE for S
gives d(DySy) = (D St)o(0:dt + dW,), where 6, = o“a;tm. Take the proper change of measure so that

Wt = fot 0sds + Wy is a Brownian motion under the new measure ﬁ7 we get
T T T N
/ CiDydt = Do X + / Ad(DySt) = Do Xo + / A (DySy)o dWy.
0 0 0

This says the random variable fOT CyD,dt has a stochastic integral representation Dy X + fOT AtDtStO'tth.

This inspires us to consider the martingale generated by fOT CyDqdt, so that we can apply Martingale Rep-
resentation Theorem and get a formula for A by comparison of the integrands.
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(Formal proof) Let My = fOT CyDydt, and M; = E[Mp|F,]. Then by Martingale Representation Theo-
rem, we can find an adapted process ft, so that M; = My + fot ftth. If we set Ay = ﬁ, we can check
Xy = Dy Y(DoXo + [3 Aud(DyS,) — [3 CuDydu), with Xo = My = E[[| C;Dydt] solves the SDE

dXt = AtdSt + Rt(Xt - AtSt)dt - Ctdt
Xr=0.

Indeed, it is easy to see that X satisfies the first equation. To check the terminal condition, we note
XrDp = DoXo + [ AD.Si00dW, — [} C,Dydt = My + [, T;dW, — My = 0. So X7 = 0. Thus, we have
found a trading strategy A, so that the corresponding portfolio X replicates the cash flow and has zero
terminal value. So Xo = E [ fOT CyD.dt] is the no-arbitrage price of the cash flow at time zero.

Remark: As shown in the analysis, d(D;X;) = Ad(D:S;) — CyDidt. Integrate from t to T, we get
0—-D;X; = j;T A,d(D,S,) — ftT CyuDydu. Take conditional expectation w.r.t. F; on both sides, we get
-D/X; = —E’[ftT CyD,dulF;]. So X; = Dt_lﬁ[ﬁT CyD,du|F;]. This is the no-arbitrage price of the cash

flow at time ¢, and we have justified formula (5.6.10) in the textbook. O

5.12. (i)

Proof. dB;(t) = dBi(t Hdt =30, W aw) + 20 2B yde = Y4, 2D aw;(t). So By i
roof. i(t) = dBi(t) + vi(t)dt = Zj:l o (t) i( )+Zj:1 o (f) j(t)dt = Zj:l oi(t) j(t). So B isa

~ ~ . 2 ~
martingale. Since dB;(t)dB;(t) = Z?Zl ‘:117((;))2 dt = dt, by Lévy’s Theorem, B; is a Brownian motion under
P. O
(if)
Proof.

d d
= R()Si(t)dt + 03(t)Si()dBi(t) + > 03, (t)0; (1) Si(t)dt — S;(t) Y 04;(t)0; (t)dlt

= R()S;(t)dt + 0;(t)S;(t)dB;(t).

[
(iii)
Proof. dBi(t)dBi(t) = (dBi(t) +7u()dt) (dB; (1) +;()dt) = dB,()dB; (1) = pa (1) =
(iv)
Proof. By It6’s product rule and martingale property,
BB,WB0] = B[ Bi(aB(s)]+ Bl | Bil)dB,(s)] + Bl | dBi(s)aBe(s)
= BL[ punlas) = [ putois
Similarly, by part (iii), we can show E[B;(t)By(t)] = fot pir(s)ds. O

(v)
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Proof. By Itd’s product formula,

E[B\(1)Bs(t)] = E| /0 sign(Wi(u))du] = /0 [P(W1(u) > 0) — P(Wh(u) < 0)]du = 0.

Meanwhile,
BB(0B()] = EL[ sign(Wi(w)du
= [ POViw) = 0) = POV () < 0)du
= /0 [P(W1(u) > u) — P(Wy(u) < u)]du
t 1 o
_ /0 2 (2 — B (u) < u)) du
< 0,
for any ¢ > 0. So E[By(t)Ba(t)] = E[By(t)By(t)] for all ¢ > 0. O
5.13. (i)
Proof. E[W(t)] = E[W1(t)] = 0 and E[Wa(t)] = E[Wa(t) — fot Wi (u)du] = 0, for all ¢ € [0, 7). O
(if)
Proof.
Cov[Wi(T), Wa(T)] = E[Wi(T)Wa(T)]
- B /O Wh()dWs (t) + /0 Wa(t)dWWy (t)]
= E / Wi () (dWa(t) — Wi (t)dt)| + E / W (t)dW, (t)]
0 0
= -FE

/OT Wl(t)zdt]
S /O "t

= =77
51

O

5.14. Equation (5.9.6) can be transformed into d(e~""X;) = A.[d(e™"S;) — ae” "t dt] = Aye " [dS, — rSydt —
adt]. So, to make the discounted portfolio value e ~"* X; a martingale, we are motivated to change the measure
in such a way that S;—r fot Sydu—at is a martingale under the new measure. To do this, we note the SDE for .S

is dS; = a,Sydt+0S,dW,. Hence dS,—rS;dt—adt = [(ay—1)S, —a)dt+0S,dW, = o5, [%dt + dW,|.

Set 0, = % and W, = fg 0,ds + W,, we can find an equivalent probability measure P, under which

S satisfies the SDE dS; = rS;dt + aStth + adt and Wt is a BM. This is the rational for formula (5.9.7).
This is a good place to pause and think about the meaning of “martingale measure.” What is to be
a martingale? The new measure P should be such that the discounted value process of the replicating
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portfolio is a martingale, not the discounted price process of the underlying. First, we want DyX; to be a
martingale under P because we suppose that X is able to replicate the derivative payoff at terminal time,
Xr = Vr. In order to avoid arbitrage, we must have X; = V; for any ¢ € [0,7]. The difficulty is how
to calculate Xt and the magic is brought by the martingale measure in the following line of reasoning:
Vi = =D/ E[DTXT|.E] = 1E[DTVT\}}] You can think of martingale measure as a calculational
convenience. That is all about martlngale measure! Risk neutral is a just perception, referring to the
actual effect of constructing a hedging portfolio! Second, we note when the portfolio is self-financing, the
discounted price process of the underlying is a martingale under P, as in the classical Black-Scholes-Merton
model without dividends or cost of carry. This is not a coincidence. Indeed, we have in this case the
relation d(D:X;) = Awd(D;St). So DX, being a martingale under P is more or less equivalent to D.S;
being a martingale under P. However, when the underlying pays dividends, or there is cost of carry,
d(D;X;) = Awd(DSt) no longer holds, as shown in formula (5.9.6). The portfolio is no longer self-financing,
but self-financing with consumption. What we still want to retain is the martingale property of D;X;, not
that of D;S;. This is how we choose martingale measure in the above paragraph.

Let Vr be a payoff at time T, then for the martingale M; = Ele _TTVT|]-}] by Martingale Reprebentation

Theorem, we can find an adapted process ft, so that My = My + fo F dW If we let Ay = Fo‘e then the

value of the corresponding portfolio X satisfies d(e " X;) = Ftth. So by setting Xo = My = E[ vy,
we must have e Xy = My, for all ¢t € [0, T]. In particular, X7 = V. Thus the portfolio perfectly hedges
Vp. This justifies the risk-neutral pricing of European-type contingent claims in the model where cost of
carry exists. Also note the risk-neutral measure is different from the one in case of no cost of carry.
Another perspective for perfect replication is the following. We need to solve the backward SDE

dXt = AtdSt — aAtdt + ’/’(Xt — AtSt)dt
Xr=Vr

for two unknowns, X and A. To do so, we find a probability measure P under which e=" X, is a martmgale
then e "X, = [ ’"TVT|}"t] = . Martingale Representation Theorem gives M; = My + fo I',dW, for

some adapted process . This Would give us a theoretical representation of A by comparison of integrands,
hence a perfect replication of V.

(i)
Proof. As indicated in the above analysis, if we have (5.9.7) under P, then 1 d(e X)) = Agfd(e”"S;) —
ae”"tdt] = Are” oS, dW,. So (67" X¢)t>0, where X is given by (5.9.6), is a P-martingale.

(i)
Pmof By Ito’s formula, dY; = Yi[odW; + (r — Lo2)dt] + 1Yi0%dt = Yi(odW; + rdt). So d(e ™Y;) =
e Y, dW, and e~ Y} is a P- martingale. Moreover if S; = SoY; +Y; fot v ds, then

t t . N
dS; = SodY; + / %dde; +adt = (so + / ;ds) Yy(odW; + rdt) + adt = Sy(cdW; + rdt) + adt.
0 0

S S

This shows S satisfies (5.9.7).

Remark: To obtain this formula for S, we first set U; = e~ S, to remove the rS¢dt term. The SDE for
U is dU; :NqUtth + ae~"dt. Just like solving linear ODE, to remove U in the dW; term, we consider
V; = Uye="Wt. Ttd’s product formula yields

dv, = e " dU, + Use=" ((a)th + ;(;th) +dU, - e W ((a)th + ;Uth)

o 1
= e Wige ™t — 502‘/}(115.
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Note V appears only in the dt term, so multiply the integration factor e37°t on both sides of the equation,
we get N
d(e%agt‘/t) _ aefrtfthJr%U%dt.

Set Y; = e?Wit (=37t e have d(S;/Y;) = adt/Y;. So S; = Y;(So + Iy als),

O
(iii)
Proof.
~ ~ ~ ta T a
E[ST|ft] = S()E[YT‘]'}] + FE YT/ —ds + YT/ fd8|.7:t
o Ys ¢ Y
t T
~ a , ~ ~[Yr
= SoE[Yr|F] +/ —dsE|[Yr|Fi] +a/ E {|ft} ds
o Ys ¢ Y,
= SoYtE[YT_t] Jr/ ?dSYtE[YT_t] +a/ E[YT_S]dS
0o ¥s t
t T
— (SO +/ dS) }/teT‘(T—t) + a/ eT(T—S)dS
0o Ys ¢
= (So+ / Hads) yerr—n) _ 21— e
0 7 t ; .
In particular, E[S7] = Soe"T — a(1—eT). O
(iv)
Proof.
~ ads a
dE[Sr|F] = ae"T=Yat + (So + / v ) (e"T=0aY;, — rY;e" TV dt) + —er T8 (—r)dt
0o Ts r

t d .
<So+ / “YS> " TV oY, dWW,.
0

S

So E [ST|F] is a ﬁ-martingale. As we have argued at the beginning of the solution, risk-neutral pricing is
valid even in the presence of cost of carry. So by an argument similar to that of §5.6.2, the process E[St|F}]
is the futures price process for the commodity. O

(v)
Proof. We solve the equation E[e~"(T=9)(Sy — K)|F;] = 0 for K, and get K = E[Sp|F;]. So Forg(t,T) =
Futg(t,T). O
(vi)
Proof. We follow the hint. First, we solve the SDE

dXt = dSt — adt + T(Xt - St)dt
Xy = 0.

By our analysis in part (i), d(e™""X;) = d(e™"S;) — ae~"'dt. Integrate from 0 to ¢ on both sides, we get
X, =8 — Soe™t 4+ (1 —e) = 5 — Spe — 2(e" —1). In particular, Xp = Sp — Spe"! — £(e"T — 1),

Meanwhile, Forg(t,T) = Fut,(t,T) = E[Sp|F] = (So + fot a?ds) Vier=t—a(1—er(T=%)). So Forg(0,T) =

Soe™ — 2(1 —e™) and hence X1 = Sy — Forg(0,T). After the agent delivers the commodity, whose value
is St, and receives the forward price Forg(0,T), the portfolio has exactly zero value. O
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6. Connections with Partial Differential Equations
6.1. (i)

Proof. Z; =1 is obvious. Note the form of Z is similar to that of a geometric Brownian motion. So by Itd’s
formula, it is easy to obtain dZ, = b, Z,du + o, Z,dW,,, u > t. O

(i)
Proof. f X, =Y, Z, (u>1), then X; =Y;Z; =2 -1 =2 and

dXy = YydZy+ ZudYy +dYeZs
= Yu(buZudu + 00 ZudWy) + Zo [ "7 g+ T aqw, ) + 0020 L2 du
Zu Zu Z
[YubuZy + (ay — ouyu) + ouyu]du + (0020 Yy + Y )dW,,

= (b Xy + ay)du+ (0, Xy + Yu)dW,,.

u

Remark: To see how to find the above solution, we manipulate the equation (6.2.4) as follows. First, to
remove the term by, X, du, we multiply on both sides of (6.2.4) the integrating factor e~ /i ®»@_ Then

d(X e~ 1 0dvy = o= [0 dv (g du + (v + 00 X0 )dW,,).
Let X, = e~ I bodv X G, =e” Jibudvg - and Yu =€ I budv~ then X satisfies the SDE
dX, = Gudu+ (Fy + 0, X)) AW, = (@ydu + F,dW,,) + 0, X dW,,.

To deal with the term o, X,dW,, we consider Xu =X,e” [ ovdWs  Then

u _ = w 1 u
dX, = e 1" Wol(a,du+5,dW,) + 0, X, dW,] + X, (e— JEontWo (—g ) AW, + e I 7 oidu)

+(:Yu + UuXu)(—o'u)e* ft“ cde,,du
~ . 1. A

1 .
= (Gu — OuHu — 5Xuag)du + A dW,,

where ., = aye~ ¢ 7vWv and 4, = 3,e~ /¢ 7v@Wo | Finally, use the integrating factor e/t %"5‘“, we have
. u w N P | u
d (Xue%ft Uidv) — e IR, + X - Sohdu) = et : T2 (G — T )dtt + A dWo.

Write everything back into the original X, a and v, we get
d (Xue_ ftu b“dv_ftu G-UdW“J"% ftu ‘73(1”) = 6% ftu o-gdu—ft“ ”UdWU—ftu bvdv[(au - O'u'}/u)d’u/ + ’YuquL

ie.
X 1
! (> B 7[(au — oy Yu)du + Y dW, ] = dY,,.

This inspired us to try X, = Y, Z,.

6.2. (i)
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Proof. The portfolio is self-financing, so for any ¢t < T}, we have
dXt - Al(t)df(tv Rta Tl) + A?(t)df(ta Rta T2) + Rt(Xt - Al(t)f(tv Rta Tl) - A2(t)f(ta Rt? TQ))dt7
and

d(D;X,)
= _RtDtXtdt + Dtht
= Dy[Ax(t)df(t, Re, Tr) + Do(t)df (¢, Re, T2) —Rt(A () f (& RBe, Th) + Do () (¢, By, T2) )]

- [ ( (ft (t Rt, Tl)dt + fr (t Rt, Tl)th + f,,«,r-(t Rt, Tl) (t, Rt)dt>

)
+A5(t) (ft(t Ry, To)dt + f.(t, Ry, To)dRy + frr(t Ry, 1)y (t,Rt)dt>
—Re(A1(t) f(t, Ry, T1) + Do(t) f(t, Ry, To))dt]

= A1) D[=Rif(t, B, Ty) + fu(t, Be, Th) + alt, Re) fr (8 Ry, Th) + %72(15, Ry) frr(t, Ry, Ty)]di

+A2(t)De[—Re f(t, Ry, To) + fi(t, Ry, T2) + a(t, Re) fr(t, Ry, T2) + %72(75, Ry) frr(t, Ry, T2)]dt

+Dy(t, Re)[Dey(t, Re)[Av(8) fir(t, Ry, Th) + Ao (1) fr (¢, Re, T2)]]dWy
= Al(t)Dt[Oé(t, Rt) — ﬁ(t, Rt, Tl)]fr(t, Rt, Tl)dt + AQ(t)Dt[Oé(t, Rt) — ﬁ(t, Rt, Tg)]fT(t, Rt, Tg)dt
+Dt'y(t, Rt)[Al(t)fr (t, Ry, Tl) + Ay (t)fr (t, Ry, TQ)]th

(i)
Proof. Let Aq(t) = Sifr(t, Ry, Tz) and Ag(t) = =S¢ fr(t, Ry, T1), then

d(DtXt) = DtSt[ﬁ(ththQ) _/B(ththl)]fT(tvRthl)fT(tht;TZ)dt
Di|[B(t, Re, Th) — B(t, Ry, T2)| fr (¢, Ry, Ty) fr (¢, Ry, T2)|dt.

Integrate from 0 to T" on both sides of the above equation, we get
T
DrXr = DoXo = [ Dil[3(t, RuTy) — Bt Bu Te) ot e To) o, Ris )
0

If 6(t, Re, T1) # B(t, Ry, To) for some ¢ € [0,T], under the assumption that f.(t,r,T) # 0 for all values of r

and 0 <t < T, DprXr — DoXo > 0. To avoid arbitrage (see, for example, Exercise 5.7), we must have for

a.s. w, B(t, Ry, Th) = B(t, R, T»), ¥Vt € [0,T]. This implies G(t,r,T) does not depend on T O
(i)

Proof. In (6.9.4), let Aq(t) = A(t), Ty = T and Aq(t) = 0, we get

d(DtXt) = A(t)Dt —Rtf(t,Rt,T) —+ ft(t,Rt,T) +Oé(t,Rt)f7-(t,Rt,T) + %VQ(t,Rt)fm-(t,Rt,T) dt
+Dt’y(t, Rt>A(t)fr(t, Rt, T)th

This is formula (6.9.5).

If fr(t, r, T) = 0, then d(DtXt) = A(t)Dt [*Rtf(t, Rt, T) + ft(t, Rt, T) + %’)’2(15, Rt)f’r‘r(ta Rt, T)] dt. We
choose A(t) sign { [thf(t, Ry, T) + fi(t, R, T) + %’yz(t, Ry) frr(t, Ry, T)} } . To avoid arbitrage in this
case, we must have f;(¢, Rt, T) + 392(t, Ry) frr(t, Ry, T) = Ry f(t, Ry, T), or equivalently, for any r in the
range of Ry, fi(t,r,T) + s72(t,r) frr(t, 7, T) = rf(t,7,T). O
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6.3.

Proof. We note

% [67 15 bvdUC(S,T)i| — effoS b”dv[O(S,T)(fbs) + bSC(S,T) _ 1] — e I bydv

So integrate on both sides of the equation from t to T, we obtain

T t T s
e~ Jo bedv (T, T) — e Jo b CO(t, T) = —/ e~ Jo bodvgg,

t

Since C(T,T) = 0, we have C(t,T) = efobvdv ftT e~ Jobvdvgs — ftT elibdvds. Finally, by A'(s,T) =
—a(s)C(s,T) + 20%(s)C?(s,T), we get

T T
AT, T) - A(t,T) = —/t a(s)C(s,T)ds + %/t o?(s)C?%(s,T)ds.

Since A(T,T') = 0, we have A(t,T) = ftT(a(s)C(s,T) — 20%(s)C%(s,T))ds. O
6.4. ()
Proof. By the definition of ¢, we have

1

P(1) = b7 T CWDI 2101, T) =~ Lp(1)o>C(1,T).

So C(t,T) = — 20 (1) Differentiate both sides of the equation ¢'(t) = —3¢(t)o2C(t,T), we get

t
o(t)o

P = 5ol (C(LT) + o0 (1, T))
= 3l 5e(OFCHET) + H()C (4 T)
= (T ROCT) — o0 T).
So C'(t,T) = [Lo*p(t)C?(t,T) — ¢"(1)] /3 ¢(t)o® = LoC2(t,T) — 261, 0

(i)
Proof. Plug formulas (6.9.8) and (6.9.9) into (6.5.14), we get

20"t 1 5 2 1 5 _
S 3O T) = W) 4 St T) - 1
0.

Le. "(t) = by'(t) — 50%¢(t) =
(i)

Proof. The characteristic equation of ¢ (t) — by’ (t) — $0%p(t) = 0 is A2 — bA — 262 = 0, which gives two

roots 1 (b+v/b2 +202) = b+~ with v = 21/b2 + 202. Therefore by standard theory of ordinary differential

equations, a general solution of ¢ is ¢(t) = e%bt(ale'ﬂ + ase™ ) for some constants a; and as. It is then

easy to see that we can choose appropriate constants ¢; and co so that

_ A G-t 2 —(3b—)(T-1)
o(t) = ——e'2 — 5——¢€ 2 .
b+~ zb—~

57

WWW.TRADING-SOFTWARE-COLLECTION.COM


andrey
tr-soft-coll


(iv)
Proof. From part (iii), it is easy to see ¢/(t) = cre™(2PTNT=1) _ ¢)e=(0=N(T~1) Iy particular,

0=co@r) =220 _ Ha—e)

o2p(T)  o®p(T)
So C1 = Co. O
(v)
Proof. We first recall the definitions and properties of sinh and cosh:
sinh z = %, coshz = %, (sinh z)’ = cosh z, and (cosh z)’ = sinh z.
Therefore
B 1) e—V(T—1) B eV(T—1)
p(t) = cie T T
1p - b+
e L) {122 Ty 20T e’Y(T—t)]
= 3b* =
2 1 1
_ %e%bmt) [(Qb e T 4 (L Www}
2¢1 _1yr— .
= 2¢ YT = (psinh(y(T — t)) + 27 cosh(y(T — t))].
and
/ L, 2¢ —1b(T—t) 17, o
oty = ib e [bsinh(y(T — t)) + 27 cosh(v(T — t))]
o
2¢c _1 _ .
+U—;e 36T _ybcosh(y(T — t)) — 27 sinh(y(T — t))]
b2 b b 2v2
= 20,0770 | s sinh(y(T — 1)) + U% cosh(y(T — 1)) — U% cosh(y(T — 1)) — % sinh(y(T — t))
2 2
_ e A
= 2¢e 2N )7 sinh(~(T —t))
= —2ce 2T sinh(~(T —t)).
This implies
C(LT) = 20 (t) B sinh(y(T —t))
(t’ ) - _02 t - 17 .: .
@(t)  ycosh(y(T —t)) + 5bsinh(y(T —t))
(vi)
Proof. By (6.5.15) and (6.9.8), A'(t,T) = 242 Hence
T /
2 2 T
A(T,T) — A(t,T) :/ C;LP (5) 4o _ i; HM7
t 02p(s) a2 p(t)
and )
2 T 2 sb(T—t)
ATy = -2 o) 20y e 7 .
a2 p(t) o? ycosh(y(T —t)) + zbsinh(y(T — 1))
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6.5. (i)

Proof. Since g(t, X1(t), X2(t)) = E[M(X1(T), Xo(T))|F] and e~"* f(t, X1 (1), X2(t)) = Ele " h(X1(T), X2(T))| 7],
t

iterated conditioning argument shows g(t, X1(t), X2(t)) and e~"* f(¢, X1(¢), X2(t)) ar both martingales. O
(ii) and (iii)
Proof. We note
dg(t, X1(t), Xa(t))

1

1
*gzleXm (t)Xm (t) + 9

2

1
= |9t + 9u B1 + gu, B2 + 59z (Vi 4712 + 20711712) + Goras (V1721 + pY11Y22 + pY12721 + V12722)

1 .
+§gx2x2 (V3, 4+ Y35 + 2py21722) | dt + martingale part.

So we must have
1
Gt + 9o B1 + o B2 + 39z (Vi1 + i + 20711712) + Garws (V11721 + PY11722 + PY12721 + Y12722)

1
+59wams (Y31 + 732 + 2p721722) = 0.
Taking p = 0 will give part (ii) as a special case. The PDE for f can be similarly obtained. O
6.6. (i)

Proof. Multiply e on both sides of (6.9.15), we get

1 1 b 1 1.1
(e X;(t)) = ez (Xj(t)det + (=5 X, (t)dt + QUde(t)> = efbt§adwj(t).
So e3" X, (t) — X;(0) = 1o fote%b“de(u) and X,(t) = e~3bt (Xj(O) + laft et dW; (u ) y Theorem
4.4.9, X,(t) is normally distributed with mean Xj(O)e*Ebt ¢ —o? Ot ettdu = %(1 e7?). O

(if)
Proof. Suppose R(t) = 25:1 X7 (t), then

M-

dR(t) = (2X;(1)dX;(t) + dX;(8)dX; (1))

<
Il
—

M-

2X,;(1)dX;(t) + iazdt>

j=1

(
—bXF(t)dt + o X;(t)dW;(t) + Lorar
(- i)

M=

<.
Il

- <Z 2 _ bR(t ))dt+a R(t ZXJ(t) dW;(t).

j=1 R(t)
Let B(t) = Y0, Jo \)/(%dW (s), then B is a local martingale with dB(t)dB(t) = 20, R(i)) dt = dt. So
by Lévy’s Theorem, B is a Brownian motion. Therefore dR(t) = (a — bR(t))dt + o+/R(t)dB(t) (a := %5?)
and R is a CIR interest rate process. O
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(iii)

Proof. By (6.9.16), X;(¢) is dependent on W; only and is normally distributed with mean e*%thj (0) and

variance Z—z[l —e7 ). So Xy(t), -+, X4(t) are i.i.d. normal with the same mean yu(t) and variance v(t). [
(iv)
Proof.
- _ (@—p)?
5 [euxj(t) / 20 dx
[e’s) 27TU( )
o _O=2uv)a?2u@etu?()
Z0(t)
/ dx
[e’s) 27TU
(¢ w2 (t w2 (t
/‘00 (’ I l2£¢1)7(t)) 1= 2u('u)(t) (1—2u£1()t))2
2v(t)/(1—2uv(t)) dx
oo v/ 2m0(t
, w(t) )2 _p2A—2uv() -3 @)
/00 1 — QUU(t) M e 20 (D) (1—2uv (D))
Ny e 2e®m/0-2uw(®) dg -
o/ 2mu(t) 1 —2uw(t)
)
e T—2uv(t)
/1= 2uw(t)’
O
v)
Proof. By R(t) = 2?21 X?2(t) and the fact X, (t), ---, Xq(t) are i.i.d.,
wdp? (t) o e PtuR(0)
E[e"R0] = (B[e*XTO]) = (1 — 2up(t)) " 2eT 20 = (1 — 2up(t)) +Fe T2 .
O
6.7. (i)
Proof. e~ "c(t, Sy, Vi) = Ele"T (81 — K)*|F;] is a martingale by iterated conditioning argument. Since
d(e”"c(t, Si, V7))
1
= ot C(tv St7 V;)(—’I’) + Ct(tv Stv Vvt) + Cs (t, St, W)’rst + Cv(ta St7 ‘/;)(a - bW) + 5055 (t7 Stv %)%SE"_
1
icvv (ta Sta V;ﬁ)O—QV;S + Cso (t7 Sta V;S)UV;sStP dt + martingale parta
we conclude r¢ = ¢ + rscs + ¢, (a — bv) + %cssvs2 + %cm,ojv + csposvp. This is equation (6.9.26). O

(i)
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Proof. Suppose c(t, s,v) = sf(t,logs,v) — e "T=DKg(t,log s,v), then
¢ = sfi(t,logs,v) — re*r(T*t)Kg(t7 log s,v) — e*"(T*t)th(t, log s, v),
cs = f(t,logs,v) + sfs(t,log sm)% — e "I K g, (t,log s,v)%7
o = sfu(t,logs,v) —e "I Kg,(t,1log s, v),

1 ) 1
5 te T K g,(t,logs,v)—

—T‘(T—t)K t.1 -
€ gss( ; Ogsuv)s s2’

1 1
Css = fs(t7logs7v)7 + fss(tlogs?v)* -
S S
K
Cso = folt,log s,v) + fsu(t,logs,v) — e*’“(T*t)ggsv(t, log s,v),

Cow = Sfus(t,logs,v) — e " T VK g, (t,log s, v).

So
L, L,
¢t + rses + (a — bv)e, + 55 VCss + POSUCs, + 5 VCyry
= sfi—re "I VKg—e T OKg +rsf+rsfe —rKe " T g+ (a —bv)(sf, —e " T VKg,)
1 1 1 K s oy K
+732U |:_fs + 7fss - eir(Tit)*Qgss + er(Tt)Kgé] + posv <fv + fsv —€ (T t)gsu>
2 s s s s s
1
+§0'2U(5fvv - eir(Tit)ngv)
1 1 L 5 —r(T—1) 1
= $ ft+(T+§U)fs+(a_bv+po'v)fv+§Uf53+po'vfsy+§0' vav — Ke gt+(’r_§v)gs
1 1 2 —r(T—t)
H(a—bv)gy + 50gss + povgsy + 50 VGuy | +rsf —Te Kg
= rc
That is, ¢ satisfies the PDE (6.9.26). O
(i)

Proof. First, by Markov property, f(t,X:,Vi) = E[l{x,>10g k}|Ft]. So f(T, X, Vi) = l{x;>10g K}, Which
implies f(T,2,v) = 1{g>10g k} for all z € R, v > 0. Second, f(t, X;,V;) is a martingale, so by differentiating
f and setting the dt term as zero, we have the PDE (6.9.32) for f. Indeed,

1 1
df(thh‘/t) = ft(t7Xta‘/t)+f$(t7Xt7‘/t)(r+5%)+fv(t7Xta‘/;f)(a_bvt+po—‘/t)+§fxm(taXt7V;>‘/t
1
5 Foult, Xi, V)0 Vi + fun(t, X, Vi)oVip)| dt + martingale part.

So we must have f; + (r 4 3v) fo + (a — bv 4 pov) fu + § feav + 5 fou0?0 + 0Vpfay = 0. This is (6.9.32).

O
(iv)
Proof. Similar to (iii). O
(v)

P?”OOf, C(T,S,”U) = Sf(Ta IOgsvv) - eir(Tit)Kg(Ta logs,v) = Sl{logleogK} - Kl{logleogK} = ]-{SZK}(S -
K)=(s— K)". O

6.8.
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Proof. We follow the hint. Suppose h is smooth and compactly supported, then it is legitimate to exchange
integration and differentiation:

ge(t,x) = a/h thydy—/h Ype(t, T, x,y)dy,
ot = [ W @palt. T, )y

0
gzz(t7m) :/ h(y)pm(t7T7x,y)dy.

0

So (6.9.45) implies [ h(y) [pe(t, T\, y) + B(t, )pe (t, T, 2,y) + 37 (t, @)pae(t, T, 2, y)] dy = 0. By the ar-
bitrariness of h and assuming 3, pt, Pz, v, Dz are all continuous, we have

1
pe(t, T 2, y) + B(t, 2)pa (t, T, z,y) + 572(t’fv)pm(t,T, z,y) = 0.

This is (6.9.43). O
6.9.

Proof. We first note dhy(X,) = b}, (Xu)dXy+5h) (Xu)dX,dX, = [h)(X)B(u, Xu) + 572 (u, Xu)h (X,)] dut
hi(Xu)y(u, X,,)dW,,. Integrate on both sides of the equation, we have

T
1
ho(XT) — hp(Xy) = / {hg(Xu)ﬁ(u,Xu) + 572(u,Xu)hg(Xu) du + martingale part.
¢

Take expectation on both sides, we get

EY[hy(X7) — ho(Xy)] = /Oo he(y)p(t, T, x,y)dy — h(x)

—00

- / B 1 (X,) B X.) + éwu,xu)hzxxu)]du

Since h;, vanishes outside (0, b), the integration range can be changed from (—o0,00) to (0,b), which gives
(6.9.48).
By integration-by-parts formula, we have

b b
/ﬂ(u,y)p(t,u,x,y)hé(y)dy = hb(y)ﬁ(uvy)p(t,u,wyy)g—/ hb(y)ag(ﬁ(wy)p(t,u,x,y))dy
0 0 Yy

b o
- / () 5 (B p)p(t v, 9))dy

and

b b b 92
/0 2 ()t s ) )y = — /0 %(%(u,wp(t,wx,y»hg(y)dy= /0 g—ywmwp(t,u,x,y»hb(y)dy.

Plug these formulas into (6.9.48), we get (6.9.49).
Differentiate w.r.t. T on both sides of (6.9.49), we have

b 8 b a b 82
| o gt Ty == [ @ p Ty + 5 [ AT T (),

62



that is,

2

’ 0 0 0

This is (6.9.50).
By (6.9.50) and the arbitrariness of hy, we conclude for any y € (0, 00),
2

) ) 102, , B

6.10.

Proof. Under the assumption that lim, . (y — K)ryp(0,T, z,y) = 0, we have

oo

o0 o, N . _ °
—/ (y—K)*(Typ(QT?x,y))dy:—(y—K)Typ(07T,x,y)lK+/ ryp(OyT,x,y)dy=/K ryp(0,T, z,y)dy.

K dy K

If we further assume (6.9.57) and (6.9.58), then use integration-by-parts formula twice, we have
o 0%, o~
/ (y— K)@(U (T,y)y*p(0, T, z,y))dy

(v — )2 (0>(T, )50, T 2, ) 32 /K h (%(a?(T, W50, Tz, y))dy}

ay

1
502(T, K)K?p(0,T,z, K).

Therefore,

oo

cr(0,T, 2, K) = frc(O,T,x,K)Jre*”T/ (y— K)pr(0,T,z,y)dy
K

= e / (y— K)P(0, T, 2, y)dy + &7 / (y — K)pr(0, T, 2, y)dy
K K

o0 N B o
= e T / (y — K)p(0, T, 2, y)dy — e~ / (v — K) 2 (ryplt, T, 2. ) dy
K K 31/

o [ 1 02 B
+e T/K (y—K)§afy2(02(T7y)y2p(t,T,x,y))dy

= —re””T/ (y—K)ﬁ(O,T,xyy)dyﬂLe”T/ ryp(0, T, z,y)dy
K K

1 _
+e*TT502 (T, K)K*p(0,T,z, K)

> 1
— e T [ B0 Ty + e o (T KK 0.7, )
K

1
= —rKcg(0,T,z,K) + 5a2(T, K)K?cri (0,T,z, K).

7. Exotic Options
7.1. (i)
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Proof. Since d4(7,s) = %ﬁ[logs + (r+i0%)r] = %T’% + #ﬁ,

) _ logs, 1. 507 r+io?1 107
a=me) = T T Ty
_ 1 [logs 1 7":|:%cr2
= o |y - PRy
1 1,
= 5 a\ﬁ[ logss+(r:|:§(7 )T):|
1 1
= —E(Si T,;).
(if)
Proof.
0 x, 0 x 9 1
%5i(7, ) % <f |:10gc+(7’2|: 50’ )T:|) = xo'\/f]i
0 c, 0 1 c 1 5 B 1

(iii)

Proof.
1 54 (7ys) 1 (log s+rm)2£o27(log s+rr)+ 5 olr2
N'(64(7,8)) = e 2z = e~ oy
Therefore
N'(Sy(r,s)) _ _soiotiogesrn 77"
N'(6_(r,s)) s
and e”""N'(6_(7,s)) = sN'(d4(7, 5)).
(iv)
Proof.
N'(64(, 5)) . [(logs+7'7)2—(log%«;:;—12]i627(10g57103%) _ it Zf;‘:?ﬂogs _ o~ (BEDloss _
N'(6+(r,s71))
So N'(54(r,s71)) = sSEFI N/ (54 (7, 5)).
(v)
Proof. 6, (1,s) —d0_(7,5) = %ﬁ [log s+ (r+ 30%)7] — %ﬁ logs + (r — 30°)7] = =0?r = 0\/7.
(vi)
Proot. 84 (r,5) = 6a(ry571) = 2 [logs + (r & 20)7] — 2L [log s~ + (r & 2] — 2ok

(vii)
2 y2 2

Proof. N'(y) = =e™ 7,50 N'(y) = =e” 7 (=) = —yN'(y).
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To be continued ...
7.3.

Proof. We note ST = Soe”WT = 5 o (Wr=W) WT — Wt = (WT — Wt) + (T — t) is independent of F,
supt<u<T(W Wt) is independent of F;, and

Yr = Spe7Mr

— S e? SUPt<u<T Wul /\ Shel — Py
{Mt<suPt<u<TWf} 20 {Mt>supt<u§T Wu}
— o sup, < < (Wu—Wr)
Ste tsus “ 1 st< asupt<u<T(Wu Wt)} +Y;‘/ {Yt< Uhupt<u<T(Wu Wt)}~
t

So E[f(Sr,Yr)|F] = E[f(msg ! $Y§Of1{y<YT 0 +y1{y<yT ,})], where x = S;, y = Y;. Therefore

E[f(St,Yr)|F:] is a Borel function of (S, Y:).
O

7.4.

Proof. By Cauchy’s inequality and the monotonicity of Y, we have

|Z()/t] 7)/15]'—1)(51‘/;‘ 7Stj—1)| < ZD/t] 7)/;]'—1”5% 7Stj—1|
j=1

Jj=1

YBIEEOBN) WIE?

j=1 j=1

IN

IN

m
\/1%85;1|Ytj _}/tj—1|(YT _Yb) X;(St_] _Stj—l)Q'
J

If we increase the number of partition points to infinity and let the length of the longest subinterval

maxi<;<m |t; —tj—1| approach zero, then \/Z;n:l(Stj —S,.)% = /ISl — [S]o < o0 and maxi<j<m |z, —
Y;,_,| — 0 a.s. by the continuity of Y. This implies Z;YL:I(Y}J =Yy, )(St; —St;_,) — 0. O

8. American Derivative Securities

8.1.
Proof. vi(L+) = (K= D)(=35)(§) 7| | = ~Fp(K = L). So v (L+) = vy (L) if and only if
_022”L (K — L) = —1. Solve for L, we get L = 2?:71;2 -
8.2.

Proof. By the calculation in Section 8.3.3, we can see va(z) > (Ky — )t > (K7 — x)™, rva(x) — ravh(z) —
§02x2v2( )>0forall z >0, and for 0 < x < Ly, < Loy,

1
rva(z) — ravh(z) — 502302115'( z) =rKy >rK; > 0.

So the linear complementarity conditions for vy imply va(z) = (Kz —2)t = Ks —2 > Ky — 2 = (K1 — )T
on [0, L1.]. Hence va(x) does not satisfy the third linear complementarity condition for vy: for each > 0,
equality holds in either (8.8.1) or (8.8.2) or both. O

8.3. (i)
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Proof. Suppose x takes its values in a domain bounded away from 0. By the general theory of linear
differential equations, if we can find two linearly independent solutions vy (z), va(z) of (8.8.4), then any
solution of (8.8.4) can be represented in the form of Cyv; +Cyve where Cy and Cs are constants. So it suffices
to find two linearly independent special solutions of (8.8.4). Assume v(z) = zP for some constant p to be
determined, (8.8.4) yields a? (r—pr— l02]9(]9—1)) = 0. Solve the quadratic equation 0 = r—pr—lUQp(p—l) =

(—20%p—r)(p—1), we get p=1 or —2%. So a general solution of (8.8.4) has the form Cyz + Coz~ .0
(i)

Proof. Assume there is an interval [x1, z2] where 0 < z1 < x2 < 00, such that v(z) Z 0 satisfies (8.3.19)
with equality on [21, 2] and satisfies (8.3.18) with equality for x at and immediately to the left of 2; and

for x at and immediately to the right of 23, then we can find some C; and Cs, so that v(z) = Ciax + C’gx_%
on [z1,x2]. If for some zg € [z1,22], v(zg) = v'(x9) = 0, by the uniqueness of the solution of (8.8.4), we
would conclude v = 0. This is a contradiction. So such an xg cannot exist. This implies 0 < 1 < 9 < K
(if K < 29, v(x3) = (K — x3)T = 0 and v/(z2)=the right derivative of (K — z)* at x5, which is 0). * Thus
we have four equations for C7 and Cj:

2r

Ciz1 + Cox 2 =K — X1
1
_ 2r
Ciao + CQ(EQ I g To
2r
2r Te2 T
Cl — ?02‘%1 7 =1
2r
2 T 52
C1— 5Cozy 7 =-1

Since 7 # w2, the last two equations imply Cy = 0. Plug C5 = 0 into the first two equations, we have

C, = Kx oL — K- =—%2; plug Cy = 0 into the last two equations, we have C; = —1. Combined, we would have
T = Ta. COIltI‘adlCthH Therefore our initial assumption is incorrect, and the only solution v that satisfies
the specified conditions in the problem is the zero solution. O

(i)
Proof. If in a right neighborhood of 0, v satisfies (8.3.19) with equality, then part (i) implies v(z) = Ciz +

Coa~ % for some constants C; and Cy. Then v(0) = limgjpv(z) = 0 < (K —0)", ie. (8.3.18) will be

violated. So we must have rv — rav’ — 102z%0” > 0 in a right neighborhood of 0. According to (8.3.20),

v(x) = (K —2)" near o. Sov(0) = K. We have thus concluded simultaneously that v cannot satisfy (8.3.19)
with equality near 0 and v(0) = K, starting from first principles (8.3.18)-(8.3.20). O

(iv)
Proof. This is already shown in our solution of part (iii): near 0, v cannot satisfy (8.3.19) with equality. [
(v)

Proof. 1f v satisfy (K —2)T with equality for all z > 0, then v cannot have a continuous derivative as stated
in the problem. This is a contradiction. O

(vi)

INote we have interpreted the condition “v(x) satisfies (8.3.18) with equality for = at and immediately to the right of z2”
as “v(wz) = (K — x2)T and v/(x2) =the right derivative of (K — x)T at x5.” This is weaker than “v(z) = (K — x) in a right
neighborhood of x3.”
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Proof. By the result of part (i), we can start with v(z) = (K — z)* on [0, 21] and v(z) = Cix + Coz ™% on
[11,00). By the assumption of the problem, both v and v’ are continuous. Since (K —z)% is not differentiable
at K, we must have z; < K.This gives us the equations

27

K—x1 = (K — SL'1)+ =Chix1 + Cgl‘;ﬁ
251

_ 2r T o2
—1=C) - %0,

Because v is assumed to be bounded, we must have C; = 0 and the above equations only have two unknowns:

C5 and z1. Solve them for C5 and x1, we are done. O
8.4. (i)
Proof. This is already shown in part (i) of Exercise 8.3. O

(ii)
Proof. We solve for A, B the equations

AL % + BL=K — L
AL 4 B =1,

27
2
KL p o oK
o242r ~ L(o2+42r) 1 O

and we obtain A =
(ii)
Proof. By (8.8.5), B> 0. Soforx > K, f(z)>BK >0=(K —z)".  L<z < K,

KL s 2rKx 2r KL [02+2T(%)%+1 —(02+2r)(%)%}
o) - (a2 TEEE g 2o |
o2 4 2r L(o'2 + 27’) (02 T 27")L
Let 9(0) = o* + 2r0" S (02 4 2r)07% with § > 1. Then g(1) = 0 and ¢/(6) = 2r(25 + 1)0+% — (o2 +
)2%9 = ?(U + 2r)0§%—1(0 —1) > 0. So g(#) > 0 for any 6 > 1. This shows f(z) > (K — z)" for
L <z < K. Combined, we get f(z) > (K —x)" for all z > L. r

(iv)

Proof. Since lim, o v(z) = lim, o f(z) = 00 and lim, o vr,, () = limg— o0 (K — L*)(Li)izi2 =0, v( )

and vy, (z) are different By part (iii), v(z) > (K — z)*. So v satisfies (8.3.18). For x > L, rv — rav’ —

%o%%” =rf—raf—30%2?f" =0. For 0 < a < L, rv—rav’ — 50%2?0” = r(K —x) +rz = rK. Combined,

rv—rzv’ — 2o%2%0” > 0 for z > 0. So v satisfies (8.3.19). Along the way, we also showed v satisfies (8.3.20).

In summary, v sat1sﬁes the linear complementarity condition (8.3.18)-(8.3.20), but v is not the function vy,

given by (8.3.13). O
27

v)
Proof. By part (ii), B = 0 if and only if m =0,ie. L= 2T+[§2' In this case, v(z) = Ax™ =% =

o2 K (%)_% =(K—-L)(¥)” == vr, (), on the interval [L, co). U

02427

8.5. The difficulty of the dividend-paying case is that from Lemma 8.3.4, we can only obtain E[e_(T_“)TL]7
not E[e”""=]. So we have to start from Theorem 8.3.2.

(i)
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Proof. By (8.8 ) Soe”ﬁ/"*‘(r_“_%”z)t. Assume Sy = z, then S; = L if and only if —W, — Lir—a-
1
= log

1ot = By Theorem 8.3.2,
Bemrm] = o= 8 E[emam bt EE TR
If weset v = L(r—a—302)+ 1/ (r—a— %)%+ 2r, we can write Ele™™™] as e Vlos £ — (£)77. So
the rlsk—neutral expected discounted pay off of this strategy is
() = K—x, 0<z<L
v (z
b (K—L)(%)™, z>L.
O
(ii)
Proof. %UL(Z‘) =—(7)77(1 - @) Set %UL(J)) = 0 and solve for L., we have L, = ;’—fl O

(iii)

Proof. By Itd’s formula, we have

dle "vp, (S)] =e™ ™ [_TUL*(St)'i_UIL*(St)( )SH- vL (Sp)02S2| dt + e "t (S)a S dW.

If ¢ > L.,
/ 1 " 2.2
—rvg, (x) +vp (2)(r —a)z + §UL*(.1‘)O' x
z\ R ST 2
= —r(K—-L,) (L*> + (r—a)z(K — L)(—) T oo (=) (=y = 1)(K — L) =

x

~ (K-1L.) <L*)_7 [—r (= a5+ )

By the definition of ~, if we define u =7 —a — %UQ, we have

1
T+U—ah—§¥%v+n

1 Lo
= r7§a'y +’y(r—affa

1 [u
- r_2 2( ) ( 72 2T>u
1 u? u?
= T'_2 ) +72 — —1—27”
1 [ u? u?
= 024-27“ 3 7 2r +§+; §+2T

ik

If o < Ly, —rvg, (z) + v} _(2)(r — a)z + v]_(z)o?z? = —r(K —z) + (—=1)(r — )z = —rK + az. Combined,
we get
d [Birt’UL* (St)} = —€7Tt1{5t<L*}(’I"K — aSt)dt + 67“ ! (St)O'Stth
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Following the reasoning in the proof of Theorem 8.3.5, we only need to show 1{1<L }(rK —az) > 0 to finish
the solution. This is further equivalent to proving rK — aL, > 0. Plug L, =

+1
note v > ;\/%(r —a—30%)2+ % (r—a—30%) >0, the inequality is further reduced to r(y+1) —ay > 0.
We prove this inequality as follows.

Assume for some K, r, ¢ and o (K and o are assumed to be strictly positive, r and a are assumed to be
non-negative), rK — aL, < 0, then necessarily r < a, since L, = J—K < K. As shown before, this means

(r—a %Uz)—l—%\/ﬁ(r—a 202) 4+ 2r =

r(y+1) —ay < 0. Define =

Lo—10)+L1,/(0 —10)2 +2r. We have
r(y+1)—ay<0 <= (r—a)y+r<0

1
—50)24—27“ +r<0

—
=
|
IS
N—
| — |
| =
—
>
|
|
Q
N~—
+
\
—
>

1 1
9(9—50)4-9 (9—50)2+2r+r<0
1 1
0 (9—50)2+2r< —r —6(0 — 50)(< 0)

1 1 1
92[(9 — 50’)2 + 27“] > 7"2 +92(0 — 50’)2 + 29T(9 — 50’2)

0> 12— 0ro?
0>r—60c2.

rer 17

Since #o? < 0, we have obtained a contradiction. So our initial assumption is incorrect, and rK — aL, > 0
must be true. O

(iv)
Proof. The proof is similar to that of Corollary 8.3.6. Note the only properties used in the proof of Corollary
8.3.6 are that e~ "*vy,, (S;) is a supermartingale, e """+ vy (S;ATL,) is a martingale, and vy, (z) > (K—z)*.
Part (iii) already proved the supermartingale-martingale property, so it suffices to show vy, (z) > (K —z)*
in our problem. Indeed, by v >0, L, = ;’—fl <K.Forx>K > L., vy, (z) >0=(K—xz)";for 0 <z < L.,
vp,(x) =K —x = (K —x)"; finally, for L, <z < K,

d z ! Lt VK 1

— — (K — K-1L, 1> K-L,)—+1= K—-—)—F+1=
000 = (K =) = K = LT +12 (K — L) S +1= (K = )= +1 =0
and (v, (z) — (K — 2))|4=r, = 0. So for L, < z < K, vg,(z) — (K —z)" > 0. Combined, we have
v, (x) > (K —2)t >0 for all z > 0. O

Proof. By Lemma 8.5.1, X; = e~ "(S; — K)* is a submartingale. For any 7 € I'g 7, Theorem 8.8.1 implies
Ele"" (S = K)* 2 Ele™ ™ (Srar = K)*] 2 Ele ™7 (S; = K) Lrco)] = Ele™7 (8- — K)*,

where we take the convention that e "7 (S, —K)™ = 0 when 7 = oo. Since 7 is arbitrarily chosen, E[e_TT(ST—
K)*] > max,er, , Ele”"7(S; — K)*]. The other direction “<” is trivial since T € I'g 7. O

8.7.
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Proof. Suppose A € [0,1] and 0 < 7 < z9, we have f((1 — A)z1 + Aze) < (1 — A)f(x1) + Af(xe) <
(I = Nh(z1) + Ah(x2). Similarly, g((1 — Az + Azz) < (1 — A)h(z1) + Ahr(x2). So
(

h((1 — Nzx1 + Aze) = max{f((1 — N)z1 + Az2),g((1 — Nz1 + Azo)} < (1 — A)h(z1) + Ah(x2).

That is, h is also convex. O

9. Change of Numéraire

To provide an intuition for change of numéraire, we give a summary of results for change of
numéraire in discrete case. This summary is based on Shiryaev [5].

Consider a model of financial market (B, B, S) as in [1] Definition 2.1.1 or [5] page 383. Here B and
B are both one-dimensional while S could be a vector price process. Suppose B and B are both strictly
positive, then both of them can be chosen as numéaire.

Several results hold under this model. First, no-arbitrage and completeness properties of market are
independent of the choice of numéraire (see, for example, Shiryaev [5] page 413 Remark and page 481).
Second, if the market is arbitrage-free, then corresponding to B (resp. B), there is an equivalent probability

P (resp. P), such that (B S) (resp. (E E)) is a martingale under P (resp. P). Third, if the market is

B’ B B’ B
both arbitrage-free and complete, we have the relation
ap=51_1 _ip.
BT FE {@]
Bo

Finally, if fr is a European contingent claim with maturity N and the market is both arbitrage-free and
complete, then
B.E {Jme] = B,E {fﬁft] :
BT BT
That is, the price of fr is independent of the choice of numéraire.

The above theoretical results can be applied to market involving foreign money market account. We con-
sider the following market: a domestic money market account M (My = 1), a foreign money market account
M/ (Mof = 1), a (vector) asset price process S called stock. Suppose the domestic vs. foreign currency
exchange rate is (). Note @ is not a traded asset. Denominated by domestic currency, the traded assets
are (M, M'Q,S), where M7 (Q can be seen as the price process of one unit foreign currency. Domestic risk-
M'Q s

7 M) is a ﬁ—martingale. Denominated by foreign currency, the traded

neutral measure P is such that (

assets are (M f %, %) Foreign risk-neutral measure P/ is such that (%, ﬁ) is a Pf -martingale.
This is a change of numéraire in the market denominated by domestic currency, from M to M/Q. If we

assume the market is arbitrage-free and complete, the foreign risk-neutral measure is

- Fo ;o
dpP! = 7QTfTMf dP = LZTMTdP
MrE |43 | 0

on Fr. Under the above set-up, for a European contingent claim f7, denominated in domestic currency, its
D fr
Dl Qr

payoff in foreign currency is fr/Qr. Therefore its foreign price is E! [ |.7-"t] Convert this price into

~ f ~ ~
domestic currency, we have Q,FE7 {g}réT |]-"t}. Use the relation between P/ and P on Fr and the Bayes
QT
formula, we get
~. | D! ~[D
QiE! 7]TfT |\ F, —E{IT)me}
t&T t

The RHS is exactly the price of fr in domestic market if we apply risk-neutral pricing.
9.1. (i)
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Proof. For any 0 <t < T, by Lemma 5.5.2,

) [Ml(T§’]__t] _E [MQ(T) Ml(T)‘ t} _ E[M(T)|F:]  M(t)

Msy(T Ms(t) My(T) Ms(t) - Ms(t)
So %;E:; is a martingale under PMz, O
(if)

Proof. Let My(t) = DySy and My(t) = DyN;/Ny. Then POY) as defined in (9.2.6) is P*2) as defined in
Remark 9.2.5. Hence %ﬁgg = ]%NO is a martingale under P(") | which implies St(N) = J% is a martingale

under PV, ]

9.2. (i)

. - W (12
Proof. Since N; ' = Ny e "Wie=(r=3v)t e have

W 1,2 - 1 1 ==
d(N;7Y) = Ny temWem(r=3v Dt _pqW, — (r — §V2)dt + §V2dt] = N; Y (—vdW; — rdt).

O
(if)
Proof.
— 1 1 1 — —~ — —
dMy = Myd | — | + —dM; +d | — | dM; = My(—vdW; — rdt) + rMdt = —v My dW,.
Ny Ny Ny
Remark: This can also be obtained directly from Theorem 9.2.2. O
(iii)
Proof.
~ X 1 1 1
dXy = d|—=)=Xd|— —dXy+d| — | dX
' (Nt) ' (Nt>+Nt o (Nt> '
1 1 1
= (AtSt + FtMt)d T + 7(Atd5t + Ftht) + d T (Atdst + Ftht)
Nt Nt Nt
= A |Sid €L +ids+d N dSy| + Ty | Md €L JridMer 1 dM
= LR\ N, N, N, t R N, N, t
= AdS; + TydM,.
O

9.3. To avoid singular cases, we need to assume —1 < p < 1.
(i)
Proof. N, = NoeV‘/NVs(tH(r—éuz)t_ So
dNt_l = d(No_lef”rWS(t)*(T*%l’Q)t)
. - . )
= Ny le WsO=r=3vt | iy (t) — (r — V)t + St
= N '[-vdWs(t) — (r — v?)dt),
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and

ds™ = N;7'dS, + Sy dN; ' + dS,dN;!

N7 Y (rSydt + oS, dWi (£)) + Se Ny [—vdWs(t) — (r — v?)dt]
= SV (rdt + odWi (1)) + S, [—vdWs(t) — (r = v*)dt] — o5, pat
= SV —op)dt+ SN (odWi(t) — vdWs(t)).

Define v = /02 —2pov + v? and W4(t) = %Wl t) — %Wg(t), then Wj is a martingale with quadratic

variation ) )
—~ o ov v

By Lévy’s Theorem, W, is a BM and therefore, S’t(N) has volatility v = \/0? — 2pov + v2. O
(i)
. . . Irr . —p Irr 1 o Irr
Proof. This problem is the same as Exercise 4.13, we define W(¢t) = 7\/@1/(/1 )+ 7\/§W3(t)’ then Wy
is a martingale, with
2
. 2 1 2p2
dWa(t))? = d d = (-2 - dt = dt
(dWa(1)) ( \/7W1 \/7W3 ) <1_p2+1_p2 1_p2> g
and dWa(t)dW;(t) = — w”_ dt + \/f_ dt = 0. So ’WQ is a BM independent of Wi, and dN; = rN,dt +
VN dWs(t) = rNydt + vNy[pdWi (t) + /T — p2dWal(t O

(i)
Proof. Under ﬁ7 (Wl, Wg) is a two-dimensional BM, and

— AW (t
dS, = rSydt + oS, dWi(t) = rSydt + Si(,0) - (d%l 8)
2

dN; = rNydt + vNydWs(t) = rNydt + Ni(vp, v/1 — p?) - (Z%l 8) .
2

So under P, the volatility vector for S is (,0), and the Volatility vector for N is (vp,vy/1 — p?). By Theorem

9.2.2, under the measure PV)| the volatility vector for SV) is (vy,v3) = (0 —vp, —v\/1 — p2. In particular,
the Volatlhty of SV ig

\J V2 + i = \/(0—1/,0)2+ (—vv1—p?)?2 =02 —2vpo+ 12,

consistent with the result of part (i). O

9.4.
Proof. From (9.3.15), we have M Q, = M({Qoefot o2(s)AWa(s)+[5 (Ra=303(s)ds  go

Df

= D{Qyle i o2(®)dWals)= [§ (Ra—}03(s)ds
Qi
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and

Q: Q: 2 2 Qt

To get (9.3.22), we note

f f f f
(M2t} = ana(50)+ Dhansc s )

f f . f .
d <Dt> = &[—Uz(t)dwg( ) — (R — 2o2())dt + 102( t)dt] = = Ao[=o2(t)dWs(t) — (Re — o3(t))dt].

f .
= g oal)dWa(t) ~ (R - o3(0)at] + R”g%dt
f N
— TGt - o3(0d)
f .
_ _Mgt)f o3 (1) (1),
To get (9.3.23), we note
p{s,\ D] Df D]
d<Qt> - Qtdst+5t (@) +dS,d <Q>
. f .
= t 01 1 t —02 3 - t — 05
-0 2L Sy (Rydt + o1 (£)dW (1)) + Qt oo (t)dWs(t) — (R (t))dt]
D] —~
+S01 (1) AW, (t )Qt (—0o2(t))dWs(t)
DfSt 1774 i 2
= [o1(t)dW1(t) — o2(t)dW3(t) + o5 (t)dt — o1 (t)oa(t)prdt]
D!s,

= 5l OaW (1) — o2V (1),

t

9.5.
Proof. We combine the solutions of all the sub-problems into a single solution as follows. The payoff of a
quanto call is (5—? — K)™ units of domestic currency at time 7. By risk-neutral pricing formula, its price at

time ¢ is E[e‘T(T_t)(% — K)"|F]. So we need to find the SDE for g‘t under risk-neutral measure P. By

formula (9.3.14) and (9.3.16), we have S; = SpeotWi®+(r=3oD)t ang

Q; = Q0602W3(t)+(r—7'f—%ag)t _ Qoeagpﬁ/l(t)-l-ag\/1—p2W2(t)+(r—7’f—%Ug)t.

So % = 50 elor— T2p)Wi (t)—02y/1—p2 Wa(t)+(rf +1 o5=3Dt Define
t 0

_ oo — 12—
01 = /(01— 02p)? + 031 — p?) = \Jo? —2po102 + 03 and Wa(t) = 2290, (1) - 2Py o).
04 04

Then W, is a martingale with [Wdt = (‘71_022")215 + ‘72(;”2)75 +t. So W, is a Brownian motion under P. So
4 4

if we set @ = r —rf + poyoy — 02, we have

St _ 50 ou Wt +(r—a—yodt ( S > St
= 20 WaO+(r—a=}odlt 4nq g AW — a)dt).
Q- Q° " Qt Qt 0, PdWalt) + r — )]
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Therefore, under ]5, % behaves like dividend-paying stock and the price of the quanto call option is like the
price of a call option on a dividend-paying stock. Thus formula (5.5.12) gives us the desired price formula

for quanto call option. O
9.6. (i)
Proof. dy(t) —d_(t) = —A=0*(T —t) = oVT —t. So d_(t) = dy(t) —oVT — 1. O
(ii)
Proof. dy(t)+d_(t) = 2= log "I S0 a2 (1) (1) = (dy (t)+d— (1)) (d (1) —d— (1)) = 2log FOGET).
O
(iii)
Proof.
Forg(t, T)e %0/ _ Km0 = a0/ 2 Forg(t, T) — Ke®0/2-2 0172
= e‘di(t)m[]?ors(t7 T) — Ke'°® Fﬂs}(ﬁi)]

O
(iv)
Proof.
dd (1)
1 Forg(t,T) 1 , 1 dFors(t,T) (dForg(t,T))?> 1
= VIo/(T — t)3log —22=) 4 ~o(T — - — =
g VIeVIT =t llog ===+ 50 (T = Oldt + == | T 0Ty ~ Forgr, 702 270
1 Forg(t,T) o 1 ~r 15 1 5
= 1 dt + dt + dW=(t) — —o°dt — —o=dt
204/(T —t)3 %K 4T —t o T—t(g ®) 27 27 )
1 Forg(t,T) 30 AW (t)
= 1 dt — dt
2(T — 132 8 K T Tt
O
(v)
Proof. dd_(t) = dd..(t) — d(oVT — 1) = dd (1) + ;5. O
(vi)
Proof. By (iv) and (v), (dd_(t))* = (dd(t))? = 4. O
(vii)
! 1arm 2 1 —di(t) 1_1 —di(t) dt
Proof. dN(d(t)) = N'(d(t))ddy (£)+5N"(d4 (1)) (dd1(t))° = Zze™ "7 ddy (D) +5ze” 7 (—dy (b)) 7.
O
(viii)
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Proof.

AN(d-(t)) = N’(d—(t))dd—(t)+%N"(d—(t))(dd—(t))2

a2 (1)

_ \/1271—6_0172&) (dd+() . odt ) 16\/—; (—d_ (t))%

2 () (o VT—E—dy (1)

2
1 _p (t)/2 ged=(1)/2 e 2
= —e % ddy(t) + dt + dt
V2 +H+3 on(T — t) 2T — t)V2r
—d? (t)/2 0]
= Le—dz,(t)/Qder(t) + ge 7( )/ dt _ d+(t)€ 2 dt
V2T 27(T —t) 2(T —t)V2n
O
(ix)
Proof.
—~ —®m/z — oForg(t T)efdi(t)/2
dForg(t, T)dAN (d (1)) = oFors(t, T)dWT (t)< WT(t) = 22050
O
(x)
Proof.
Forg(t,T)dN(d+(t)) + dForg(t,T)dN(d+(t)) — KdN(d_(t))
— FOrS(t,T) |:1ed3_(t)/2dd+(t) d-‘r(t) —dz t)/th:| + O'FOI'S t T (t)/2 dt
V2 AT — t)v2r. 1)
—d% (t)/2 L ody(t)
(& g 2 2
K | ————dd(t) + ————=e" /24t — e~ =M/2g4
o ) 2n(T — 1) AT — t)v2r
Fors (t,T)dy (1) a2z , oFors(t, T)e 02 Koe =02 Kdi(t) 2wy,
2T —t)Vv2n 2n(T —t) 27 (T—t) 2T —t)V2rm
L ~B(0)/2 _ [ o—d> ()2
+\/ﬂ (Fors(t,T)e + Ke )dd+(t)
= 0.
The last “=" comes from (iii), which implies emd2(0/2 = We*di(t)/z. O

10. Term-Structure Models
10.1. (i)

Proof. Using the notation I;(t), I2(t), Is(t) and I4(t) introduced in the problem, we can write Y;(t) and
Ya(t) as Yi(t) = e MtY1(0) + e Mt (¢) and

Yoty = [ FE N = NOV0) + e a(0) + i [N (1) = e h)] — e (D), TN £ A
7)\21t€7)\1tY1 (0) + 67)\115}/2(0) — Ao1 [teiAltll (t) — 67A1t14(t)] +e Alt] (t) if Ay = Ao,
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Since all the I(t)’s (k = 1,---,4) are normally distributed with zero mean, we can conclude E[Y;(t)] =
e~ 21ty (0) and

Blva(t)) = § %%

~ 22 (=Mt em Y (0) 4 e M2tY5(0), if Ap # Ao
—Ao1te™ 211 (0) 4+ e~ M1Y5(0), if Ay = Ao

(ii)
Proof. The calculation relies on the following fact: if X; and Y; are both martingales, then X;Y; — [X,Y]; is
also a martingale. In particular, E[X;Y;] = E{[X,Y];}. Thus

~ t o 62)\1t -1 =~ t (ate) e()\1+>\2)t -1
E[I;(t)] = Wy = ———, E[[(H)I2(t)] = Ay = ——————
20 = [ M = G B R] = [ e = St
~ ~ ¢ 1 et — 1
E[L(t)I3(t)] =0, E[I(t)14(t)] = / ue M dy = —— |te?Mt — ——— =
0 2)\1 2)\1
and
t 2 2\t 271t 22t
~ t“e M te Mt et —1
EIQt — 2 2)\1ud — _
Ha ()] /0“6 S Vs CRL VDT
O
(iii)
Proof. Following the hint, we have
~ . t Y e(MtA2)s _ 1
BlL(s)Io(1)] = BIL () La(t)] = / (Mt gy = €L
0 )\1 + )\2
O

10.2. (i)

Proof. Assume B(t,T) = Ele” I Reds| F] = f(t,Y1(t),Ya(t)). Then d(DyB(t,T)) = D¢[—R: f(t, Y1(t), Ya(t))dt+
df (t,Y1(t), Ya(t))]. By Itd’s formula,

df ¢, Y1(t), Yo(t)) = [fe(t,Y1(2),Y2(1)) + fy, (£, Y1(2), Y2(2)) (10 — MY1(1)) + fyo (8, Y (D), Yo () (—A2) Ya(?)]
+ fyrys (8, Y1(2), Ya(t))o21 Y (2) + %fylyl (t,Y1(t), Ya(t)) Y1 (t)

1
—|—§ch2y2 (t,Y1(t), Yg(t))(alel (t) + a + [Y1(t))]dt + martingale part.

Since D;B(t,T) is a martingale, we must have

—(80 + 0131 + 6 )+g+( - A )ﬁ—/\ i+1 20 a72+ a—2+(02 +a+p )8—2 =0
0 191 2Y2 ot H 191 A 2y28y2 5 21y13y18y2 ylay% 21Y1 Y1 3y% =u.
O

(i)

76



Proof. If we suppose f(t,y1,y2) = e‘ylcl(T_t)y2c2(T—t)_A(T_t) then 9 f = [1C{(T —t) + y2C4(T — t) +
A/( _t>]fa aiylf = _Cl( )f7 ay2 = _02( _t)f7 aylayz = Cl( _t)CQ(T_t)f7 % = C%(T_t)fv
and a—f = C3(T —t)f. So the PDE in part (i) becomes

1
—(60+61y1+§2y2)+le{+ng§+A’—(M—A1y1)01+>\2y202+§ [202151C1Ca + 41CF + (03,51 + o+ By1)C3] =0
Sorting out the LHS according to the independent variables y; and yo, we get

—61 + C) + M1 + 021C1C + 3CF + 4 (03, + B)C3
52+C2+)\202 =0
—bo+ A — pCy + %CVC% =0.

In other words, we can obtain the ODEs for Cy,Cy and A as follows
Cl = —-MC1 —021C1Cy — 3CE — L(03, + B)C3 + 6, different from (10.7.4), check!

Cl = —XoCh + 6,
A = uCh — %O&CQQ + dg.

10.3. (i)
Proof. d(DuB(t,T)) = D~ Ref(t, T, Yi(t), Ya(t))dt + df (1, T, ¥i(t), Ya(1))] and
df (t, T, Y1(t), Ya(t))
= [ft(t T, Y1(t),Ya(t)) + fy, (8, T, Y1(2), Y2(8)) (= A Y1(2)) + fyo (2, T, Y (1), Ya(2)) (= A21 Y2 (1) — A2Y2(1))
+5 fy1y1 (t,T,Y1(¢),Ya(t)) + ifyﬂﬂ (t,T,Y1(t), Yo(t))]dt + martingale part.

Since Dy B(t,T) is a martingale under risk-neutral measure, we have the following PDE:

0 1 02 10
(A21y1 + )\2y2) + 35 + 553 f(ta T7 ylayQ) =0.

—(00(t) + d1y1 + d2y2) + Oy> 203 2043

0 0
i MY — an

Suppose f(ta Ta Y1, y2) = eiylcl(t’T)iyZCZ(t’T)iA(LT)a then

Fit, Ty, y2) = [—n £C1 (4, T) — 12 2 Co(t, T) — LA®T)] (8T, y1,92),
fyl(tﬂTvylvyZ) = _Cl( vT)f(t T, y1,y2)

fyz(t’Taylva) = _02( ’T)f(t T, y17y2)

forys (0T y1,y2) = Cr(t, T)Co (8, T) f (8T, 1, y2),

fyis & Toy1,y2) = CF(&,T) f(, T, y1, y2),

Sy (6T y1,y2) = C3(8,T) f (£, T, 91, y2).

So the PDE becomes

d d d
—(80(t) + d1y1 + d2y2) + (yldtcl(t’ T) - y2%02(t7T) - A(th)> + My Ci(t,T)

dt
1 1
+(A21y1 + A2y2)Ca(t, T) + 5012(th) + ng(t,T) =0.
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Sorting out the terms according to independent variables y; and yo, we get
—So(t) — LAT)+ 1C3t,T)+ 2C3(t, T) =0
—01 — %Cl(f,T) + AlCl(t,T) + )\2102(15, T) =0
=65 — LCo(t,T) + X2Ca(t,T) = 0.

That is
Lt T) = MCL(t,T) + A Ca(t,T) — 63
4Oyt T) = MCa(t,T) — 05
O
(i)

Proof. For Cy, we note —t[ e 2t Cy(t, T)] e~*2'§5 from the ODE in (i). Integrate from t to T, we have
0—e 20y (t, T) = —6, f e M23ds = ( AT =2ty So Cy(t,T) = )\—2(1 — e 2(T=1)_ For (', we note
d — A1t _ -\t )\2162 — A1t 7)\2T+(>\27>\1)t — A1t
&(e Cl(t,T)) = ()\Qlcg(t,T) 7(51)6 = Tz(e — € ) 7516 .

Integrate from ¢ to T', we get
—E_Altcl (t, T)
_))\\221)?12 (e*AlT _ 67)\17:) )\2}\152 e*)\QT e(r2— Xl;\j—;ikg At + %(efAlT _ e*/\lT) if )\1 7& )\2
=3zl (e Mt — ety — Az T(T — ) 4 J (e T — e MT) if A\; = Ao
So
A28z (p=M(T=t) _ q) 4 Aqdy e MITTD e 2270 6y (p=Mi(T—1) _ 1) if
i (t’ T) - )\)\221);512 (e—)\l(T—t) ) i /\2>\1252 —>\2T-i-/\/\217t>\1 51/\1 (—e>\1(T—t) ) 1 n 7& ~ ’
m(e —1)+T€ (T—t)—)\—l(e —1) 1f)\1:>\2.
O
(i)
Proof. From the ODE 4 A(t,T) = L(C3(t,T) + C3(t,T)) — bo(t), we get
T 1
AT = [ |onls) = (3T + €51 as.
¢
O

(iv)
Proof. We want to find &y so that f(0,T,Y;1(0),Y2(0)) = e Y1 (OCOT)=Y2(0)C2(0,T)=A(0.T) — B(0, T for all
T > 0. Take logarithm on both sides and plug in the expression of A(¢,T), we get

T
1
log B(0,T) = =Y1(0)C1(0,T) — Y2(0)C2(0,T) +/ {Q(Cf(s,T) +C3(s,T)) — do(s)| ds
0
Taking derivative w.r.t. T, we have

(0, T) — Ya(0) 2

57C2(0,T) + Cl(T T) + 02(T T) — 50(T).

0 0
T log B(0,T) = —Y31(0 )6T
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So

0 0 0
6o(T) = —Yl(o)ﬁcl(ovT) - YQ(O)ﬁCb(O,T) ~ar log B(0,T)
{Yl(()) [&ewT - %e*/\ﬂ} — Ya(0)dse=2T — B log B(0,T)  if Ay # Ay

—Yl(O) [5167)\1,11 — )\2152€7>‘2TT:| — Y2(0)52€7/\2T — 8% 10g B(O, T) if A\ = Ao,

10.4. (i)
Proof.
N t
dX; = dX,+ Ke X! / KO (u)dudt — O(t)dt
0
t
= —KXdt+YdB; + Ke Kt / KO (u)dudt
0
= —KX,dt+ XdB,.
O
(ii)
Proof.
1
— ~ — 0 ~ 1 0 ~
W, =C2By=|__%% | (”1 O>Bt 0 1| B,
01\/1—/72 (72\/1—,02 0 o2 1—p2 /1—p2
Irr + . . Irr g Irr g 5 2
So W is a martingale with (W1), = (Bl), = ¢, (W?), = (— \/1’1,)231—1— \/117/)2 B?); = 1‘1;2 + ljp2 =27t pt =
p241-2p%, wl w2y, —/pl __p 7l 1 g2y, — __ pt pt__ — Wi
=t =t and (W5, W#), = (B, \/1_,)23 + \/1_sz )t T + T 0. Therefore W is a
two-dimensional BM. Moreover, dY; = CdX; = —CK X;dt+C%dB; = —CKC~YY,dt+dW; = —AY;dt+dW,,
where
A = CKC'= (_ 7L, 1 <)\11 )?) ‘72\/;_”2 L
o1y/1-p2  o2y/1-p? - 2 C] /17 o1
i D Ym0
= _ PA1 _ 1 2
V1 ol o) o2 021
A1 0
= poz(Ae—A1)—0o Y .
024/ 1—p2 2
O
(iii)
Proof.

Xy

t t
X, +e Kt / K e (u)du = C71Y; + e_Kt/ 5 O (u)du
0 0

(e cuyi=re) (405) o7 [ et
- (pam(w N fﬁ—ﬁm)) - e_Kt/o =" O(u)du
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So Ry = Xo(t) = poaYi(t)+02/1 — p2Ya(t)+80(t), where y(t) is the second coordinate of e~ ** f(f KO (u)du
and can be derived explicitly by Lemma 10.2.3. Then 01 = poo and dy = g94/1 — p2. O

10.5.

Proof. We note C(t,T) and A(t,T) are dependent only on T'—¢. So C(t,t+7) and A(t,t+7) aare constants
when 7 is fixed. So

iL _ Btt+D)[-Ctt+7T)R () — At t +7)]
et 7B(t,t+7)
1
= —[C(t,t+T)R'(t) + A(t,t + 7)]
=
1
= =[C(0,7)R'(t) + A(0,7)].
=
Hence L(t)—L(t1) = £C(0,7)[R(t2)—R(t1)]+ £ A(0, 7)(t2—t1). Since L(tz)—L(t1) is a linear transformation,
it is easy to verify that their correlation is 1. O
10.6. (i)

Proof. If §, = 0, then dR, = 6;dY;(t) = 61 (—\ Y1 (t)dt + dW, (1)) = 6, [(%g — Boy)di + dWl(t)} = (oM —

MRy)dt + 51dW1(t). So a = oA and b= \;. O
(if)
Proof.
dR; = 01dY1(t) + 62dY5(1)

= —SMYL(8)dE + A dW(t) — G2X01 Y1 (2)dE — B3 Ao Ya(t)dt + SodWo(t)
= —Yi(t)(61A1 + 62)a1)dt — S X Ya(£)dt + 1AW (t) + SodWa(t)

= —Yi(t)Aadrdt — S XoYa(t)dt + 51dWi(t) + S2dWa(t)

= Mo (Yi(t)61 + Ya(t)Sa)dt + 61dWy(t) + S2dWa(t)

01 —~ 0o —~
= —Xa(Ry — do)dt + /02 + 63 | ——=dW;(t) + ——=dW>(t
2( t 0 1 2 \/m 1() \/m 2()
So a = Asdy, b= Ay, 0 = /02 + 02 andgt:ﬁwl(t)—k\/WWg() O

10.7. (i)

Proof. We use the canonical form of the model as in formulas (10.2.4)-(10.2.6). By (10.2.20),

de= Y1()C1(T 1) =Y2 (¢)Co(T—t) - A(T'—1)

= dt term + B(t,T)[—C1(T — t)dWy(t) — Co(T — t)dWa(t)]

= dtterm+ B(t,T)(—C1(T —t),—Ca(T — 1)) (dﬁl (t)> .

dWs(t)
So the volatility vector of B(t,T) under P is (—Cy(T —t),—C5(T —t)). By (9.2.5), fo
w)du + Wj(t) (j =1,2) form a two-dimensional PT —BM. O
(i)
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Proof. Under the T-forward measure, the numeraire is B(¢,7"). By risk-neutral pricing, at time zero the

risk-neutral price V{ of the option satisfies

Vo _=r 1 (e~ CH{T=TIA(1)=Co(T=T)¥o(T) = A(T=T) _ )+
B(T,T)

B(0,T)
Note B(T,T) = 1, we get (10.7.19).
(iii)
Proof. We can rewrite (10.2.4) and (10.2.5) as

dY1(t) = =\ Y1 (t)dt + dWT () — Co(T — t)dt
dYy(t) = =AY (t)dt — N Ya(t)dt + dWT (t) — Co(T — t)dt.

Then

Yl (t) — Yl (0)6—)\175 4 f(f e)‘l(s_t)dwlT(S) _ f()t Cl (T _ s)ekl(s—t)ds
Yz(t) = Y'Oe—)et — A1 fot Y'1<5>e)\2(s—t)d8 + fOt e)\2(s—t)dW2<s> _ fOt C2<T _ S)ekg(s—t)dsl

So (Y1,Y3) is jointly Gaussian and X is therefore Gaussian.
(iv)
Proof. First, we recall the Black-Scholes formula for call options: if dS; = pS:dt + aStdﬁ//t, then

Ele T (Spe?Wr+n=30)T _ [)+] = SyN(dy) — Ke *TN(d_)

with dy = —L=(log % + (£ $0%)T). Let T =1, So =1 and € = oWy + (u— L0?), then € £ N(u— L0?,0?)

VT
and

B[(¢* — K)] = ¢"N(dy) — KN(d-),

where dy = 1(—logK + (u + 30°)) (different from the problem. Check!). Since under PT, X

N(p— 302,0%), we have

B(0,T)E"[(eX — K)t] = B(0,T)(e"N(dy) — KN(d_)).

10.11.

[l

Proof. On each payment date Tj, the payoff of this swap contract is 6(K — L(T;_1,T;—1)). Its no-arbitrage

price at time 0 is 6(K B(0,T};) — B(0,T;)L(0,T;_1)) by Theorem 10.4. So the value of the swap is

n+1 n+1 n+1
> 0K B(0,Ty) = B(0,Tj)L(0,T;-1)] = 6K B(0,T;) =6 Y B(0, T;)L(0, Tj1).
j=1 j=1 j=1

10.12.

81



Proof. Since L(T,T) = % € Fr, we have

E[D(T +8§)L(T,T)] = E[E[D(T + 8§ L(T,T)|Fr]]
~[1-B(T, T +6) ~

_mE[D(T+ 5)|-7:T]}
~[1—DB(T, T +9)
| 6B(T,T +90)
~[D(T) - D(T)B(T,T + 5)}

5
B(0,T) — B(0,T +6)
5

= B(0,T +0)L(0,T).

D(T)B(T, T + 5)]

11. Introduction to Jump Processes
11.1. (i)
Proof. First, M? = N2 — 2XtN; + \*t%. So E[M?] < . f(x) = 2% is a convex function. So by conditional

Jensen’s inequality,
E[f(M)|Fs] = f(E[M|FS)) = f(Ms), Vs < t.

So M} is a submartingale. O
(i)
Proof. We note M, has independent and stationary increment. So Vs < t, E[M? — M2|F,] = E[(M; —

M2 F) + E[(My, — M,) - 2M,|F.] = E[M2 ] + 2M,E[M,_,] = Var(Ni_,) + 0 = At — s). That is,
E[M? — M|F,] = M2 — )s. O

11.2.

Proof. P(Nsyy = k|Ns =k) = P(Ngyy — Ny =0|Ns = k) = P(N; =0) = e M =1 — X\t + O(#?). Similarly,
1

we have P(Nyps = k+ 1[N, = k) = P(N; = 1) = QoM — \(1 — M + O(?)) = M + O(t?), and

P(Noyy > k+ 2Ny = k) = P(N, > 2) = 3352, Q052 — 0(s2), O

11.3.

Proof. For any t < u, we have

B |:§u ft:| _ E[(0+ 1)Nt7Nuefz\a(t7u)‘ft}
t

eka(tfu)E[(o_ + 1)Nt—u:|
¢~ (t=) B[N og(o+1)]

= AW AL Ty (17.3.4))

_ e—)\o(t—u)eko(t—u)
1.

So S; = E[S,|F:] and S is a martingale. O

11.4.
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Proof. The problem is ambiguous in that the relation between N; and Ny is not clearly stated. According
to page 524, paragraph 2, we would guess the condition should be that N7 and N5 are independent.
Suppose N and Ny are independent. Define M (t) = Ny(t) — A1t and Ms(t) = Na(t) — Aat. Then by
independence E[M; (t )Mg( )] = E[M;(t)|E[M2(t)] = 0. Meanwhile, by It6’s product formula, M (t)Ms(t) =
3 My (s—)dMa(s) + [y Ma(s—)dM(s) + [My, Ms],. Both [i My(s—)dMa(s) and [, Ma(s—)dM;(s) are mar-
tingales. So taklng expectation on both sides, we get 0 = 0 + E{[Ml, Mg] } = [ZO<s<t AN (s)ANy(s)].
Since 3 oo <; AN1(s)AN2(s) > 0 a.s., we conclude > ., AN1(s)ANz(s) = 0 a.s. By letting t = 1,2,- -+,
we can find a set Qg of probability 1, so that Vw € Qo, 375 .<; AN1(s)ANz(s) = 0 for all ¢ > 0. Therefore
N7 and N, can have no sunultaneous jump. O

11.5.

Proof. We shall prove the whole path of Nj is independent of the whole path of Na, following the scheme

suggested by page 489, paragraph 1.
Fix s > 0, we consider X; = u1 (N1 (t) — N1(8)) +ua(Na(t) — Na(s)) — A1 (" —1)(t —s) — Ao (e¥2 — 1) (¢t —s),
t > s. Then by It6’s formula for jump process, we have

t 1 t
Xt Xs _ Xu c Xu c c X Xou—
Xt — X = /se quJri/se dXSdXo+ Y (X — )

s<u<t

Since AX; = u3 AN (t) +usANo(t) and Ny, N3 have no simultaneous jump, eXv —eXu— = eXu-(eAXu 1) =
eXu=[(e*r —1)ANy(u) + (e*2 — 1)ANy(u)]. So
eXt —1
t
= / eXem[=A1(e™ — 1) — Ao(e¥? — 1)]du + Z eXue[(e™ — 1)AN; (u) 4 (e*2 — 1) ANy (u)]

= / eXe[(e™ — 1)d(Ny(u) — Mu) — (2 — 1)d(No(u) — Agu)].

This shows (eXt);>5 is a martingale w.r.t. (F)i>s. So E[e™Xt] =1, i.e.
E[eul(Nl(t)le(S))ﬂ*ug(Ng(t)*Ng(s))] —_ e)\l(eul71)(t75)e>\2(eu271)(t75) — E[eul(Nl(t)7N1(S))}E[€u2(N2(t)7N2(S))].

This shows Ny (t) — N1(s) is independent of Na(t) — Na(s).

Now, suppose we have 0 < t; < to < t3 < -+ < t,, then the vector (Ny(t1), -, N1(t,)) is independent
of (Na(t1), -+, Na(tn)) if and only if (N1(t1), N1(ta) — N1(t1), -+, N1(tn) — N1(tn—1)) is independent of
(Ng(tl) Nz(tg) — Ng(tl) Ng(t ) — Ng(tnfl)). Let to = 07 then

Elexizt wiNu(t)=Ni(ti-1))+2 j- vj(N2(t_,»)—N2(tj_1))}

= B

e

[Zf T ws (N1 ()= Na(tim1)+30 123 vy (Na(ty) = Na(t— 1))E[ Un (N1 (tn)=N1(tn—1))F+vn (N2 (tn)—N2(tn—1) Ij:t N
= FEle S s (N (8) =N (ti-1))+3 121 05 (N2 () —Na (¢ j—l))]E[eun(Nl(tn)f Ni(tn—1))+vn(Na(t n)fNZ(tnfl))]

le

—  EleXic (N1 () — Nl(ti—l))-i-Z;:fUj(N2(tj)—N'z(tj—l))]E[eun(Nl(tn)*Nl(tn—1))]E[evn(N2(tn)*N2(tn—1))]’

where the second equality comes from the independence of N;(t,) — N;(t,—1) (i = 1,2) relative to F;, _, and
the third equality comes from the result obtained in the above paragraph. Working by induction, we have
E[ele wi (N1 (ti)—Ni(ti—1))+> 7, vj(N2(tj)—N2(tj_1))}

= HE[eui(Nl(ti)—Nl(tia))} H E[evj(N2(tj)—N2(tj—1))]

i=1 j=1

— E[ezg;l ui(Nl(t'i)_Nl(ti—l))]E[eZ;'lzl Uj(N2(tj)*N2(tjfl))]_
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This shows the whole path of N7 is independent of the whole path of N,. O
11.6.

Proof. Let X; = uyWy — %u%t—&-qut — M(p(u2) — 1) where ¢ is the moment generating function of the jump
size Y. It0’s formula for jump process yields

t 1 1 t
X 1= / eXs (uy dW, — iufds — AMep(ug) — 1)ds) + 5/ eXulds + Z (eXs — o).
0 0 0<s<t

Note AX; = upAQ; = uaYy, AN;, where N, is the Poisson process associated with Q;. So eXt — eXt- =
eXt—(eAXt — 1) = eXt—(e2¥™ — 1)AN;. Consider the compound Poisson process Hy = ENtl(e“"‘Y”' - 1),

1=

then H; — AE[e“2Y~ — 1]t = H; — A(p(uz) — 1)t is a martingale, eXt — eXt— = Xt~ AH; and
t 1 1t t
eXt—1 = /0 e (updW, — iufds — Mep(ug) — 1)ds) + 5/0 eXeulds —|—/O e dH,
t t
= / eXeuy dW, +/ eX=d(Hy — Mop(ug) — 1)s).
0 0

This shows eX* is a martingale and E[eXt] = 1. So E[e"1Witu2@i] = eauiteht(p(u2) =1t — pleumWi] Fleu2Qe].

This shows W; and @Q; are independent. O
11.7.

P)vioof, EhQr)|F:] = Eh(Qr — Qi+ Q)| F:] = Eh(Qr—t+2)]|2=0, = 9(t,Q¢), where g(t,z) = E[M(Qr—i+
x)]. O
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