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Preface

Time series data, growth, or change over time can be observed and recorded in all

their biological and nonbiological aspects. Therefore, the method of time series

data analysis should be applicable not only for financial economics but also for

solving all biological and nonbiological growth problems. Today, the availability of

statistical package programs has made it easier for each researcher to easily apply

any statistical model, based on all types of data sets, such as cross-section, time

series, cross-section over time and panel data. This book introduces and discusses

time series data analysis, and represents the first book of a series dealing with data

analysis using EViews.

After more than 25 years of teaching applied statistical methods and advising

graduate students on their theses and dissertations, I have found that many students

still have difficulties in doing data analysis, specifically in defining and evaluating

alternative acceptable models, in theoretical or substantial and statistical senses.

Using time series data, this book presents many types of linear models from a large

or perhaps an infinite number of possible models (see Agung, 1999a, 2007). This

book also offers notes on how to modify and extend each model. Hence, all

illustrative models and examples presented in this book will provide a useful

additional guide and basic knowledge to the users, specifically to students, in doing

data analysis for their scientific research papers.

It has been recognized that EViews is an excellent interactive program, which

provides an excellent tool for us to use to do the best detailed data analyses, particularly

in developing and evaluating models, in doing residual analysis and in testing various

hypothesis, either univariate or multivariate hypotheses. However, it has also been

recognized that for selected statistical data analyses, other statistical package programs

should be used, such as SPSS, SAS, STATA, AMOS, LISREL and DEA.

Even though it is easy to obtain the statistical output from a data set, we should

always be aware that we never know exactly the true value of any parameter of the

corresponding population or even the true population model. A population model is

defined as the model that is assumed or defined by a researcher to be valid for the

corresponding population. It should be remembered that it is not possible to

represent what really happens in the population, even though a large number of

variables are used. Furthermore, it is suggested that a person’s best knowledge and

experience should be used in defining several alternative models, not only one

model, because we can never obtain the best model out of all possible models, in a
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statistical sense. To obtain the truth about a model or the best population model,

read the following statements:

Often in statistics one is using parametric models . . . . Classical (parametric) statistics
derives results under the assumption that these models are strictly true. However, apart
from simple discrete models perhaps, such models are never exactly true (Hample, 1973,
quoted by Gifi, 1990, p. 27).

Corresponding to this statement, Agung (2004, 2006) has presented the application

of linear models, either univariate or multivariate, starting from the simplest linear

model, i.e. the cell-means models, based on either a single factor or multifactors.

Even though this cell-means model could easily be justified to represent the true

population model, the corresponding estimated regression function or the sample

means greatly depends on the sampled data.

In data analysis we must look on a very heavy emphasis on judgment (Tukey, 1962, quoted
by Gifi, 1990, p. 23).

Corresponding to this statement, there should be a good or strong theoretical and

substantial base for any proposed model specification. In addition, the conclusion of a

testing hypothesis cannot be taken absolutely or for granted in order to omit or delete

an exogenous variable from a model. Furthermore, the exogenous variables of a

growth or time series model could include the basic or original independent variables,

the time t-variable, the lagged of dependent or independent variables and their

interaction factors, with or without taking into account the autocorrelation or serial

correlation and heterogeneity of the error terms. Hence, there is a very large number

of choices in developing models. It has also been known that based on a time series

data set, many alternative models could be applied, starting with the simplest growth

models, such as the geometric and exponential growth models up to the VAR (Vector
Autoregression), VEC (Vector Error Correction), System Equation in general and

GARTH (Generalized Conditional Heteroskedasticity) models.

The main objective of this book is to present many types of time series models, which

could be defined or developed based on only a set of three or five variables. The book

also presents several examples and notes on unestimable models, especially the

nonlinear models, because of the overflow of the iteration estimation methods. To

help the readers to understand the advantages and disadvantages of each of the models

better, notes, conclusions and comments are also provided. These illustrative models

could be used as good basic guides in defining and evaluatingmore advanced time series

models, either univariate or multivariate models, with a larger number of variables.

This book contains eleven chapters as follows.

Chapter 1 presents the very basic method in EViews on how to construct an

EViews workfile, and also a descriptive statistical analysis, in the form of summary

tables and graphs. This chapter also offers some remarks and recommendations on

how to use scatter plots for preliminary analysis in studying relationships between

numerical variables.

xviii Preface

www.trading-software-collection.com



Chapter 2 discusses continuous growth models with the numerical time t as an
independent variable, starting with the two simplest growth models, such as the

geometric and exponential growth models and the more advanced growth models,

such as a group of the general univariate and multivariate models, and the S-shape

vector autoregressive (VAR) growth models, together with their residual analyses.

This chapter also presents growth models, which could be considered as an

extension or modification of the Cobb–Douglas and the CES (Constant Elasticity

of Substitution) production functions, models with interaction factors and

trigonometric growth models. For alternative estimation methods, this chapter

offers examples using the White and the Newey–West HAC estimation methods.

Chapter 3 presents examples and discussions on discontinuous growth models

with the numerical time t and its defined or certain dummy variable(s) as

independent variables of the models. This chapter provides alternative growth

models having an interaction factor(s) between their exogenous variable(s) with the

time t as an independent variable(s). Corresponding to the discontinued growth

models, this chapter also presents examples on how to identify breakpoints, by

using Chow’s Breakpoint Test.

Chapter 4 discusses the time series models without the numerical time t as an

independent variable, which are considered as seemingly causal models (SCM) for

time series. For illustrative purposes, alternative representation of a model using

dummy time variables and three-piece autoregressive SCMs are discussed based on a

hypothetical data set, with their residual plots. This chapter also provides examples of

the discontinued growth models, as well as models having an interaction factor(s).

Chapter 5 covers special cases of regression models based on selected data sets,

such as the POOL1 and BASIC workfiles of the EViews/Examples Files, and the

US Domestic Price of Copper, 1951–1980, which is presented as one of the

exercises in Gujarati (2003, Table 12.7, p. 499). The BASIC workfile is discussed

specifically to present good illustrative examples of nonparametric growth models.

Chapter 6 describes illustrative examples of multivariate linear models, including

the VAR and SUR models, and the structural equation model (SEM), by using the

symbol Y for the set of endogenous variables and the symbol X for the set of

exogenous variables. The main idea for using these symbols is to provide illustrative

general models that could be applied on any time series in all biological and

nonbiological aspects or growth. As examples to illustrate, three X and two Y
variables are selected or derived from the US Domestic Price of Copper data,

which were used for linear model presentation in the previous chapters. All models

presented there as examples could be used for any time series data. Analysts or

researchers could replace the X and Y variables by the variables that are relevant to

their field of studies in order to develop similar models.

Chapter 7 covers basic illustrative instrumental variables models, which could be

easily extended using all types of models presented in the previous chapters, either

with or without the time t-variable as an independent variable.

Chapter 8 presents the autoregressive conditional heteroskedasticity (ARCH)

models, generalized ARCH (GARCH), threshold ARCH (TARCH) and exponential

ARCH (E_GARCH) models, either additive or interaction factor models.

Preface xix
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In addition to the Wald tests, which have been applied in the previous chapters

for various testing hypotheses, Chapter 9 explores some additional testing

hypotheses, such as the unit root test, the omitted and redundant variables tests,

the nonnested test and Ramsy’s RESET tests, with special comments on the

conclusion of a testing hypothesis.

Chapter 10 introduced a general form of nonlinear time series model, which

could also represent all time series models presented in the previous chapters. For

illustrative examples, this chapter discusses models that should be considered, such

as the Generalized Cobb-Douglas (G_CD) model and the Generalized Constant
Elasticity of Substitution (G_CES) model.

Finally, Chapter 11 presents nonparametric estimation methods, which cover the

classical or basic moving average estimation method and the k-Nearest Forecast
(k-NF), which can easily be calculated manually or by using Microsoft Excel, and

the smoothing techniques (Hardle, 1999), such as the Nearest Neighbor and Kernel

Fit Models, which should be done using EViews.

In addition to these chapters, the theoretical aspects of the basic estimation

methods based on the time series data are presented in four appendices. In writing

these appendices I am indebted to Haidy A. Pasay, Ph.D, lecturer in Microeconomics

and Econometrics at the Graduate Program of Economics, the Faculty of Economics,

University of Indonesia, who are the coauthors of my book on Applied

Microeconomics (Agung, Pasay and Sugiharso, 1994). They spent precious time

reading and making detailed corrections on mathematical formulas and econometric

comprehension.
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and facilities indispensable for the writing of this text, as well as other published
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In the process of writing this applied statistical book in English, I am indebted to

Dr Anh Dung Do, the President of PT Kusuma Raya (Management, Financing and

Investment Advisory Services) and Lecturer in Strategic Management at the Master

Program of the Faculty of Economics, University of Indonesia. Dr Do motivated

and supported me in the completion of this book. He spent a lot of his precious time

in reading and making various corrections to my drafts.

I am also deeply indebted to my daughter, Martingsih Agung Chandra, BSPh,

MSi, The Founder and Director of NAC Consultant Public Relations, and my son,

Dharma Putra, MBA, Director of the PURE Technology, PT. Teknologi Multimedia

Indonesia, for all their help in reading and making corrections to my drafts.
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1

EViews workfile and
descriptive data analysis

1.1 What is the EViews workfile?

The EViews workfile is defined as a file in EViews, which provides many convenient

visual ways, such as (i) to enter and save data sets, (ii) to create new series or variables

from existing ones, (iii) to display and print series and (iv) to carry out and save results of

statistical analysis, aswell as eachequationof themodels applied in the analysis.Byusing

EViews, each statistical model that applied previously could be recalled and modified

easily and quickly to obtain the best fit model, based on personal judgment using an

interactive process. Corresponding to this process, the researcher could use a specific

name for each EViews workfile, so that it can be identified easily for future utilization.

This chapterwill describehow tocreate aworkfile in avery simplewaybygoing through

MicrosoftExcel, aswell asother packageprograms, ifEViews5or6areused.Furthermore,

this chapter will present some illustrative statistical data analysis, mainly the descriptive

analysis, which could also be considered as an exploration or an evaluation data analysis.

1.2 Basic options in EViews

It is recognized thatmany students have been using EViews 4 and 5. For this reason, in

this section the way to create a workfile using EViews 4 is also presented, as well as

those using EViews 5 and 6. However, all statistical results presented as illustrative

examples use EViews 6.

Figure 1.1 presents the toolbar of the EViews main menus. The first line is the Title

Bar, the second line is theMainMenus and the last space is theCommandWindowand

the Work Area.

Then all possible selections can be observed under each of the main menus. Two of

the basic options are as follows:

(1) To create a workfile, click File/New, which will give the options in Figure 1.2.

Time Series Data Analysis Using EViews IGN Agung
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(2) To open aworkfile, clickFile/Open, whichwill give the options in Figure 1.3 using

EViews 4. Using EViews 5 or 6 gives the options in Figure 1.4.

Note that by using EViews 5 or 6, �Foreign Data as Workfile. . .� can be opened. By

selecting the option �Foreign Data as Workfile. . .� and clicking the �All files (�.�)�
option, all files presented in Figure 1.5 can be seen, and can be opened as workfiles.

Then a workfile can be saved as an EViews workfile.

Figure 1.2 The complete options of the new file in EViews 4, 5 and 6

Figure 1.1 The toolbar of the main menus

Figure 1.3 The complete options of the open file in EViews 4

Figure 1.4 The complete options of the open file in EViews 5 and 6
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1.3 Creating a workfile

1.3.1 Creating a workfile using EViews 5 or 6

Since many �Foreign Data as Workfile. . .� can be opened using EViews 5, as well as
EViews 6, as presented in Figures 1.3 and 1.4, there aremany alternativeways that can

be used to create an EViews workfile. This makes it easy for a researcher to create or

derive new variables, indicators, composite indexes as well as latent variables

(unmeasurable or unobservable factors) by using any one of the package programs

presented in Figure 1.4, which is very convenient for the researcher. Then he/she can

open the whole data set as a workfile.

1.3.2 Creating a workfile using EViews 4

By assuming that creating an Excel datafile is not a problem for a researcher, only the

steps required to copy Data.xls to an EViews workfile will be presented here. As an

illustration and for the application of statistical data analysis, the data inDemo.xlswill

be used, which are already available in EViews 4.

To create the desired workfile, the steps are as follows:

(1) If EViews 4 is correctly installed, by clicking My Documents. . . , the directory

�EViews Example Files�will be seen inMyDocuments, as presented in Figure 1.6.

(2) Double click on the EViews Example Files, then double click on the data and the

window in Figure 1.7 will appear. Then the file Demo.xls can be seen, in addition

to several workfiles and programs. From now on, Demo.xls will be used.

(3) Double click on Demo.xls; a time series data set having four variables will be

seen:GDP,PR,NPM and RS in an Excel spreadsheet, as shown in Figure 1.8. For

further demonstrations of data analysis, three new variables are created in the

spreadsheet: (i) t as the time variable having values from 1 up to 180, (ii) Year

having values from 1952 up to 1996 and (iii) Q as a quarterly variable having

values 1, 2, 3 and 4 for each year (see the spreadsheet below).

Figure 1.5 All files that can be opened as a workfile using EViews 5 and 6
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(4) Block Demo.xls and then click Edit/Copy. . . .
(5) Open Eviews and then click File/New/Workfile . . . . This gives the window in

Figure 1.9, showing the quarterly data setwith starting and ending dates inDemo.xls.

The rules for describing the dates are as follows:
. Annual: specify the year. Years from 1930 to 2029 may be identified using

either 2- or 4-digit identifiers (e.g. �32� or �1932�). All other years must be

identified with full year identifiers.
. Quarterly: the year followed by a colon or the letter �Q,� and then the quarter

number. Examples: �1932 : 3,� �32 : 3� and �2003Q4.�

Figure 1.6 The EViews example files in My Documents

Figure 1.7 List of data that are available in EViews 4

Figure 1.8 A part of data in Demo.xls
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. Monthly: the year followed by a colon or the letter �M,� and then the month

number. Examples: �1932M9� and �1939 : 11.�
. Semiannual: the year followed a colon of the letter �S,� and then either �1� or �2�
to denote the period. Examples: �1932 : 2� and �1932S2.�

. Weekly and daily: by default, these dates should be specified asmonth number,

followed by a colon, then followed by the day number, then followed by a

colon, followed by the year. For example, entering �4 : 13 : 60� indicates that the
workfile begins on April 13, 1960.

. Alternatively, for quarterly, monthly, weekly and daily data, just the year can

be entered and EViews will automatically specify the first and the last

observation.
. For other types of data, �Undated or irregular� is selected.

(6) Click OK produces the space or window, as presented in Figure 1.10. For every

newdata set orworkfile at this stage, thewindow always shows a parameter vector

�C� and a space �RESID,� which will be used to save the parameter and the

residuals of the models used in an analysis.

(7) Click Quick/Empty Group. . . brings up the spreadsheet in Figure 1.11 on the

screen. Put the cursor in the second column of the OBS indicator and then click so

that the second column will block or darken.

Figure 1.9 The workfile frequency and range

Figure 1.10 A workfile space of quarterly data in Demo.xls
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(8) Put the cursor again in column 2 and click the right button of themouse; then click

Paste. The spreadsheet in Figure 1.12 will be seen. In fact, additional variables,

such as the variables t, Year andQ (quarter), can be created, entered or defined in

the Excel spreadsheet, before the data set needs to be copied.

(9) Click File/Saved As. . . and then identify a name for the workfile. In this case,

Demo_Modified is used, as shown in the following window (Figure 1.13).

Figure 1.11 The group space to insert Demo.xls

Figure 1.12 Demo.xls with additional data of the variables t, Year and Q

Figure 1.13 List of variables in the Demo_Modified workfile
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1.3.2.1 Creating a workfile based on an undated data set

Figure 1.14 shows an example that can be used to create a workfile based on an

undated data set. Using the same process as in the previous subsection, the workfile is

created from an Excel datafile having 51 lines. The first line shows the names of the

variables and the next 50 lines are the observation units.

1.4 Illustrative data analysis

The examples of the descriptive data analysis, as well as the inferential data analysis

presented in this book,will be done usingEViews 6.With reference to descriptive data

analysis, it has been known that the statistical results are in the form of summary

statistical tables and graphs. However, they have a very important role in data

evaluation and policy analysis or decision making. Agung (2004) pointed out that

summary descriptive statistics are one of the best supporting data for policy analysis.

He also presented illustrative examples in selecting specific indicators, factors or

variables, to show causal models in the form of summary tables.

However, in this chapter only a fewmethods are demonstrated in doing a statistical

analysis,mainly a descriptive analysis usingEViews 6 based onDemo_Modified.wf1.

1.4.1 Basic descriptive statistical summary

The summary statistics of the four numerical variables GDP, M1, PR and RS in

Demo_Modified can be presented using the following steps:

(1) After opening the workfile, click the variable GDP; then by pressing the �CTRL�
button click thevariableM1.Make similar executions for thevariablesPR andRS;

the result is that the four variables are blocked, as shown in Figure 1.15.

(2) Click OK . . . ; the four variables will be seen on the screen, as presented in

Figure 1.16. Then by clickingOK . . . , the data of the four variables will be seen on

Figure 1.14 The option for creating a workfile based on an undated or irregular data set with

51 observations
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the screen, as presented in Figure 1.17. This window should be used as a

preliminary data evaluation, particularly for identifying new created variables

and/or to edit selected values/scores, if it is needed.

(3) By clicking View . . . , the options in Figure 1.18 can be seen, which shows

(14 þ 2) alternative options, including two options for Descriptive Stats.

(4) Click View/Descriptive Stats/Individual Samples . . . ; the summary descriptive

statistics in Figure 1.19 are obtained. Selected computation formulas based on a

Figure 1.15 Blocked or selected variables that will be analyzed

Figure 1.16 The variables whose data will be presented on the screen

Figure 1.17 The screen shot of the data of selected variables in Figure 1.5
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time series are presented in Table 1.1. In this section the advantages of presenting

a summary descriptive statistics will be discussed, as well as the use of the

Jarque–Bera statistic, which is included in the descriptive statistics.

1.4.1.1 The Advantages of presenting summary descriptive statistics

The advantages of presenting summary descriptive statistics for all variables in a data

set are as follows:

Figure 1.18 The Proc options and the Descriptive Stats options

Figure 1.19 The descriptive statistics of GDP, M1, PR and RS
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(i) To evaluate the scores/measurements of each variable for further or amore advanced

statistical analysis. For example, byobserving theminimumandmaximumscores, it

is possible to knowwhether or not the observed scores arewithin the expected range.

A data set has been observed showing a mother giving birth at the age of 80. This

score indicates a typing error. Another case is presented by one of the author�s
students, Suk (2006), where two numerical variables, %ASTINDO and %

BLOCKA, have minimum values¼medians¼ 0. This indicates that at least

50% of their observed values are zeros. As a result, he could not present a linear

model based on thewhole data set by using either one or both variables in themodel.

(ii) The summary statistics, in the form of tables and/or graphs, can easily be

understood by a lot more people, compared to the inferential statistics. On the

other hand, under the assumption that the data used arevalid and reliable, then the

summary descriptive statistics would be true statistical values for all individuals

in the sample (Agung, 1992, p. 21). As a result, a relevant summary statistics

would become an excellent input for policy makers (Agung, 2000a, 2004).

(iii) A positive skewness indicates that observed values of thevariable have a long tail

to the right, large values or a positive side.

Table 1.1 A list of statistics as a function of fy1; y2; . . . ; yTg
Name Statistics/functions

Mean �y ¼ 1
T

PT
t¼1

yt

Standard deviation s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

ðyt��yÞ2=ðT�1Þ
s

Population variance s2 ¼ T�1
T

s2

Standard error (Std Err) Std Err ¼ s=
ffiffiffiffi
T

p

Skewness S ¼ 1
T

PT
t¼1

yt��y

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT�1Þ=T

p
� �3

Kurtosis K ¼ 1
T

PT
t¼1

yt��y

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT�1Þ=T

p
� �4

Jarque–Bera JB ¼ T
6

S2 þ ðK�3Þ2
4

� �
, where S¼ skewness and K¼ kurtosis

Standard normal z ¼ �y�m0

s=
ffiffiffi
T

p

Chi-squared-statistic x2 ¼ ðT�1Þs2
s2 , with df¼ T� 1

F-statistic F ¼ s21=s
2
2; with df ¼ ðT1�1; T2�1Þ

Autocorrelation y at lag k,

in EViews 6

rk ¼
PT

t¼kþ 1

ðyt��yÞðyt�k��yt�kÞ=ðT�kÞ

PT
t¼1

ðyt��yÞ2=T
where �yt�k ¼ P

yt�k=ðT�kÞ

Partial autocorrelation y at

lag k

Regressed yt on C, yt�1, . . . , yt�k
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1.4.1.2 The use of the Jarque–Bera statistic

This statistic can be used to test a null hypothesis where each variable is considered to

have a normal distribution. The results in Figure 1.19 show that the data do not support

the supposition that each variable has a normal distribution, since the null hypothesis

that each variable has a normal distribution is rejected based on a p-value¼ 0.0000.

For a detailed discussion on the normality test, refer to Section 2.14.

1.4.2 Box plots and outliers

Selecting Graph. . . ! Basic Graphs/Boxplot/Multiple Graphs ! OK gives the

graphs in Figure 1.20. These graphs can directly present the type of outliers, as

presented in the following options.

Note that the box plot of RS shows that it has near and far outliers. Furthermore,

corresponding to the positive skewness of each variable, as presented in Figure 1.19,

these box plots present long vertical lines above each box. The box portion represents

50%of the nonparametric range from the first to the third quartiles (i.e.Q1 toQ3). The

difference between those quartiles represents the interquartile range (IQR), as

presented in Figure 1.21.

The inner fences are defined byQ1� 1.5�IQR andQ3 þ 1.5�IQR. The data points
outside the inner fences are known as outliers, as presented by the box plot of RS.

The median is depicted using a line through the centre of the box, while the mean is

presented as a symbol or large bold point. Each of the graphs shows that the mean of

each variable is greater than itsmedian, which corresponds to its positive skewness, as

presented in Figure 1.19.

The bounds of the shaded area are defined by Median� 1:57*IQR=
ffiffiffiffi
T

p
.

1.4.3 Descriptive statistics by groups

Since the Demo_Modified contains a group of dated variables, such as Year and

quartile-Q, by clicking View/Dated Data Table . . . the summary statistics by

Figure 1.20 Multiple box plots of the variables GDP, M1, PR and RS
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categorical variables Year and Q are obtained, as shown in Figure 1.22. This figure

shows the averages of the four variables by Year andQ, but only presents the summary

for the first two years of observations.

1.4.4 Graphs over times

1.4.4.1 Growth curves

Figure 1.23 presents two alternative sets of options for constructing graphical

representation of variables, namely the basic and categorical graphs.

In order to have growth curves for each of the four variables considered, click View/

Graph . . . ! Lines and Symbol/Multiple Graph ! OK to find the growth curves of the

four numerical variables GDP, NPM, PR and RS, by time, as presented in Figure 1.24.

Based on these graphs the following notes and conclusions can be obtained:

(1) These graphs are in fact the bivariate graphs between each of the four variables

and the time t-variable.

Figure 1.21 The graph options for BoxPlot

Figure 1.22 The means of GDP, M1, PR and RS by quarter and year
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(2) The graphs ofGDP,M1 andPR clearly show that they have a positive growth rate.

However, the graph of RS shows a positive growth rate, say, for t < t1 and a

negative growth rate for t� t1, where the maximum values of RS are achieved at

t¼ t1¼ 119.

(3) Corresponding to point (2), a conclusion is reached thatRS should not be used as a

predictor of the variables GDP and M1, as well as PR. Moreover, it cannot be

considered as a cause factor of the other variables. Note that a causal relationship

between two variables should be identified based on a theoretical and substantial

basis, supported by their graphical representation(s).

Figure 1.23 The basic graph options (a) and the categorical graph options (b)

Figure 1.24 Growth curves of the variables GDP, M1, PR and RS
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1.4.4.2 Multiple distributions over time

Alternative distributions of each variable over time can be developed by selecting

Graph . . . /Distribution and then each of the options (i) Histogram, (ii) KernelDensity

and (iii) Theoretical Distribution with a �Multiple Graphs� option. The graphs are

presented in the following three figures (Figures 1.25 to 27).

Based on these graphs the following notes and comments are made:

(i) The histogram, as well as the kernel density, shows that the observed values of

each variable are skewed to the right. As the data are not normally distributed,

this is common in general. The discussion should not be about a normal

Figure 1.25 Histograms of the variables GDP, M1, PR and RS

Figure 1.26 Kernel density of the variables GDP, M1, PR and RS

14 Time Series Data Analysis Using EViews

www.trading-software-collection.com



distribution of a sample data set, but only the sampling distribution or the

distribution of a statistic, as a real-valued function, based on a random sample.

(ii) Figure 1.27 presents theoretical distributions of the four variablesGDP,M1 andPR,

as well as RS, which are normal distributions using the default option. These

theoretical normal distributions are not observable distributions. They are in fact the

distributions of the mean statistics or the sample space of means of all possible

random samples of a fixed size that could be selected from a defined population.

These theoretical normal distributions are supported by theCentral Limit Theorem.

For additional andmore detailed notes and comments, refer toSections 1.5 and 2.14.

(iii) Since EViews provides many smoothing graphs, as well as theoretical distribu-

tions, and it is never knownwhich one is the best alternative graph, it is suggested

that the default option should be used.

1.4.5 Means seasonal growth curve

By clickingGraph . . . , selecting Basic Graph/Seasonal Graph and then clickingOK,
graphs of the means of the variables by season can be obtained, as shown in

Figure 1.28.

1.4.6 Correlation matrix

By clicking Views/Covariance Analysis . . . , the options presented in Figure 1.29 are
obtained. Note that these options are not available in EViews 4 and 5.

By selecting the options Covariance, Correlation, t-statistic and Probability, the

correlation matrix presented in Figure 1.30 is obtained. Based on this figure the

following notes and comments are made:

Figure 1.27 Theoretical distributions of the variables GDP, M1, PR and RS
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Figure 1.30 A correlation matrix of the variables GDP, M1, PR and RS

Figure 1.28 Graphs of means of the variables GDP, M1, PR and RS, by season

Figure 1.29 Selected options to construct a correlation matrix with the t-statistic
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(1) The p-value of the t-statistic presented is for the two-sided hypothesis. However,

it can also be used to test a one-sided hypothesis. In this case, since the observed

correlation of each pair is positive, it can be concluded that each pair of the

variablesGDP,M1,PR andRS (in the corresponding population) has a significant

positive correlation with a p-value¼ 0.0000/2¼ 0.0000.

(2) These coefficients of correlation can also represent the statistical results of the

standardized simple linear regressions, with the following equation:

ZYt ¼ b*ZXt þmt ¼ r*ZXt þmt ð1:1Þ

where ZX and ZY are the Z-scores of the variablesX and Y respectively and r is the
correlation parameter of (X,Y) in the population. For this reason, the bivariate

correlation could also be used to learn or to test a linear causal effect of a source

(an independent or explanatory) variable on a downstream (dependent or impact)

variable. However, at the first stage, the causal relationship between a pair of

variables should be defined based on a theoretical and substantive basis.

(3) The variance, covariance and the moment product correlation based on the time

series Xt and Yt are defined as follows:

VarðXÞ ¼ 1

T�1

XT
t¼1

ðXt��XÞ2 ð1:2Þ

VarðYÞ ¼ 1

T�1

XT
t¼1

ðYt��YÞ2 ð1:3Þ

CovðX; YÞ ¼ 1

T�1

XT
t¼1

ðXt��XÞðYt��YÞ ð1:4Þ

CorrðX; YÞ ¼ CovðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ:VarðYÞp ð1:5Þ

1.4.7 Autocorrelation and partial autocorrelation

For a time series data set, the autocorrelation and partial autocorrelation coefficients

(AC and PAC) of each dated variable can also be identified. The sample autocorrela-

tion function of a dated variable Yt at lag k is computed as follows:

r̂k ¼ ĝk=ĝ0

ĝk¼
X

ðYt��YÞðY1�k��Yt�kÞ=T
ĝ0¼

X
ðYt��YÞ2=T

ð1:6Þ

To obtain a more precise estimate of the PAC, simply run the regression:

Yt ¼ Cð1ÞþCð2ÞYt�1 þ � � � þCðk�1ÞYt�ðk�1Þ þ rkYk þ et ð1:7Þ

EViews Workfile and Descriptive Data Analysis 17

www.trading-software-collection.com



In addition to the AC and PAC, there is also aQ-statistic, which is a test statistic for

the joint hypothesis, which stipulates that all of the gk up to a certain lag are

simultaneously equal to zero. The Q-statistic is defined as

Q ¼ T
Xm
k¼1

r2k ð1:8Þ

where T¼ sample size and m¼ lag length.

A variant of this Q-statistic is the Ljung–Box (LB)-statistic, which is defined as

LB ¼ TðT þ 2Þ
Xm
k¼1

r̂2k
n�k

� �
� x2ðmÞ ð1:9Þ

It has been found that the LB-statistic has better (or more powerful, statistically

speaking) small properties than the Q-statistic.

Figure 1.31 shows the correlograms of the variable M1 and its first-difference

D(M1) respectively. The dotted lines in the plots of the partial correlation are the

approximate two standard error bounds computed as �2=
ffiffiffiffi
T

p
. The Q-statistic is

presented together with its probability. These results can be obtained by selecting

View/Correlogram . . . . This matter will be discussed in more detail later.

1.4.8 Bivariate graphical presentation with regression

The relationship between pairs of variables, including a causal relationship, can also be

presented using graphs. For an illustration, the scatter graph with regression ofM1 on

GDP, aswell asM1 onRS, will be presented. The stages of data analysis are as follows:

(1) At the first stage, the data of the variablesM1 onGDP are presented on the screen

by blocking the variables and then clicking Show!OK.

(2) Select View/Graph/Scatterwith Regression Line as presented in Figure 1.32 and

then click OK, which will give the graph in Figure 1.33(a).

(3) By doing the same process the graphwith regression ofM1 onRSwill be obtained,

as shown inFigure 1.33(b).Basedon this graph, it canbe concluded thatM1 andRS

do not have a linear relationship. In other words, RS should not be used as a linear

predictor ofM1 and moreover as a cause factor ofM1. In fact, this condition can

already be identified by observing their growth graphs in Figure 1.24.

Figure 1.31 Correlograms of the variables M1 and D(M1)
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(4) Another type of graph can be presented by using an �Orthogonal Regression� as
the fit-lines. This gives the graphs in Figure 1.34. The orthogonal regression is

defined by using the horizontal distances of the observed values (points) to the

regression line, while the general regression is defined by using the vertical

distances of the points to the regression line.Note that the regressions ofM1 onRS

in Figures 1.33 and 1.34 are quite different. Which linear regression do you think

is a better graph for representing the data?

1.5 Special notes and comments

In this section the useof scatter plotswill be discussed as apreliminary analysis for studying

relationships between numerical variables. It also offers some recommendations.

Figure 1.32 The scatter graph option with regression line

Figure 1.33 Scatter graphs with regression lines of (a) M1 on GDP and (b) M1 on RS
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(1) Graph representation between a pair of variables, as well as their correlation

coefficient, could not be used to derive a conclusion that both variables have a

causal relationship. A causal relationship between variables should be identified

using a theoretical and substantive basis. For example, if variables X and Y both

havemonotonic growth curves by time, this does not directlymean that they have a

causal relationship. On the other hand, if a respond variable Y has a monotonic

growth curve, butX does not, it is almost certain thatX is not a cause factor ofY. For

example, based on the growth curves ofGDP,M1,PR andRS in Figure 1.24, there

can be every confidence that the variableRS is not a cause factor for the other three

variables,NPM,GDP andPR, sinceRSdoes not have the samepattern of growth as

the other variables, but has a maximum value at a time point t¼ t1¼ 119.

(2) In many cases, when based on the whole sample data, a bivariate scatter plot

cannot give a good picture that both variables have either a linear or nonlinear

relationship. However, within some subsamples, they could. Agung (2006, p.

312) proposed three methods for defining subsamples based on a numerical

variable, using (i) nonparametric statistics, such as median, quartiles and

percentiles, (ii) parametric statistics, such as sample mean and its standard

deviation, and (iii) subjective or expert judgment. This technique had been

presented in a dissertation of the author�s student, Do Anh Dung (2006). He

was constructing four subsamples to show that OCB-I has a positive and

significant effect on the Company Performance within a relevant subsample.

(3) On the other hand,Wilson andKeating (1994, p. 161) present an illustration of the

scatter plots of four bivariate {X, Y} data sets that have very similar statistical

properties, but are visually quite different. They show that each of the data sets has

the same OLS simple linear regression equation, that is Y¼ 3 þ 0.5X.

(4) Furthermore, in other cases, a bivariate scatter plot could demonstrate that it is

impossible for someone to find or define a specific regression model, especially a

continuous regression model, that could have a good fit to the sample data. As an

example, refer to the scatter plotwith regressionof (M1,RS) presented inFigure 1.33,

as well as the following graphs, which are presented by the author�s students,

Narindra (2006) and Gunawan (2005) respectively. In these cases, nonparametric

regression models should be used, which will be presented in Chapter 11.

Figure 1.34 Scatter plots with orthogonal regressions of (a) M1 on GDP and (b) M1 on RS
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Note that the scatter graph in Figure 1.35(a) shows several outliers and there are very

small and very large observed values of NPM. These could make a subset of many

observed values, represented by the horizontal thick line. In order to obtain a good

model, a sub-data set should be usedwithout the outliers. On the other hand, even the

scatter graph in Figure 1.35(b) does not show any outlier, so it is very difficult to

define a smooth or continuous regression model.

(5) Figure 1.36 presents illustrative graphs of the four selected time series or dated

variables, PPI, FF, URATE and Y, in BASICS.wf1 of the EViews examples.

Compared to the graph of PPI, it is very difficult or impossible to define a smooth

growth model based on each of the other three variables.

Figure 1.35 Illustrative scatter plots of (a) Narindra�s data set and (b) Gunawan�s data set

Figure 1.36 Growth curves of the variables PPI, FF, URATE and Y in BASICS.wf1 of

EViews
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Furthermore, suppose that the variable Y is considered as an endogenous variable.

Then by taking each of the variablesFF,PPI,URATE andM2 as exogenous, there

will be four bivariate scatter graphs as presented in Figure 1.37. What type of

model with an endogenous variable Y could or would be proposed?

(6) These illustrations clearly show that a scatter plot has a very important role in

developing an empirical statistical model.

(7) It should be noted that EViews provides many options for doing a descriptive data

analysis, inparticular forgraphical presentationeither inparametric ornonparametric

techniques.However, to select the best option for a specificdata set is not aneasy task.

The above illustrative graphs show that there is a need to evaluate case by case in

order to define an empirical model. Several scatter graphs between a selected

endogenous variable and each of the numerical exogenous variables should be used

inmaking the best possiblemodel selection, even though itwould be very subjective.

In addition to these graphical representations, many alternative equations or types of

time series models exist and will be presented in the following chapters.

1.6 Statistics as a sample space

Corresponding to a time series {yt, t¼ 1, 2, . . . , T}, a statistic is defined as a real

valued function of {y1, y2, . . . , yT}, namely f{y1, y2, . . . , yT} Note that this statistic is
not a number or constant value, but represents a set of values based on all possible

samples of size T, which could be selected or observed from the series, random

variable or populationY. A set of those real values or all possiblevalues of f{y1, y2, . . . ,
yT} is called the sample space of the corresponding statistic; specifically it is the real-

valued sample space. As a result, a sample space can never be observed, for only a

constant number is a member or an element of the corresponding sample space. For

example, in practice, there is only a sampled mean, as well as other statistical values

Figure 1.37 Bivariate scatter plots between the variables FF, PPI, URATE, M2 and Y
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based on a set of observed values {y1, y2, . . . , yT}. Table 1.1 presents selected statistics
as a function of the series {yt, t¼ 1, 2, . . . , T}; it is not a score or statistical value

computed based on a sampled data set.

Furthermore, it is well known that a statistic or a real-valued sample space has a

theoretical distribution. The very basic and important distribution is the normal

distribution of the mean statistic, namely �y ¼ ðy1 þ y2 þ � � � þ yTÞ=T, if and only if

{y1, y2, . . . , yT} is a random sample, as stated in the Central Limit Theorem. Refer to

the further notes and comments presented in Section 2.14.
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2

Continuous growth models

2.1 Introduction

Time series data are used in all fields of studies, including economics and finance.

Hence, the growthmodels presented in this chapter could apply to all studies by using

time series data sets. It has been well recognized that the unit of observations, as well

as the unit of data analysis, is a discrete time variable, say t, for t¼ 1, 2, . . . , T.
However, in growthmodels, the t-variable can be used as an independent variable, but

not as a cause factor.

Furthermore, the time series data analysis should have at least three main

objectives, namely (i) to present growthmodels of specific numericalmacroindicators

using the time t-variable as an independent variable, (ii) to present models without

using the time t-variable as an independent variable, in other words, to study the

possible causal relationship between dated indicators or variables and (iii) to forecast.

In the time series data analysis, the simplest growthmodels to be considered are the

two classical growth curve models, such as the geometric and the exponential growth

models, based on a bivariate indicators, say (Yt, t). The data analysis will be presented

based on the data in workfile �Demo_Modified�, as discussed in Chapter 1.

2.2 Classical growth models

The classical growthmodels are the geometric growthmodel, which can be presented

by an equation:
Yt ¼ Y0ð1þ rgÞt ð2:1Þ

and the exponential growth model:

Yt ¼ Y0 expðretÞ ð2:2Þ
For estimation or projection purposes, both models could be estimated using a

semilog (i.e. semilogarithmic) regression model as follows:

logðYtÞ ¼ aþb � tþ «t ð2:3aÞ

Time Series Data Analysis Using EViews IGN Agung
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However, in EViews themodelwill be presented and saved in the following form,with

the log(Yt) indicating the natural logarithm of Yt:

logðYtÞ ¼ Cð1ÞþCð2Þ � tþmt ð2:3bÞ
Note that the corresponding regression function of themodel in (2.3) can bewritten as

logðYtÞ ¼ aþ b � t ð2:4Þ
which is a continuous function of the time t-variable, with dlog(Y)/dt¼ b. For this

reason, all models presented in this book having the time t as an independent variable

will be considered as continuous growth models.

The following sections only present statistical results based on various continuous

growthmodels,with special notes and comments. The theoretical concept of theOrdinary

Least Squares (OLS) estimation method is presented in Appendices A, B, and C.

Example 2.1. (Basic regression model in (2.3)) Considering the variable M1

(money supply) in the Demo_Modified workfile, the steps of data analysis using the

growth model in (2.3) are as follows:

(1) Having the �Demo_Modified� workfile on the screen, click Quick/Estimate

Equation . . .; the options in Figure 2.1 will be seen on the screen. Then enter

a series of variables in the space of the �Equation specification,� as shown in the
window (note the formof the explicit equation). This gives a growthmodel having

log(m1) as a dependent variable, C(1) as the intercept parameter and C(2) as the

slope parameter. Note that this table presents the options of the least squares (LS)

estimation method (NLS and ARMA), as well as the sample used in this analysis.

This may be modified, depending on the need.

Figure 2.1 Equation specification, estimation settings and options for doing univariate

regression analysis
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(2) Click OK; the results shown in Figure 2.2 will appear.

Based on these results, comments on some of the basic statistics can be presented as

follows:

(1) R-squared. For the time series models having k exogenous variables, the

(centered) R2 is the coefficient of determination, and in EViews is computed as

R2 ¼ 1� e0e
ðy��yÞ0ðy��yÞ ; �y ¼

XT
t¼1

yt=T ð2:5Þ

with 0�R2� 1, where y¼ (y1, . . ., yT)
0 and e¼ (e1, . . ., eT)

0 are the vectors of the
observed values and the estimated error terms respectively. If yt ¼ �y; 8t (i.e. the
coefficient of all independent variables is equal to zero) then R2¼ 0, and R2¼ 1 if

andonly yt ¼ ŷ; 8t (i.e. all observations fall directly on thefitted response surface).
The positive square root ofR2, namelyR, is the coefficient of multiple correlations

between all independent variables with the dependent variable. Furthermore, for

k¼ 1, then R2 will be reduced to the coefficient of simple determination, namely

r2, and r is a bivariate (simple) coefficient of correlation with �1� r� þ 1.

(2) Adjusted R-squared. The adjusted R2 is measured as

R2
a ¼ 1�ð1�R2Þ T�1

T�k
ð2:6Þ

where k is the number of model parameters. The adjusted R-squared value is

never larger than R2, can decrease as independent variables are added and, for

poorly fitting models, it may be negative (EViews 4 User�s Guide, p. 265).

Figure 2.2 Statistical results based on a growth model of M1
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(3) Large values of R2. In this case, there is a very largeR2¼ 0.973 537, and it may be

concluded that the model is a very good fit for estimating the growth curve of the

observed scores ofM1. This number indicates that 97.3537%of the total variation

of log(m1) can be explained by the time t. However, note that a large R2 does not

directly imply that the model is a good or useful one. By observing a very small

DW (Durbin–Watson)-statistic of 0.015 856, in fact this is an autocorrelation

problem with the error terms of the model. Therefore, this model is not an

appropriate model for statistical inference and so should be revised or modified,

as will be presented in the following examples.

(4) Small values of R2. Even though a value of R2 is (very) small, the model could be

an acceptable one, in a statistical sense, whenever the scatter plot of the error

terms represent a tape along the line e¼ 0.

(5) The F- and t-statistics. In general, the F-statistic will be used to test the joint

effects of all exogenous variables and the t-statistic will be used to test the

adjusted effect of an exogenous variable on the corresponding endogenous

variable. Note that the t-statistic presented in the output can also be used to test

the one-sided hypothesis.

By assuming that the model in this example is an acceptable model, since k¼ 1, then

the F- and t-statistics can be used to test the two-sided hypothesis, i.e. the effect of the

time t on log(m1). The null hypothesisH0:C(2)¼ 0 is rejected based on theF-statistic

when F0¼ 6548.249 with df¼ (1, 178)¼ (k, T� (k þ 1)) and the p-value¼ 0.0000

or based on the t-statistic when t0¼ 80.92 with df¼ 178 and the p-value¼ 0.0000.

Note thatF0 ¼ t20, for k¼ 1. In this case, (80.921 25)2¼ 6548.249¼F0. However, the

t-statistic can also be used for testing a one-sided hypothesis. For example, if a

hypothesis is proposed thatM1 has a positive growth rate, then a statistical hypothesis

would be

H0 : Cð2Þ � 0 versusH1 : Cð2Þ > 0 ð2:7Þ
For this hypothesis, since t0 > 0, there will be a t-statistic with a p-value¼ 0.0000/

2¼ 0.0000, and the null hypothesis is rejected. As a result, it can be concluded that

�the data supports the proposed hypothesis,� orM1 has a significant positive growth

rate, or the time t has a significant positive effect on log(m1).

(6) AIC and SC. Finally, the Akaike Information Criterion (AIC) is used in model

selection for nonnested alternatives, with smaller values of AIC preferred. The

Schwarz Criterion (SC) is an alternative to the AIC and imposes a larger penalty

for an additional coefficient. Two models are considered as nonnested models if

and only if the set of exogenous or independent variables of the first model is not

the subset or upper set of the other model. Since in this example there is only one

model, these statistics will not be used.

(7) Residual graph. The residual graph should be used to study visually the auto-

regressive part of the defined model. The residual graphs in Figure 2.3 can be

obtained by clicking View/Actual, Fitted, Residual/Actual, Fitted, Residual

Graph. Note that the graph shows that the sign (�) of the estimated error terms
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has systematic changes along the line e¼ 0, which indicates that the error terms

are serially correlated. Therefore, there is a need to consider using autoregressive

models, as presented in the following section. &

2.3 Autoregressive growth models

An autoregressive growth model is defined as a growth model that takes into account

the serial correlation of the error terms in the growthmodel (2.1). Hence, there should

be an appropriate regression model to do the statistical inferences. The following

subsections will present autoregressive growthmodels, starting with the simplest one.

2.3.1 First-order autoregressive growth models

The simplest first-order autoregressive growth model, say AR(1)_GM, could be

presented as

logðYtÞ ¼ Cð1ÞþCð2Þ:tþmt

mt ¼ r:mt�1 þ «t
ð2:8Þ

where �1 < r < þ 1 is the first-order serial correlation or autocorrelation coefficient

between the error termsmt, that is the correlation betweenmt andmt�1. For this model

it is expected or assumed that the error term «t is the stochastic term of theAR(1)_GM,

Figure 2.3 Residual graphs of the M1 growth model
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so that it can satisfy the standard OLS assumptions, namely

Eð«tÞ ¼ 0

Varð«tÞ ¼ s2
«

Covð«t; «tþ sÞ ¼ 0; s „ 0
ð2:9Þ

Note that the residual series in the second line of (2.8) can be extended as

mt ¼ r2 �mt�2 þ «t þ r � «t�1 ¼ r3 �mt�2 þ «t þ r � «t�1 þ r2 � «t�2

¼ rh �mt�h þ «t þ r � «t�1 þ r2 � «t�2 þ . . . þ rh � «t�h
ð2:10Þ

Since |r| < 1, then

limh!¥r
h ¼ 0 ð2:11Þ

2.3.2 AR(p) growth models

A more general autoregressive growth model is the pth-order autoregressive growth

model, namely AR(p)_GM, which can be presented as

logðYtÞ ¼ Cð1ÞþCð2Þ � tþmt

mt ¼ r1 �mt�1 þ . . . þ rp �mt�p þ «t
ð2:12Þ

where rp is a partial autocorrelation or serial correlation coefficient between mt and

mt�p.

This model could also have the following form:

logðYtÞ ¼ Cð1ÞþCð2Þ � tþmt

Dmt ¼ r1:Dmt�1 þ . . . þ rp �Dmt�p þD«t
ð2:13Þ

where Dmt¼mt�mt�1 is the first-difference of the residual term mt.

Example 2.2. (AR(1) growth model) Here, the AR(1) growth model ofM1 is con-

sidered, with the following equation:

logðm1tÞ ¼ Cð1ÞþCð2Þ � tþ ½ARð1Þ ¼ Cð3Þ� þ «t ð2:14aÞ
or

logðm1tÞ ¼ Cð1ÞþCð2Þ � tþCð3Þ*mt�1 þ «t ð2:14bÞ

The statistical results in Figure 2.4 can be obtained by entering the variables

logðM1ÞC T ARð1Þ ð2:15Þ

in the �Equation specification� window.
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Based on these results, the following conclusions may be derived:

(1) The growth rate of the money supply, M1, is Ĉð2Þ ¼ 0:016 575 and the time

t-variable has a significant effect on log(m1) with a p-value of 0.0000.

(2) The null hypothesis of no first-order autocorrelation,H0: r¼ 0, is rejected with a

p-value of 0.0000 and its point estimator is r̂ ¼ 0:974 460 with Std

Err¼ 0.009 047.

(3) The DW-statistic¼ 2.17, which indicates that this model is better than the growth

model (2.14). Also note that the comments presented in the following example are

based on its residual graph.

(4) The statistical result in Figure 2.5 can be obtained by selecting View/Representa-

tions . . .. This figure shows the estimation command and equation, as well as the

regression function.

(5) By clicking View/Actual, Fitted, Residual/Actual, Fitted, Residual Graph, the

residual graph in Figure 2.6 is presented. This residual graph should be used to

Figure 2.4 Statistical results based on the growth model in (2.8)

Figure 2.5 The estimation command and equation of the model in (2.8)
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evaluate, visually, the correctness of themodel and, in particular, whether the data

support the error term assumptions. Note that the residual graph in Figure 2.6 does

not show that the residual term «t has systematic changes in its signs (�) along the

line e¼ 0. Hence, this model is better than the previous model. &

2.4 Residual tests

With either the statistical results or the residual graph on the screen, select View/

Residuals Tests and a complete list of alternative residual tests will appear, as

presented in Figure 2.7. Note that this screen shot is obtained after having the

Figure 2.6 Residual graph of the model in (2.8)

Figure 2.7 The options of residual tests, after having the residual graph
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residual graph on the screen. For illustrative purposes, this sectionwill present several

statistics and comments corresponding to the model presented in Example 2.1.

2.4.1 Hypothesis of no serial correlation

By clicking View/Residual Tests/Serial Correlation M Test . . . and entering 1 (one)

for the number of lagged variables, the BG serial correlation LM test shown in

Figure 2.8 will appear. This test shows that the hypothesis of no serial correlation is

accepted for the AR(1) growth model, based on the chi-square-statistic (Obs�R-
squared¼ T�R2) of 1.770 743 with df¼ 1 and a p-value¼ 0.1833 or the F-statistic of

F0¼ 1.748 470 with df¼ (1, 175) and a p-value¼ 0.1878.

Furthermore, the following regression with the t-statistic in [�] is obtained:

R̂esid ¼ �
½�0:1417�

0:028 195 þ
½0:1316�

0:000 154tþ½AR ð1Þ
½0:1610�

¼ 0:001 464� �
½�1:322397�

0:101 491Residð�1Þ

where the first lagged variable of the residual Resid(�1)¼Residt�1 has an insignifi-

cant adjusted effect on Residt based on the t-statistic, namely t0¼�1.322 397 with

df¼ 1 and a p-value¼ 0.187 81. Corresponding to F0¼ 1.748 470 with df¼ (1, 175),

in a theoretical sense, then (t0)
2¼F0.

Figure 2.8 Statistical results based on the BG serial correlation LM test
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2.4.2 Hypothesis of the homogeneous residual term

By selecting View/Residual Tests/White Heteroskedasticity . . ., EViews 6 provides

the options in Figure 2.9 on the left-hand side and the statistical results on the right-

hand side.

The White test shows that the hypothesis of the homogeneous residual term is

accepted, at a significant level of 0.10, based on the chi-square- orF-statistics. Hence,

based on the two residual tests, it may be concluded that the data supports the OLS

assumptions (2.9). Note that the heteroskedasticity problem should be found in cross-

section data, as well as cross-section over times and panel data, and not only in time

series data.

In fact, in theoretical statistics, the null hypothesis of Var(«i)¼s2, for all i¼ 1, 2,

. . ., n, or Var(«t)¼s2, for all t¼ 1, 2, . . ., T, could not be tested, because there is only
one observation for each parameter «i («t). Hence, someone should use his/her broad

experience and knowledge to make a best possible judgment whether a problem

indicator has a stable variance or not. Talking about the researcher�s judgment, Tukey

(1962, in Gifi, 1990, p. 22) stated: �In data analysis we must look to a very heavy

emphasis on judgment.�
For example, the number of children by age ofmothers, salaries by length of education

or working times (in years), and the number of errors by time of measurements

(observations) should not have a stable (or constant) variance in the corresponding

population or universe. However, the null hypothesis of constant variances could be

acceptedbasedon the sample that happens tobe selected (Agung, 2006). If this is the case,

the regression analysis could be performed twice, by using the linear model with and

without taking into account the residual heterogeneity.

2.4.3 Hypothesis of the normality assumption

By clicking Histogram-Normality Test . . ., the summary descriptive statistics of the

error terms, «t, of the model (2.8) in Figure 2.10 is obtained. Note that this figure also

shows the Jarque–Bera statistic for testing the normality assumption. However, this

Figure 2.9 The options and statistical results of the White heteroskedasticity

34 Time Series Data Analysis Using EViews

www.trading-software-collection.com



test is presented for specific discussion only, and not for use in anymodel selection, for

the following reasons:

(i) It is believed that conducting an hypothesis test on the distribution of a random

variable, including the normal distribution, does not have any concrete result and

will be a circular problem, because any statistics used for the testing also depend

on the assumption that the statistical test should have a specific distribution

function. Should this assumption also be tested? These activities indicate a

circular problem.

(ii) Inmathematical statistics, it is known that a statistic has a certain (approximately)

distribution function, not a sampled data set. A statistic is defined as a function of

a random sample of size n, namely Y1, Y2, . . ., Yn; then the mean statistic is a

function �Y ¼ ðY1 þ Y2 þ . . . þ YnÞ=n. It has been recognized that a normal

distribution of the mean statistics in any sample space is based on or supported

by the central limit theorem (CLT). The sample space of themeans is defined as a

set of means computed using all possible random samples having the same size,

which can be selected from a defined population. Furthermore, the distributions

of the basic statistic tests, the t test,F test and chi-square test, are also developed

based on theCLT (Garybill, 1976). In an extreme case, Shewart Shewart,(1931, p.

60) demonstrated that a set of 1000 samplemeans of size four has approximately a

normal distribution, using two universes with uniform and triangular distribu-

tions. Enders (2004, p. 85) wrote: �Although it is common practice to assume that

the {«t} sequence is normally distributed, it is not necessarily the case that the

forecast errors are normally distributed with a mean of zero.�

2.4.4 Correlogram Q-statistic

Figure 2.11 shows three statistics: (i) theAC (autocorrelation coefficient), (ii) the PAC

(partial autocorrelation coefficient) and (iii) a Box–Pierce Q-statistic with its proba-

bility. Note that the dot lines in the graphs of AC and PAC are the approximate two

standard error bounds computed as�2=
ffiffiffiffi
T

p
. The graphs show that at lagged k¼ 4, the

Figure 2.10 Residual histogram of the model in (2.8) and its statistics
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hypothesis of no autocorrelation is rejected. It is noted that if there is no serial

correlation in the residuals, the autocorrelations and partial autocorrelations at all lags

should be zero, and allQ-statistics should be insignificantwith largep-values (EViews

4 User�s Guide, p. 301). Compare this with the AR(4) and AR(3) models presented in

following example.

The Q-statistic is a test statistic for the joint hypothesis that all of the autocorrela-

tion coefficients rk up to certain lagged values are simultaneously equal to zero. The

result above shows thatH0: r1¼ . . .¼ rk¼ 0 is rejected for all k. If themean equation

is correctly specified, all Q-statistics should not be significant. However, there

remains the practical problem of choosing the order of the lagged variables to be

utilized for the test.

Example 2.3. (Higher-order AR growth models) Figures 2.12 and 2.13 present

the statistical results based on two higher-order AR growth models, namely AR(4)

_GM and AR(3)_GM respectively, together with the descriptive statistics of their

residuals. Note that the data do not support the assumption that the residuals have a

normal distribution, based on the Jarque–Bera statistic with a p-value¼ 0.000 000.

Furthermore, note the following statements and conclusions, which are in relation

to the autoregressive model only:

(1) The first model, using AR(1) up to AR(4), shows that the indicator AR(4) is not

statistically significant, with a p-value¼ 0.3086. Hence, it is suggested (based on

a rule of thumb) that an attempt should be made to apply a lower AR model, i.e.

the AR(3) model.

Figure 2.11 Correlogram of residuals of the model in (2.8) with Q-statistic probabilities
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(2) It could happen, in the second model, that the indicator AR(3) is statistically

significant with a p-value¼ 0.0323. Therefore, the procedure could stop when

there are threeARgrowthmodels ofM1, namely theAR(1)model in Example 2.2

and the AR(3) and AR(4) models in this example. Among these models, it could

be said that the AR(4) is not an acceptable model, in a statistical sense, since the

indicatorsAR(3) andAR(4) are insignificant.Hence, either theAR(1)_GMorAR

(3)_GM should be chosen.

(3) Based on the AR(3)_GM, the average of the error terms is not equal to zero,

namely 0.010 397. Note that this value is an observed statistical value and is not

the expected value or themean of the residual or error term «t in the corresponding
population, which is assumed to be E(«t)¼ 0. &

Figure 2.13 Statistical results of an AR(3) growth model ofM1 and the descriptive statistics

of its residual

Figure 2.12 Statistical results of an AR(4) growth model ofM1 and the descriptive statistics

of its residual
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So far, there have been three growth models for the variableM1. More models will

be introduced havingM1 or log(M1) as dependent variables, in the following sections.

It will be more and more difficult to select which one is the best. The question is

whether the observed statistical values should be trusted or whether a person�s own
judgment should be used.

To answer this question, the following statements can be considered:

The hallmark of good science is that it usesmodels and theory but never believes them

(Wilk, in Gifi, 1990, p. 27).

Classical (parametric) statistics derives results under the assumption that these

models are strictly true. However apart from some discrete simple models, such

models are never true (Hampel, 1973, in Gifi, 1990, p. 27).

One reason it is not desirable to have an over parameterized model is that forecast

error variance increases as a result of error arising from parameter estimation. In

other words, small models tend to have better out of sample performance than large

models. Moreover, the more parameters estimated, the greater the parameter

uncertainty (Enders, 2004, p. 106).

Inview of the above, there should be confidence in using knowledge and experience to

present simplemodels, supported by relevant references, tomake the best judgment or

possible choice. Corresponding to the statement of Hampel above, the simplestmodel

should be chosen, namely the AR(1)_GM, as the final model.

2.5 Bounded autoregressive growth models

Agung, Pasay and Sugiharso (1994) and Agung (2006) proposed bounded growth

models having a general form as follows:

log
Yt�b

a�Yt

� �
¼ Cð1ÞþCð2Þ � f ðtÞþ «t ð2:16Þ

where a is an upper bound of Yt, b is the lower bound and f(t) is a specific defined

function of the time t-variable. It does not contain any parameter. The upper and lower

bounds should be constant numbers, to be selected and defined by the observed

problem indicator. It could also use trial-and-error methods.

Note that, in some cases, the lower bound could be a negative number, e.g. if Yt is a

rate indicator or a profit/loss variable. One of the author�s students, Kernen (Kernen,
2003, p. 273), presented several time series models having the dependent variable log

[(ROAit�b)/(a�ROAit)], with b < 0, specifically a¼ 0.8386 and b¼�2.1699.

Similarly for the f(t) function, Agung (1999a, 2007) proposed f(t)¼ (t� u)2(t� d),
and by using trial-and-error methods for various values of u and d, estimated or

forecasted the growth of the GDP by provinces in Indonesia, before and after the

monetary crises.

Since the graphs of each result could easily be compared, a best possible growth

model can be anticipated. However, in this section only autoregressive growthmodels

are considered.
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Furthermore, note the following special cases:

(a) If Yt is a proportion, with 0 < Yt < 1 for all t, then the logistic growth model is as

follows:

log
Yt

1�Yt

� �
¼ Cð1ÞþCð2Þ � f ðtÞþ «t ð2:17Þ

(b) If Yt is a percentage, with 0 < Yt < 100 for all t, then the modified logistic growth

model is as follows:

log
Yt

100�Yt

� �
¼ Cð1ÞþCð2Þ � f ðtÞþ «t ð2:18Þ

Example 2.4. (Autoregressive bounded growth models and outliers) For ill-

ustration purposes, experimentation has been done by entering a series of variables:

log
m1�125

1250�m1

� �
c t ARð1Þ . . . ARðpÞ ð2:19Þ

in the �Equation specification�windowforp¼ 1, 2, 3 and4.Thismodelwill be called an

AR(p) bounded growth model, namely AR(p)_BGM. The upper and lower bounds are

selectedbasedontheminimumandmaximumobservedvaluesofM1.Ithavebeenfound

that the AR(1) and AR(3) models are the best for illustration purposes, as presented in

Figure 2.14, since the other models have insignificant partial autocorrelation(s).

Which one is the better model? Since the AR(3)_BGM has smaller values of AIC

(Akaike information criteria), SC (Schwarz criteria) and HQC (Hannan–Quinn

criteria) than the AR(1)_BGM, then the AR(3)_BGM is preferred, in a statistical

sense, under the assumption that they are nonnested models, since they have the same

independent variable, namely the time t.

Figure 2.14 Statistical results based onAR(p)_BGMof the variableM1: (a) theAR(1)_BGM

and (b) the AR(3)_BGM
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On the other hand, the AR(1)_BGM has greater values of the F- and Durbin–-

Watson-statistics. Hence, it may be said that the effect of the time t on log(m1) is

stronger or higher based on this model compared to the AR(3)_BGM. In addition, in

general based on a rule of thumb, the simplest model that can be statistically accepted

should be presented. For this reason, in practice, the AR(1)_BGM should be selected

as the final model for further analysis and discussions.

For further discussion, Figures 2.15 and 2.16 present the residual histogram and

graph of the AR(1)_BGM respectively. Based on this residual analysis some limita-

tions of the model are noted as follows:

(1) The residual histogram, as well as the residual graph, show that there are some

outliers that can easily be identified by looking at the original data. This suggests

that other types of data analysis should be undertaken, such as (i) by the smoothing

process, where the outlier(s) will be replaced by the means of the neighbor

observations, and (ii) by doing data analysis based on the subset of datawithout the

outlier(s). However, note that by deleting an outlier, there would be two sub-time

series. For example, if the yj are deleted from a time series {y1, y2, . . ., yT}, then two
time series {y1, y2, . . ., yj�1} and {yjþ 1, yjþ 2, . . ., yT} should be considered, which
could have different patterns of growth curves, as well as their relationships with

the exogenous variables. Therefore, a model with dummy variables may be

applied, which will be presented in Chapter 3. Do this as an exercise.

(2) The residual graph also shows the heteroskedasticity of the error terms. Hence, it

is suggested that theweighted least squares (WLS), theWhite or theNewey–West

Figure 2.15 Residual histogram of the AR(1)_BGM

Figure 2.16 Residual graph of the AR(1)_BGM
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estimation methods should be applied, as well as using other alternative models,

which will be presented in the following sections and examples.

(3) The negative skewness in Figure 2.15 indicates that the residual is skewed to the

left, which can easily be identified based on the histogram or the residual box plot

(refer to Section 1.4.2). &

2.6 Lagged variables or autoregressive growth models

This section first presents examples of data analysis based on alternative growth

models, starting with the simplest lagged variables or autoregressive growth models

of the money supply, M1, with the following equations:

(a) The LV(1)_GM (i.e. the first lagged-variable growth model):

logðm1tÞ ¼ Cð1ÞþCð2Þ*logðm1t�1ÞþCð3Þ*tþ «t ð2:20Þ
(b) The AR(1)_GM (i.e. the first-order autoregressive growth model):

logðm1tÞ ¼ Cð1ÞþCð2Þ*tþmt

mt ¼ r1mt�1 þ «t
ð2:21Þ

Example 2.5. (Comparison between the LV(1) and AR(1) growth models) The

data analysis based on the LV(1)_GM can be obtained by entering the series of

variables:

logðm1Þ c t logðm1ð�1ÞÞ ð2:22Þ
in the �Equation specification�window. The result and its residual plot of this model

are presented in Figure 2.17. In fact, this model could be considered as the first

lagged dependent variable model with trend (Enders, 2004, p. 156).

These statistical results will be compared with the results in Figure 2.4 based on the

AR(1)_GM, as represented above for a better identification. The equation specifica-

tion used is
logðm1Þ c t arð1Þ ð2:23Þ

Figure 2.17 Statistical results based on the models in (2.22) and (2.23)
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By observing the results in Figures 2.17 and 2.4, the following findings can be

observed:

(1) The coefficient of log(m1(�1)) in the LV(1)_GM is exactly the same as the

coefficient of AR(1) in the AR(1)_GM. This also applies to the values of R-

squared, the DW-statistic, AIC and SC. Therefore, the best model cannot be

chosen based on these statistics.

(2) The two regression functions can be presented as

logðm1Þ ¼ 0:122 291þ 0:000 423*tþ 0:974 460*logðm1ð�1ÞÞ ð2:24Þ
logðm1Þ ¼ 4:155 760þ 0:016 575*tþ ½ARð1Þ ¼ 0:974 460� ð2:25Þ

(3) Note that both models show the same estimated first-order autocorrelation, which

is equal to 0.974 460.However, it is not very clearwhether they should be equal in a

theoretical sense.

(4) On the other hand, the coefficient of the time t-variable in the first model

0.000 423 and in the second model¼ 0.016 575, which indicate that the two

models give quite different growth rates of M1 during the time of observation:

1952 : 2 to 1964 : 4. This indicates that the two models should use different

assumptions or preconditions, and they should be considered as two distinct

models.

(5) Therefore, there is a problem in choosing the best model, because the true growth

rate of the corresponding population is never known. Furthermore, compare with

the results in the following example. &

2.6.1 The white estimation method

The White estimation method (in EView�s 6 User�s Guide, 1980) provides correct
estimates of the coefficient covariance in the presence of heteroskedasticity of

unknown form, as presented in the following block/window (see Figure 2.18).

Figure 2.18 The estimation options
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Example 2.6. (The white estimation method) This example presents the statistical

results inFigure2.19basedonthe twomodels in(2.22)and(2.23)respectively,usingthe

White heteroskedasticity estimation method. Note their differences. &

2.6.2 The Newey–West HAC estimation method

Note that the window in Figure 2.18 also presents another estimation option, i.e. the

Newey–West estimationmethod. This estimationmethodwould take into account the

unknown serial correlation, as well as heteroskedasticity, of the error terms.

Example 2.7. (The Newey–West HAC estimation) Figure 2.20 presents statistical

results based on the models in (2.22) and (2.23) by using the Newey–West estimation

method.

Figure 2.19 Statistical results based on the model in (2.22) and (2.23), using the White

heteroskedasticity estimation method

Figure 2.20 Statistical results based on themodel in (2.22) and (2.23), using theNewey–West

estimation method
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Note that theWhite and Newey–West estimationmethods present exactly the same

estimated values of the model parameters. Therefore, the White and Newey–West

estimation methods will give the same equation of regression functions, as well as the

residual graphs. However, these estimation methods present different estimated

values of the standard errors of the model parameters, which lead to different values

of t-statistics, as well as the p-values of the corresponding hypothesis tests.

For further comparison, Figure 2.21 presents the residual histograms of both

regressions, which are very similar. Besides the means of residuals, all other statistics

are equal.

Based on the six statistical results presented in the last three examples, problems

would be encountered in choosing the best model. Since, in general or in most cases,

the form of the true heteroskedasticity and serial correlation is never known, the

Newey–West estimation method should be chosen as the best estimation method.

Ontheotherhand,byconsideringthedifferencesbetweentheLV(1)andAR(1)growth

models, it might be preferable to present both regression functions as the final results.

Furthermore, a researcher would have more difficulty in selecting the best growth

model ofm1, because such a large number ofmodels could be presentedwith log(m1)

as an endogenous variable. Many possible models will be presented in the following

examples and sections, as well as in the following chapters. &

2.6.3 The Akaike Information and Schwarz Criterions

In addition to the previous statistics, there are two other statistics that should be taken

into consideration in the printout, which are the Akaike Information Criterion (AIC)

and the Schwarz Criterion (SC). Both could be used to select nonnested models. A

model is called nested of a secondmodel, if and only if the set of independent variables

of the first model is a subset of the independent variables of the second model. In a

statistical sense, it is suggested that the nonnested model should be selected to have

smaller values of AIC or SC.

Note that the six previous statistical results present the same values of AIC and SC.

Hence, in this case, these statistics cannot be used to select the best possible model.

2.6.4 Mixed lagged-variable autoregressive growth models

As an extension of the LV(1) and AR(1) growth models presented in the previous

examples, in this subsection, an LVAR_GM (i.e. lagged-variable autoregressive growth

Figure 2.21 Residual histograms of the two regressions in Figure 2.20
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model) or LVAR_T (i.e. lagged-variable autoregressive model with trend) is proposed

with the following general equation:

logðYtÞ ¼ b0 þb1logðYt�1Þþ . . . þbplogðYt�pÞþ r*tþ ut
ut ¼ r1ut�1 þ . . . þ rqut�q þ «t

ð2:26aÞ

In EViews this model will be filed as follows:

logðYtÞ ¼ cð1Þþ cð2Þ*tþ cð3Þ*logðYt�1Þþ . . .
þ cðpþ 2Þ*logðYt�pÞþ ut

ut ¼ r1ut�1 þ . . . þ rqut�q þ «t

ð2:26bÞ

This model will be presented as an LVAR(p,q) growth model. For q¼ 0, the LV(p)

growth model is obtained, and the AR(q) growth model if p¼ 0. If p¼ q¼ 1, the sim-

plestmixed lagged-variable autoregressive growthmodel LVAR(1,1)_GM is obtained.

Note that for any selected values of p and q, all statistical results and testing

hypotheses presented in the previous examples could easily be obtained. The

following examples present comparisons between selected growth models.

Example 2.8. (Higher-order lagged-variable growth models) Figure 2.22 pre-

sents statistical results based on the two models in (2.26), with (p¼ 2, q¼ 0) and

(p¼ 3, q¼ 0) respectively. In EViews, the models have the following equations:

logðYtÞ ¼ Cð1ÞþCð2Þ*tþCð3Þ*logðYt�1Þ
þCð4Þ*logðYt�2Þþ ut

ð2:27Þ

and

logðYtÞ ¼ Cð1ÞþCð2Þ*tþCð3Þ*logðYt�1Þ
þCð4Þ*logðYt�2Þþ cð5Þ*logðYt�3Þþ ut

ð2:28Þ

Based on these results, the following notes and comments are presented:

(1) The model in (2.27) has estimated partial autocorrelation coefficients of r1
0.874 364 and r2¼ 0.096 023. However, the model in (2.28) has r1¼ 0.888 324,

r2¼ 0.245 382 and a negative value of r3¼�0.161 104.

Figure 2.22 Statistical results based on themodel in (2.27) and (2.28), using theNewey–West

estimation method
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(2) Corresponding to the basic regression, a partial autocorrelation coefficient can be

considered as an adjusted effect of an independent variable on the dependent

variable. For example, the first lagged endogenous variable log(m1(�1)) has a

significant adjusted effect on the dependent variable log(m1) with p-values

0.0000, based on both models.

(3) On theotherhand, log(m1(�2))hasan insignificant adjustedeffecton log(m1)with

ap-value¼ 0.3732, basedon themodel in (2.27), but basedon themodel in (2.28) it

hasa significant adjustedeffect.Note that themodel in (2.28)hasmore independent

variables than in (2.27). The inconsistency of the results has been known as the

effects of multicollinearity between the independent variables. Even the bivariate

correlation between the lagged variables in the model in (2.28) should have an

effect on the estimated values of the model parameters. It could be said that no

model can exist without having an empirical coefficient bivariate correlation

between the independentorexogenousvariables, even thoughapair of independent

variables is not correlated, in a theoretical sense. Hence, in selecting an acceptable

model personal judgment should be used (Tukey, 1962, in Gifi, 1990, p. 22).

(4) If only one of these two models can be chosen, the LV(2) model in (2.28) should be

chosen, for two reasons: (i) each independent variable has a significant adjusted effect

and (ii) it has a sufficient value of theDW-statistic of 1.996183.Would you choose the

other model? If so, why?

(5) However, further analysis on the error terms should be done in order to find out the

limitations of the model. Do this as an exercise. &

Example 2.9. (LVAR(2,1) growth model) This example presents a comparison

between two types of equation specifications of the same growth model. As an

illustration, Figures 2.23 and 2.24 present statistical results based on an LVAR

(2,1) growth model, that is the model in (2.26) for p¼ 2 and q¼ 1.

Figure 2.23 Statistical results based on the model in (2.29), where convergence is achieved

after eight iterations
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Two types of the statistical results can be obtained by entering the series of variables

logðm1Þ c t logðm1ð�1Þ logðm1ð�2ÞÞ arð1Þ ð2:29Þ

and the following equation respectively

logðm1Þ ¼ cð1Þþ cð2Þ*tþ cð3Þ*logðm1ð�1ÞÞ
þ cð4Þ*logðm1ð�2ÞÞþ ½arð1Þ ¼ cð5Þ� ð2:30Þ

Based on these results, the following notes and conclusions are obtained:

(1) Both models have equal values of the Akaike information criterion, Schwarz

criterion and Durbin–Watson statistics.

(2) Note all differences between the results in Figures 2.23 and 2.24 as follows:

. Even though the same option has been used, Figure 2.24 does not present the

White heteroskedasticity statement.
. Based on the input in (2.29) convergence is achieved after seven iterations, but

convergence is achieved after two iterations based on the input in (2.30).
. The standard errors of the coefficients, as well as the t-tests and their p-values,

are unequal for both equations.
. Based on these findings, it could be said with confidence that EViews should

use different computational or estimation processes for the two different input

equation specifications, even though the same regression is being considered, in

a statistical sense.

Figure 2.24 Statistical results based on the model in (2.30), where convergence is achieved

after two iterations
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. Note that both statistical results show equal values of theAIK and SC, aswell as

the Hannan–Quinn Criterion (HQC). It can therefore be concluded that both

models have the same quality based on these statistics.
. However, since both outputs are the results of a single defined model, then

personal best judgment should be used (Tukey, 1962, in Gifi, 1990, p. 22) to

select one as a final statistical result. &

2.6.5 Serial correlation LM test for LV(2,1)_GM

This example presents two alternative serial correlation LM tests, as presented in

Figure 2.25, based on the LVAR(2,1)_GM with (2.29) as the equation specification.

Based on these results, the following notes and conclusions are given:

(1) The results in Figure 2.25(a) show that the null hypothesis of the first-order serial

correlation of the error terms, that is H0: r1¼ 0, is accepted based on the chi-

squared-statistic (Obs�R-squared¼ T�R2) of 0.590 742 with a p-value¼ 0.4421.

Hence, it can be concluded that the model is an acceptable AR(1) model, in a

statistical sense. Furthermore, note that these results also present the growth

model of the error terms, Resid, which can be written as

Resid ¼ cð1Þþ cð2Þtþ cð3Þlogðm1ð�1ÞÞþ cð4Þlogðm1ð�2ÞÞ
þ ½arð1Þ ¼ cð5Þ� þ cð6ÞResidð�1Þ ð2:31Þ

A similar model could easily be written based on the results in Figure 2.25(b).

(2) The results in Figure 2.25(b) show that the null hypothesis of the second-order

serial correlation of the error terms, that is H0: r1¼ r2¼ 0, is rejected based on

the chi-squared-statistic (Obs�R-squared¼ T�R2) of 10.062 56 with a p-value

0.0065. Since the error terms have a significant second-order serial correlation,

Figure 2.25 Two serial correlation (SC) LM tests, based on the model in (2.29), where

convergence is achieved after two iterations
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then it suggests that the LVAR(2,1)_GM should bemodified to LVAR(2, q)_GM

for a certain or preferable value of q. Do this as an exercise.

2.7 Polynomial growth model

2.7.1 Basic polynomial growth models

A basic polynomial growth model, which is the semilog (i.e. semilogarithmic)

polynomial model, based on a bivariate (Yt, t) has the flowing general equation

lnðYtÞ ¼ b0 þ
XK
k¼1

bkt
k þ «t ð2:32Þ

However, in EViews, it will be saved or filed as

logðYtÞ ¼ Cð1Þþ
XK
k¼1

Cðkþ 1Þ*tk þmt ð2:33Þ

This model is a polynomial growth model of degree k in time t. By using the same

stages of process, it is easy to apply this model based on a time series data set.

However, the corresponding scatter plot should be observed in order to identify what

degree of the polynomial growth model can be used.

Example 2.10. (The use of observed scatter plots) Note that the growth curve of

the variableRS in theDemo_Modifiedworkfile shows a nonlinear curve. The simplest

polynomial model should be (at least) a quadratic growthmodel. Hence, if the follow-

ing series of variables is entered:

logðRSÞ c t t2 ð2:34Þ
in the �Equation specification�window, then the statistical results in Figure 2.26 and its
residual graph in Figure 2.27 will be obtained.

Note that Figure 2.26 shows that each of the time variables t and t2 has a significant

adjusted effect on log(RS), with a sufficiently large value ofR-squared, but with a very

low value of the DW-statistic. The structure of the residual, actual and fitted graphs

Figure 2.26 Statistical results based on the model in (2.34)
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should also be taken into consideration. Should a higher-degree polynomial regres-

sion be tried? Do this as an exercise.

In fact, this basic linear model is not an appropriate model for statistical inferences,

since it concerns time series data. Previous examples already show that an AR, an LV

or an LVAR growth model should be applied. Do this as an exercise. &

Example 2.11. (A cubic polynomial for the first difference, dlog(m1)) As an

illustration, a series or a dated variable d log(m1)¼ log(m1t)� log(mt�1) is generated,

aswell as the scatter graph of (t, d log(m1))with its kernel fit in Figure 2.28. This graph

clearly shows that a linear growth model with the dependent variable d log(m1) is not

an appropriatemodel, and nor is the quadratic growthmodel. Therefore, a third-degree

polynomial is tried, giving the statistical results in Figure 2.29.

Note that the results in Figure 2.29 show that DW¼ 2.3 with a small value of

R-squared; each of the independent variables t and t2 is insignificant. However, the

Figure 2.27 Residual graph of the model in (2.34)

Figure 2.28 Scatter graph of d log(m1) and its kernel fit
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joint effects of t and t2 is significant based on the Wald test, i.e. the chi-squared-

variable of 24.133 88with df¼ 2 and the p-value¼ 0.000, as presented in Figure 2.30.

&

Example 2.12. (Possible reduced models) In a statistical sense, two reduced

models can be presented based on the cubic polynomial presented in the Figure 2.29,

since the joint effect of t and t2 is insignificant. Those reduced models are obtained by

deleting either the time t or t2 respectively. Hence, two statistical results should be

considered, as presented in Figures 2.31 and 2.32, with their residual graphs in Fig-

ures 2.33 and 2.34 respectively.

Figure 2.29 Third-degree polynomial growth model of dlog(m1)

Figure 2.30 Statistical results for testingH0: c(2)¼ c(3)¼ 0, i.e. the joint effects of t and t2 on

d log(m1)
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Figure 2.31 Growth model of dlog(m1) with linear and cubic trends

Figure 2.32 Growth model of d log(m1) with quadratic and cubic trends

Figure 2.33 Residual graph of the model in Figure 2.29
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Based on the statistical results of the three growth models of d log(m1), the

following questions, notes and conclusions are presented:

(1) Which one is considered to be the bestmodel? Since, in a statistical sense, the first

model should be reduced, then one of the two reducedmodels should be selected.

This again is a problem, because each independent variable in both models has a

significant adjusted effect. In both models, the independent variables also have a

joint significant effect, based on the F-statistic.

(2) Considering a higher value of R-squared and that lower values of the AIC and SC

statistics are preferred, the model in Figure 2.32 should be selected as the best

model of the three considered models. However, this might be a higher-degree

polynomial growth model. Do this as an exercise.

(3) On the other hand, the residual graph shows an indication of outliers or break-

points, since there are some long/high vertical lines presented by the residual

graph, as well as the graph of actual values. For a further explanation, refer to the

notes in Example 2.4. &

Example 2.13. (TheWhite heteroskedasticity test) Considering the scatter plot of

dlog(m1) by the time t in Figures 2.33 and 2.34, a suggestion is made to test the null

hypothesis of no heterogeneity of the residual or the error terms. To illustrate this, the

test will be conducted for themodel in Figure 2.32, namely the growthmodel having t2

and t3 as independent variables. By selecting View/Residual Tests/White H . . . (no
cross term), the result in Figure 2.35 is obtained.

This figure shows that the null hypothesis of no heteroskedasticity of the error is

accepted, basedon thechi-squared-statistic (Obs�R-square¼ T�R2) of 7.990 311with a

p-value¼ 0.1568. However, as expected, the null hypothesis of no first-order serial

correlation is rejected based on the chi-squared-statistic of 5.423 776 with a p-value

0.0199, since time series data are used and the model in Figure 2.30 does not take into

account theautocorrelationsof theerror terms.Hence, it is suggested thatanLVAR_GM

shouldbeapplied, inorder toobtain abettergrowthmodel, aswell as anacceptable time

series model. The following example presents alternative modified models. &

Figure 2.34 Residual graphs of the model in Figure 2.30
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Example 2.14. (Modified models of the cubic polynomial model in Figure 2.32,

Example 2.13) Figure 2.36 presents the statistical results based on LV(1) and

AR(1) growth models with quadratic and cubic trends, which are two modified

Figure 2.35 The White heteroskedasticity test for the model in Figure 2.30 for the growth

model of d log(m1) with quadratic and cubic trends

Figure 2.36 Statistical results based on the LV(1) and AR(1) growth models of the model in

Figure 2.32
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models of the model in Figure 2.32. Note their differences. Based on these results, the

following notes and conclusions are presented:

(1) In a statistical sense, model LV(1)_GM in Figure 2.36(a) should be considered a

bettermodel thanmodelAR(1)_GMinFigure2.36(b), becaused(log(m1(�1)) has

a significant effect, but the indicator AR(1) is insignificant with a large p-value.

(2) Further experimentationor exercises couldbecarriedoutusinganLV(p)_GMoran

AR(q)_GMor themixedLVAR(p, q)_GM for some p and q. Do this as an exercise.

(3) Furthermore, note that more alternative growth models could be defined or

proposed having log(m1) or d log(m1) as a dependent variable. Hence, problems

will always be faced in selecting an acceptable or the best possiblemodel based on

personal judgment, which can be very subjective. Some additional examples will

be presented in the following sections and chapters by using pure exogenous

(independent) variables. &

Example 2.15. (A cubic polynomial model by Enders (2004)) For illustrative

comparison purposes, the polynomial growth model presented by Enders Enders

(2004, p. 157) should be considered. He presents a cubic polynomial growth func-

tion for the time series of real GDP {rgdpt}, as follows:

rgdpt ¼ 2:224
ð61:27Þ

þ 0:385t
ð20:89Þ

� 0:0002t2
ð�6:78Þ

þ 1:85E�6t3
ð�12:17Þ

ð2:35Þ

As in the previous examples, this model does not take into account the autocorrela-

tions between its error terms. To explain this, Enders stated: �Regardless of the t-

statistics, the use of such a model for trend of real GDP is problematic. Since there is

no stochastic component in the trend, the function above implies that there is a

deterministic (and accelerating) long-run growth rate of the real economy.�
Hence, for further analysis, themodel should take into account the autocorrelations

of the error terms, as well as their heteroskedasticity. &

2.7.2 Special polynomial growth models

Agung, Pasay and Sugiharso (1994) and Agung (1999a, 2007) proposed a special

third-degree polynomial growth model, called the generalized exponential growth

functions, having the general form:

log
Yt�b

a�Yt

� �
¼ Cð1ÞþCð2Þ*ðt�uÞ2ðt�dÞþmt ð2:36Þ

where a and b are fixed defined values of the upper and lower bounds of all possible

observed or theoretical values of the dependent variable Y, and d and u are also fixed
values selected corresponding to possible values of time t, where the Y-variable is

predicted to reach its relative extreme values, either minimum or maximum values.

An advantage of applying this model is that it can be considered as a simple linear

regression model with the independent variable f(t)¼ (t� u)2(t� d). Then, using
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Microsoft Excel, a set ofmany regression functions could easily be produced, together

with their graphs, having an intercept C(1) and a slope C(2). Based on the set of those

graphs, one could be selected that is considered as the best third-degree polynomial

model to be used for estimation or forecasting.

Furthermore, the independent variable f(t)¼ (t� u)2(t� d) can also be used for

bounded growth models of the proportion variable Yt in (2.17), as well as the

percentage variable in (2.18).

2.8 Growth models with exogenous variables

The growthmodels presented in the previous sections could easily extend to a general

growth model with multidimensional exogenous variables as follows:

logðYtÞ ¼ cð1Þþ cð2Þ*tþ
XK
k¼1

cðkþ 2Þ*Xk;t þmt ð2:37Þ

where Yt is an endogenous time series (variable),Xk,t is the kth exogenous time series,

k¼ 1, . . . ,K, and mt is the error term of the model. This model can be considered as a

semilog model with trend and a multidimensional exogenous variable.

Note that the exogenous variables could be pure exogenous variables, other

endogenous variables, lagged variables of the endogenous or exogenous variables

or the interaction factors of selected independent variables, including the time t, as

well as dummy variables and the transformation of the original variables, such as log

(Xk) and (Xk)
a. Furthermore, this model can be extended to the bounded growth

models presented in Section 2.5.

Hence, there could be a very large number of possible growthmodels or theremight

be an infinite number of possible growth models based on a limited number of

variables, as mentioned in the Preface. For example, if there are only two endogenous

variables and three pure exogenous variables, how many possible growth models

could be developed or defined? Find the many alternative models presented in the

following sections. For this reason, the best growth model, or statistical and

econometric models in general, could never be presented because all possible models

are never considered that would be acceptable models in a statistical sense.

Example 2.16. (AR additive growth models) This example presents an addi-

tional illustrative growth model for the time seriesM1, which is an additive growth

model having selected exogenous variables with equation specification as follows:

logðm1Þ ¼ Cð1ÞþCð2Þ*tþCð3Þ*logðgdpÞ
þCð4Þ*logðprÞþ ½ARð1Þ ¼ Cð5Þ� ð2:38Þ

The statistical results in Figure 2.37, can easily be obtained by entering this equation

or the following series of variables in the �Equation specification� window:

logðm1Þ c t logðgdpÞ logðprÞ arð1Þ ð2:39Þ
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Note that this model will be considered as a modification of the Cobb–Douglas

production function with two input variables, namely gdp and pr, which has the

characteristics: (i) increasing return-to-scale, if and only if C(3) þ C(4) > 1;

(ii) constant return-to-scale, if and only if C(3) þ C(4)¼ 1; and (iii) decreasing

return-to-scale, if and only if C(3) þ C(4) < 1. The estimate of the parameter C(2)

provides an estimate of the annual percentage of change resulting from technological

change, adjusted for log(gdp) and log(pr), as well as the AR(1).

By using theWald test, the null hypothesisH0: c(3) þ c(4)¼ 1 is rejected based on

the F-statistic of 14.620 14 with df¼ (1, 174) and the p-value¼ 0.0002; or the chi-

square-statistic of 14.620 14 with df¼ 1 and the p-value¼ 0.0001. This test can be

conducted by selecting View/Coefficient Tests/Wald-Coefficient restriction . . . and
entering C(3) þ C(4)¼ 1 in the �Coefficient restrictions� window; then click OK.

Since log(pr) has an insignificant effect, with such a large p-value and a negative

coefficient, it is proposed that a reduced model should be used, which is a nested

model as follows:

logðm1Þ ¼ Cð1ÞþCð2Þ*tþCð3Þ*logðgdpÞþ ½ARð1Þ ¼ Cð4Þ� ð2:40aÞ
which can also be presented as

logðm1tÞ ¼ Cð1ÞþCð2Þ*tþCð3Þ*logðgdptÞþmt
mt ¼ rmt�1 þ «t

ð2:40bÞ

The statistical results are presented in Figure 2.38, with its residual graph in

Figure 2.39, p. 58. &

Example 2.17. (LVAR(1,1) growth model) As a modification of the reduced

model in the previous example, namely the AR(1) model in (2.40), here a mixed

Figure 2.37 Statistical results based on an AR(1) translog linear growth model in (2.39)
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Figure 2.38 Statistical results based on a reduced model in (2.40)

Figure 2.39 Residual graph of the model in (2.40)

lagged-variables autoregressive growth model, the LVAR(1,1)_GM, is consid-

ered, with the statistical results presented in Figure 2.40 and its residual graph

in Figure 2.41.

Based on this figure, the following notes and conclusions can be presented:

(1) The time t has an insignificant adjusted effect, with a sufficiently large p-value. If

this independent variable is deleted in order to obtain a reduced model, it will not

produceagrowthmodelor amodelwith a linear trend (amodelwith trend).Models

without the time t as an independent variable will be presented in Chapter 4.

(2) The indicator AR(1) is insignificant at the significant level of 10%. However, it is

significant if a left-hand-side hypothesis is considered: H0 : r1 � 0 versus

H1 : r1 < 0. Since the t-statistic is �1.620 646 with the p-value¼ 0.106 69/

2¼ 0.053 345, then the null hypothesis is rejected at the significant level of 10%.

(3) If the AR(1) is deleted, then in general there will be a first lagged-variable growth

model, which is the LV(1)_GM, or specifically the first lagged-variable model

with trend, namely the LV(1)_T, with a pure exogenous variable. &
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2.9 A Taylor series approximation model

An extension of the translog growth model presented in the previous examples is a

Taylor series approximation model, which is derived from the constant elasticity of

substitution (CES) production function. For example, with two exogenous variables,

X1 and X2, the model has the following general equation:

logðYtÞ ¼ Cð1ÞþCð2Þ*logðX1ÞþCð3Þ*logðX2ÞþCð4Þ*logðX1Þ2
þCð5Þ*logðX1Þ*logðX2ÞþCð6Þ*logðX2Þ2 þCð7Þ*tþmt

ð2:41Þ

where the estimated value of parameter C(7) provides the exponential growth rate of

Yt adjusted for all other independent variables. As a modified model, log(t) may be

used as an independent variable, instead of the time t.

On the other hand, Coelli, Prasada Rao and Battese (2001, p. 36) present an

alternative model as follows:

logðYtÞ ¼ Cð1ÞþCð2Þ*logðX1ÞþCð3Þ*logðX2ÞþCð4Þ*logðX1Þ2
þCð5Þ*logðX1Þ*logðX2ÞþCð6Þ*logðX2Þ2
þCð7Þ*tþCð8Þ*t2 þmt

ð2:42Þ

Figure 2.40 Statistical results based on an LVAR(1,1)_GM of log(m1)

Figure 2.41 Residual graph of the model in Figure 2.37

Continuous Growth Models 59

www.trading-software-collection.com



Note that by using several ormany independent variables in amodel, statistical results

would frequently be produced, with several independent variables having insignifi-

cant adjusted effects. This problem arises due to the multicollinearity between the

independent variables, which always exists even though the independent variables are

uncorrelated in a theoretical sense (further notes and comments are given in

Section 2.14).

As a result, it is not an easy task to obtain an acceptable reduced model. Do it as an

exercise and see how to develop possible reducedmodels,which has been presented in

Example 2.12.

2.10 Alternative univariate growth models

2.10.1 A more general growth model

Based on a time series {t, yt}, Gourierroux andManfort (1997, pp. 12–13) presented a

general growth model or a general model with the time t as an exogenous variable,

called an adjusted model, as follows:

yt ¼ f ðt;mtÞ ð2:43Þ
where f is a function characterized by a finite number of unknown parameters andmt is

a zero mean random variable.

This model can be extended to a more general model as follows:

gðytÞ ¼ f ðt; xt;mtÞ ð2:44Þ
where g(yt) is a defined function of an endogenous variable ytwithout a parameter of

the endogenous variable and f(t, xt, mt) is a function of the time t and a multidimen-

sional exogenous variable xt¼ (xt, x2, . . ., xk)t having a finite number of unknown

parameters. The simplest model of themodel in (2.44) is an additivemodel as follows:

gðytÞ ¼ f ðt; xt;mtÞ ¼ f1ðtÞþ f2ðxtÞþmt ð2:45Þ

where f1(t) is a function of the time t and f2(xt) is a function of a multidimensional

exogenous variable xt having a finite number of unknown parameters.

2.10.2 Translog additive growth models

Corresponding to the model (2.43), the simplest translog (i.e. translogarithmic) linear

model might be

lnðYtÞ ¼ Cð1ÞþCð2Þ*lnðtÞþmt ð2:46Þ
Note that this model is derived from the Cobb–Douglas production function: Q¼
AKa, which has specific characteristics or classification, such as an increasing return-

to-scale model if a > 1, a constant return-to-scale model if a¼ 1 and a decreasing

return-to-scale model if a < 1.
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If there is an additional numerical independent variable X, then the following

additive translog growth model may be obtained, which could be considered also as

the Cobb–Douglas (CD) growth model.

lnðYtÞ ¼ Cð1ÞþCð2Þ*lnðXÞþCð3Þ*lnðtÞþmt ð2:47Þ
Furthermore, if there aremultivariate independent variables, sayX1,X2, . . .,XK, then a

CD growth modelis formed:

lnðYtÞ ¼ Cð1ÞþCð2Þ*lnðtÞþ
XK
k¼1

Cðkþ 2Þ*lnðXkÞþmt ð2:48Þ

Example 2.18. (Translog linear growth models) One of the main objectives in

applying the model in (2.48) is to test the null hypothesis of constant return-to-scale,

that isH0:C(2) þ C(3) þ . . .C(K þ 2)¼ 1, which is a special linear combination of

the model parameters. The following model is a translog linear growth model:

logðm1Þ¼ Cð1ÞþCð2Þ*logðtÞþCð3Þ*logðgdpÞ
þCð4Þ*logðprÞþ ½ARð1Þ ¼ Cð5Þ� ð2:49Þ

Entering the series of variables

logðm1Þ c logðtÞ logðgdpÞ logðprÞ arð1Þ ð2:50Þ
in the �Equation specification�window gives the statistical results in Figure 2.42 and

its residual graph in Figure 2.43. Note that theAR(1)model is used directly because of

the time series data.

Figure 2.42 Statistical results based on the model in (2.50)
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Based on this figure, it is easy to test several one-sided hypotheses by using the

t-test, such as the adjusted effects of each independent variable, as well as the

autocorrelation coefficient. Do this as an exercise.

For illustration purposes, corresponding to the CD production function, the null

hypothesis H0: C(2) þ C(3) þ C(4)¼ 1 will be tested. The processes to test this

hypothesis are as follows:

(1) In the equation box, click View/Coefficient Tests/Wald-Coefficient restriction

. . .. This gives the Wald test window in Figure 2.44 on the left-hand side.

(2) Entering the equation C(2) þ C(3) þ C(4)¼ 1 and then clicking OK gives the

result in Figure 2.44 on the right-hand side. The null hypothesis is accepted based

on the chi-squared-statistic with a p-value¼ 0.8418.

(3) Note that the F-statistic presented can be used under the basic assumptions of the

error terms of the model, which are having a zero mean, constant variance and

identical independent normal distributions. Refer to the notes in Section 2.14

concerning problems in testing these assumptions. &

Example 2.19. (A reduced model of the model in (2.50)) Since the previous exa-

mple shows that log(t) has an insignificant effect, a reduced model may be applied

Figure 2.43 Residual graph of the model in (2.50)

Figure 2.44 An illustrative example in testing a linear combination of the model parameters,

using the Wald test
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without the log(t) as an independent variable, which will be considered as a see

mingly causal model (SCM) or neo-classical growth model, because it is not a pure

causal or growth model. This model will be discussed in more detail in Chapter 4.

The statistical results based on a reduced model of the model in (2.50) is presented

in Figure 2.45 and a Wald test is presented in Figure 2.46. This figure shows that the

null hypothesisH0:C(2) þ C(3)¼ 1 is accepted, with a p-value of 0.6686. Hence, the

regression function obtained can be considered as a constant return-to-scale pro-

duction function. &

2.10.3 Some comments

So far, there have been many growth models for the indicator money supplyM1, and

many other alternative additive models could have been obtained by using additional

independent variables, higher-order autoregressive coefficients and lagged variables.

In the following subsection, additional growth models are presented having interac-

tion factors as independent variables. It is certain that every researcher will encounter

problems in selecting a model that can be considered to be the best.

Figure 2.45 Statistical results based on a reduced model of the model (2.50)

Figure 2.46 Wald test based on the model in Figure 2.42
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Personal best judgment should be used in selecting a group of growth models,

particularly for the statistical models. Then a choice could be made as to which one is

the best in the group of models, even though this would be quite a subjective choice. It

is difficult for anyone to present all possible models based on even a small group of

variables, and it could never be a certainty that anydefinedmodel is strictly true for the

corresponding population.

2.10.4 Growth model having interaction factors

2.10.4.1 The simplest growth model with two independent variables

The simplest interaction growth model is defined as

lnðYtÞ ¼ ðCð1ÞþCð2Þ*XÞþ ðCð3ÞþCð4Þ*XÞ*tþmt ð2:51Þ

where X is a numerical independent dated variable. Note that this model has the

following characteristics:

. The corresponding regression function presents a curve or surface in a three-

dimensional coordinate system with X, ln(Y) and t axes.
. For each fixed value of X, say X0, the corresponding regression function presents

a straight line with an intercept¼ [C(1) þ C(2)X0] and a slope¼ [C(3) þ C(4)

X0] in a two-dimensional coordinate system with ln(Y) and t axes. Hence, for all

possible values of the independent variable X, the model (2.51) can be presented

as a set of straight lines. As an illustration, Alternative 1 in Figure 2.47 shows a

set of lines log(y)¼ a þ (bx).t, for x < 0, x¼ 0 and x > 0, which could be

extended for �¥< x <¥.
. Based on this type of model, a statement could be made that the effect of the time

t-variable depends on the X-variable.

Figure 2.47 Illustrative sets of heterogeneous lines with an intercept
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. Note that the model (2.51) can also be written as

lnðYtÞ ¼ ðCð1ÞþCð3Þ*tÞþ ðCð2ÞþCð4Þ*tÞ*Xþmt ð2:52Þ
. Based on this equation, it could be said that the effect of the X-variable depends on

the time t-variable. The corresponding regression function, for all possible values of

t, will present a set of straight lines in a two-dimensional coordinate system with ln

(Y) andX axes. As an illustration, Alternative 2 in Figure 2.47 shows a set of straight

lines log(y)¼ a þ (bt)x, for t¼ 0, t¼ 1 and t¼ 2, b > 0 and x > 0, which can be

extended for all t� 0.
. This model will be considered as a two-way interaction model, since it has a two-

way interaction factor as an independent variable.

2.10.4.2 Additional growth models with interaction factors

In this subsection, only two models will be presented having three numerical

independent variables X1, X2 and the time t-variable. The two following models

could be easily extended for multivariate numerical independent variables, besides

the t-variable, as well as for the translog growth models (see Agung, 2006):

lnðYtÞ ¼ ðCð1ÞþCð2Þ*X1 þCð3Þ*X2Þ
þ ðCð4ÞþCð5Þ*X1 þCð6Þ*X2Þ*tþmt

ð2:53Þ

lnðYtÞ ¼ ðCð1ÞþCð2Þ*X1 þCð3Þ*X2 þCð4Þ*X1*X2Þ
þ ðCð5ÞþCð6Þ*X1 þCð7Þ*X2 þCð8Þ*X1*X2Þ*tþmt

ð2:54Þ

Note that the model in (2.53) shows that the effect of the time t-variable depends on an

additive function defined as {c(3) þ c(4)X1 þ c(5)X2}, but the model in (2.54) shows

that it depends on the function having an interaction factor, namely {c(5) þ c(6)

X1 þ c(7)X2 þ c(8)X1X2}. Themodel in (2.53) is a two-way interactionmodel and the

model in (2.54) is a three-way interaction model, since it has a three-way interaction

factor, X1
�X2

�t, as an independent variable. These types of model could be considered

as time series models with linear trend and time-related effects (Bansal, 2005).

Example 2.20. (Growth model having interaction factors) Based on the data in

Demo_Modified.wf1, the following translog growth model with an interaction factor

together with its corresponding AR(1)_GM is applied:

logðM1tÞÞ ¼ Cð1ÞþCð2Þ*logðGPDÞþCð3Þ*ðyear-52Þ
þCð4Þ*logðGDPÞ*ðyear-52Þþmt

ð2:55Þ

where t¼ (year� 52), so that the time t-variable has values 0 up to 44.

The results of the analysis should be obtained by entering a series of variables:

logðm1Þ c logðgdpÞ ðyear-52Þ logðgdpÞ*ðyear-52Þ ð2:56Þ
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in the �Equation specification�window. Its corresponding AR(1) model can be easily

found as in the previous examples, by entering the following series:

logðm1Þ c logðgdpÞ ðyear-52Þ logðgdpÞ*ðyear-52Þ arð1Þ ð2:57Þ
The results based on these two models are presented in Figures 2.48 and 2.49

respectively. Based on these results, the following notes and conclusions are presented:

(1) Since this concerns time series data, then the growth model in (2.56) is not

appropriate to use for testing the hypothesis, because of the serial correlation or

autocorrelation of the error terms. Its residual graph is shown in Figure 2.50.

However, because of such avery largevalue ofR-squared (99.8%), it could be said

that this model is a good model for estimation and forecasting.

Figure 2.48 Statistical results based on the model in (2.56)

Figure 2.49 Statistical results based on the model in (2.57)
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(2) The AR(1) model in (2.57) should be a better model to be used for testing the

hypothesis. Its residual graph is shown in Figure 2.51. This model shows that the

interaction factor log(GDP)�t¼ log(GDP)�(Year� 52) has a significant effect on

log(M1)with a p-value of 0.0217. It may be concluded that the effect of log(GDP)

on log(M1) is significant and depends on the time t-variable.

(3) The equation of the AR(1) regression function can be written as

logðm1Þ¼2:093þ0:600*logðgdpÞ�0:025*tþ0:005*logðgdpÞ*tþ½arð1Þ¼0:957�
¼f2:093�0:025*tgþf0:600þ0:005*tg*logðgdpÞþ½arð1Þ¼0:957�

ð2:58Þ
This function shows that log(gdp) has a positive effect on log(m1), because

{0.600þ 0.005t} > 0. For all possible values of t, this function will present a set
of straight lines in a two-dimensional coordinate system with log(m1) and log

(gdp) axes, as illustrated in Figure 2.47. &

Example 2.21. (Advanced growth model having interaction factors) The result

in Figure 2.52 is obtained by entering a series of variables

logðm1Þ c logðgdpÞ logðprÞ logðgdpÞ*logðprÞ
t t*logðgdpÞ t*logðprÞ t*logðgdpÞ*logðprÞ arð1Þ ð2:59Þ

Figure 2.50 Residual graph of the model in (2.56)

Figure 2.51 Residual graph of the model in (2.57)

Continuous Growth Models 67

www.trading-software-collection.com



in the �Equation specification� window. This is an application of the model in (2.54)

with X1¼ log(gdp) and X2¼ log(pr). Based on this result, the following notes and

conclusions may be produced:

(1) All independent variables have a joint significant effect on log(m1), based on the

F-test with a p-value¼ 0.0000. However, five out of eight independent variables

have insignificant adjusted effects. This situation indicates an unpredictable

impact of the multicollinearity coefficient on the independent variables. As a

result, an attempt should be made to find a reduced model or a modified model.

(2) To obtain a reduced model, an attempt should always first be made to delete or

omit the main factor because the two-way interaction(s) should be used to

indicate that the effect of a factor on the dependent variable is most likely to

be dependent on the other factor.

(3) By omitting log(pr) and then the t-variable, the reduced model presented in

Figure 2.53 was obtained; log(gdp) was still used as an independent variable,

although it does not have a significant effect on ln(m1) because the corresponding

test has a p-value < 0.25, as suggested by Hosmer and Lemesshow (Hosmer and

Lemesshow, 2000, p. 95).On the other hand, at a significant levela¼ 0.10, in fact,

log(gdp) has a significantly negative effect on log(m1) with a p-value¼ 0.1543/

2¼ 0.077 15.

(4) Based on the reduced model, the following equation is obtained:

lnðm1Þ ¼ fCð1ÞþCð2Þ*logðgdpÞþCð3Þ*logðgdpÞ*logðprÞg
þ fCð4Þ*logðgdpÞþCð5Þ*logðprÞþCð6Þ*logðgdpÞ*logðprÞg* t
þ ½arð1Þ ¼ Cð7Þ�

ð2:60Þ

Figure 2.52 Statistical results based on the model in (2.59)
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This model shows that the effect of the time t on the money supply, namely log

(m1), is significantly dependent on the values of the function

fCð4Þ*logðgdpÞþCð5Þ*logðprÞþCð6Þ*logðgdpÞ*logðprÞg ð2:61Þ
since each of the interactions t�log(gdp), t�log(pr) and t�log(gdp)�log(pr) has a
significant adjusted effect on log(m1).

Furthermore, note that the time t-variable could be considered as representing other

variables of the model that have significant positive correlations with t. &

2.10.5 Trigonometric growth models

The trigonometric growth models are derived from the trigonometric models pre-

sented in Thomopolous (1980, pp. 37–38). Three basic models are presented below.

The extensions of these models are their corresponding autoregressive models,

semilog growth model and translog growth models, as shown in the previous

subsections.

Furthermore, note that the following models are the specific or special forms of the

additive adjusted model in (2.43).

. The three-term growth model:

Yt ¼ Cð1ÞþCð2Þ*sinðv*tÞþCð3Þ*cosðv*tÞþmt ð2:62Þ
. The four-term growth model:

Yt ¼ Cð1ÞþCð2Þ*tþCð3Þ*sinðv*tÞþC4*cosðv*tÞþmt ð2:63Þ

Figure 2.53 Statistical results based on a reduced model of the model in Figure 2.48
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. The six-term growth model:

Yt ¼ Cð1ÞþCð2Þ*tþCð3Þ*sinðv*tÞþCð4Þ*cosðv*tÞ
þCð5Þ*sinð2*v*tÞþCð6Þ*cosð2*v*tÞþmt

ð2:64Þ

wherev¼ 2p/M andM is a cycle length. Note that sin(vt) has aminimumvalue of�1

and a maximum value of þ 1, with the average sin(vt)¼ 0. The same is true for cos

(vt).

2.11 Multivariate growth models

2.11.1 The classical multivariate growth model

The classicalmultivariate growthmodel, in fact, is a set or systemof the simple growth

models in (2.3). Hence, the following general system of equations is presented:

logðYgtÞ ¼ Cð1gÞþCð2gÞ*tþmgt; for g ¼ 1; 2; . . . ;G: ð2:65Þ

For time series data, the multivariate first-order autoregressive growth model, namely

MAR(1)_GM, will be considered, as follows:

logðYgtÞ ¼ Cðg1ÞþCðg2Þ*tþmgt

mgt ¼ rgmgðt�1Þ þ «gt for g ¼ 1; 2; . . . ;G
ð2:66Þ

Since this model has a set of dependent variables or a vector of dependent variables, it

is also called the first-order vector autoregressive (VAR)model. However, in EViews,

the term �VAR� is used to representing a special type ofmultivariate time seriesmodel,

so here it is proposed that the termMAR is used to represent the general multivariate

autoregressive model, where the VAR models are special cases of the MAR models.

The VAR models will be presented in Chapter 6.

Example 2.22. (The simplest bivariate AR(1) growth model) The simplest

bivariate AR(1) growth model using variables in the Demo_Modified workfile

considered is

lnðm1Þ ¼ Cð11ÞþCð12Þ*tþ ½arð1Þ ¼ Cð13Þ�
lnðgdpÞ ¼ Cð21ÞþCð22Þ*tþ ½arð1Þ ¼ Cð23Þ� ð2:67Þ

Note that double subscripts are used for the model parameters, namely C(ij), because

this makes it easier to produce modified models using the method presented in the

previous examples, especially for a large number of exogenous variables.

The process of analysis can be done as follows:

(1) After opening the workfile and click Object/New Object. . .; the window in

Figure 2.54 will then appear on the screen. By selecting the object �System� and
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clicking OK, the window space in Figure 2.55 can be seen, where the system

equations in (2.67) can be entered.

(2) Then click Estimate . . ., which gives the options in Figure 2.56 on the screen. In
this case, there are three possible selections of estimation methods: OLS, WLS

and SUR. The other options will be presented later.

(3) Figure 2.57 presents the statistical results using the iteration least squares (ILS)

estimation method. This table shows that the second regression has a small value

of the DW-statistic of 1.213 396. This model should therefore be modified by

using higher-order autoregressive model(s), producing the model presented in

Figure 2.58. It could be said that this model is a better bivariate growth model and

could be the best model in presenting the growth rate ofM1 and GDP as a basic

bivariate model.

However, further analysis should be done, residual analysis in particular, to study or

explore the limitation or weakness of the statistical results. For illustration purposes,

Figure 2.59 presents the residual box plots, as well as the residual graphs of themodel.

Figure 2.54 Type of new objects available in EViews 6

Figure 2.55 The input of the system equation in (2.67)
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Figure 2.56 The estimation method options for the system equation

Figure 2.57 Statistical results based on the model in (2.67)

Figure 2.58 Statistical results based on a modified model of (2.67)
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Refer to the characteristics of the box plots presented in Section 1.4.2. Note that both

the residual box plots and graphs indicate the existence of some outliers. Correspond-

ing to the problems of outliers, refer to the notes in Example 2.4. &

2.11.1.1 The WLS and SUR estimates

For a comparison study, Figure 2.60 presents two sets of statistical results based on the

same model in (2.67), by using the WLS and SUR estimation methods respectively.

Figure 2.59 (a) Residual box plots and (b) graphs of the model in Figure 2.53

Figure 2.60 Statistical results based on themodel in (2.67) by using the (a)WLS and (b) SUR

estimation methods
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Compared to the statistical results in Figure 2.57, using the ILS (iteration least

squares) estimation method, the following findings can be obtained:

(1) The parameter estimates using the ILS and WLS are equal, but they are different

from those using the SUR estimation method.

(2) The three estimation methods give different values of the standard error esti-

mates. Hence, they will present different values of the t-statistic.

2.11.1.2 Testing hypotheses

Corresponding to the model in (2.67), the univariate hypothesis may be tested as well

as the multivariate hypothesis, which can easily be tested using the Wald test, as

follows.

Univariate hypothesis
The hypothesis on the growth rate of each endogenous variableM1 andGDP, with the

null hypothesis H0: C(12)¼ 0 and H0: C(22)¼ 0 respectively; in other words, the

hypothesis on the effect of the time t on each of the endogenous variables log(M1) and

log(GDP).

Multivariate hypothesis

. The hypothesis on the effect of the time t on both endogenous variables, with the

null hypothesis H0: C(12)¼C(22)¼ 0.
. The hypothesis on whetherM1 and GDP have different growth rates, with the null

hypothesis H0: C(12)¼C(22).

2.11.2 Modified multivariate growth models

The previous example shows that a simple bivariate AR(1) growth model is not

appropriate for the variablesm1 and gdp. It is expected that, in most cases, the simple

models are not necessarily good models either. Hence, this subsection will present a

method showing how to modify a multivariate growth model. However, the trial-

and-error methods should be used.

Example 2.23. (A modified bivariate growth model) Since the result above

shows that the second regression has a DW-statistic of 1.2, then by �rule of thumb� an
attempt should bemade tomodify the second regression by using the lagged variable

log(gdp(�1)). It happens that an acceptable model can be obtained directly, in a

statistical sense. To modify the model, the following steps should be used:
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(1) ClickView/Systemspecification . . . and then enter the following systemequations:

logðm1Þ ¼ cð11Þþ cð12Þ*tþ ½arð1Þ ¼ cð13Þ�
logðgdpÞ ¼ cð21Þþ cð22Þ*tþ cð23Þ*logðgdpð�1ÞÞþ ½arð1Þ ¼ cð24Þ�

ð2:68Þ

(2) Click Estimate . . .; three alternative options then appear on the screen, as

mentioned above. Select the OLS option and then click OK. This gives the

statistical results in Figure 2.61, which presents an acceptable model based on the

DW-statistic, as well as the t-statistic of each independent variable. &

Example 2.24. (A case of polynomial bivariate AR(1) growth models) Figure

2.62 presents the residual graphs of the system equations

logðprÞ ¼ cð11Þþ cð12Þ*tþ ½arð1Þ ¼ cð13Þ�
logðrsÞ ¼ cð21Þþ cð22Þ*tþ cð23Þ*t2 þ ½arð1Þ ¼ cð24Þ� ð2:69Þ

Figure 2.61 Statistical results based on a modified model in (2.68)

Figure 2.62 Residual graphs of the bivariate growth model in (2.69)
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Here, a quadratic model is used in the time t for the dependent variable RS, which is

supported by its growth curve, presented in Figure 1.24.

The statistical results show that both models have small values of DW-statistics

(refer to the special notes in the previous example) and the residual plot of the first

regression in Figure 2.62 gives a strong indication that a higher-order of autore-

gressive coefficients should be used. Hence, an attempt should bemade to find a better

fit growth model for each of the variables PR and RS. Refer to the following

examples. &

Example 2.25. (Higher-order autoregressive bivariate bodel) Note that the

residual plot of log(pr) in the previous example shows that a higher-order autoreg-

ressive model should be used. On the other hand, the residual plot of log(rs) is not very

clear after using a higher-order autoregressive model.

After doing several exercises, an acceptable model was found with the statistical

results presented in Figure 2.63 and its residual graph in Figure 2.64.

Figure 2.63 Higher-order autoregressive bivariate model of the model in (2.69)

Figure 2.64 Residual graphs of the regression in Figure 2.63
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Based on this result, the following notes and conclusions are presented:

(1) The first equation of the bivariate growth model is an AR(2) model with a linear

trend and the second is an AR(4) model with a quadratic trend. The bivariate

model has the following equation:

logðprtÞ ¼ cð11Þþcð12Þ*tþ½arð1Þ¼ cð13Þ;arð2Þ¼ cð14Þ�þ«1t
logðrstÞ ¼ cð21Þþcð22Þ*tþcð23Þ*t2

þ½arð1Þ¼ cð24Þ;arð2Þ¼ cð25Þ;arð3Þ¼ cð26Þ;arð4Þ¼ cð27Þ�þ«2t

ð2:70Þ

(2) Each of the autocorrelations or serial correlations is significant,which is indicated

by the p-values of the t-statistics, corresponding to the parameters c(13), c(14),

c(24), c(25), c(26) and c(27).

(3) The adjusted exponential growth rate of pr (¼ 1.21%) is significant.

(4) The endogenous variable rs has a significant quadratic growth rate with a very

small p-value¼ 0.0000.

(5) Compared to the AR(1) model in the previous example, the residual graphs of

this model show that it is a better model, with DW-statistics of 2.49 and 2.02

respectively. However, the residual graphs show the pattern of heteroskedas-

ticity. Therefore, is suggested that the WLS, White or Newey–West estimation

methods should be applied, or perhaps other modified model(s). Do this as an

exercise. &

Example 2.26. (Lagged-variable autoregressive bivariate growth model) Fig-

ure 2.65 presents the statistical results based on a lagged-variable autoregressive

bivariate growth model, say an LVAR(1,q) bivariate growth model, which can be

considered as an alternative model of the models in the previous example.

Figure 2.65 Statistical results based on an LVAR(1, q) bivariate growth model, by using the

iterative least squares estimation method of the model in (2.77)
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Note that the equation of the bivariate model can easily be written based on the

output. The following notes and conclusions can bemade based on the results given in

the figure:

(1) The first regression is an LVAR(1,1)_GMof the variablePR. At a significant level

of a¼ 0.10, the time t has a significant positive linear effect on log(pr), based on

the t-statistic with a p-value¼ 0.1464/2¼ 0.0732 <a¼ 0.10. In other words, it

could be said that the slope of log(PR) with respect to the time t is significantly

positive at 0.000 357 or thatPR has a significantly positive growth rate at 0.0357%

during the observation time period.

(2) On the other hand, the second regression is an LVAR(1,2) quadratic growthmodel

of the variable RS, where the time t2 has a significantly negative effect on log(rs),

based on the t-statistic with a p-value¼ 0.0107/2¼ 0.005 35 <a¼ 0.01. There-

fore, it can be concluded that the growth rate of the series RS is significantly

dependent on the time t. Based on the regression function in Figure 2.65 gives the

result q log(rs)/qt¼ 0.005 81 þ 2(�2.50e� 05)t, which indicates that the ad-

justed effect of the time t on log(rs) is dependent on t. By looking at the growth

curve of the time series RS in Figure 1.24, it is very clear that log(rs) and t have a

nonlinear relationship. Other alternative model(s) using the series RS will be

presented in the following chapter.

(3) For a comparison, the statistical results can also be obtained by using other

estimation methods, such as the weighted least squares and seemingly unrelated

regression. Do this as an exercise. &

2.11.3 AR(1) multivariate general growth models

As an extension of the classical exponential multivarite growth model in (2.66), a

general multivariate AR(1) growth model should have the following equation:

logðYgtÞ ¼
XK
k¼1

CðgkÞ*Xgk

( )
þRg*tþmgt

mgt ¼ rgmgðt�1Þ þ «gt

ð2:71Þ

where Xg1, Xg2, . . . , XgK are multivariate independent or cause variables with Xg1¼ 1

for all g andRg is the adjusted growth rate of the endogenous variable Yg or the trend

(time) effect. Note that the sets of exogenous variables { Xg1, Xg2, . . . , Xgk} could be

unequal sets of any types of variables for all g¼ 1, . . . , G.
This time seriesmodel can be called a first-order autoregressivemutivariatemodel

with trend, namely MAR(1)_T.

Note that even though the time t-variable is a discrete variable, its corresponding

regression functions should be considered as differentiable functions with respect to

time t for each g. Under the assumption that all exogenous variables are numerical

variables, this model and all models presented in this chapter should be considered

as continuous growth models, because their corresponding estimated regression
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functions would give the following partial derivatives:

q logðŶgÞ
qXgk

¼ ĈðgkÞ and
q logðŶgÞ

qt
¼ R̂g ð2:72Þ

with finite or fixed values for each g¼ 1,2, . . . , G and k¼ 1,2, . . . , K.

2.11.4 The S-shape multivariate AR(1) general growth models

A further extension of the classical exponential growth model is an S-shape AR(1)

multivariate growthmodel, which can be easily derived from themodel in (2.71). The

system of bounded growth models has the following general equation:

log
Ygt�Lg

Ug�Ygt

0
@

1
A ¼

XK
k¼1

CðgkÞ*Xgk

( )
þRg*tþmgt

mgt ¼ rgmgðt�1Þ þ «gt for g ¼ 1; 2; . . . ;G

ð2:73Þ

where Xg1, Xg2, . . . , XgK are multivariate independent or cause variables with Xg1¼ 1

for all g, Lg and Ug are lower and upper bounds of all possible values of the random

variable Yg respectively andRg is the adjusted growth rate of the respond variable Yg.

The values of Lg and Ug should be subjectively selected by researchers.

Further extension of the ARmultivariate growth models in (2.71) and (2.73) could

easily be developed, such as the translog growth models, the polynomial growth

models and the growth models using interaction factors between the X-variables, as

well as between the t-variable and the X-variables.

2.12 Multivariate AR(p) GLM with trend

Note that the model in (2.71) can also be considered as a multivariate AR(1) model

with trend, namely MAR(1)_T. As an extension of this model, a more general

multivariate autoregressive model with trend, namely MAR(p)_T, could be consid-

ered, as follows:

Ygt ¼
XK
k¼1

CðgkÞ*Xgk

( )
g þRg*tþmgt ð2:74Þ

mgt ¼ rg1mgðt�1Þ þ � � � þ rgpmgðt�pÞ þ «gt

where Ygt can be the original or any transformed endogenous variables, such as in the

bounded growthmodel in (2.36), and the set of exogenous variables {Xgk} for all g and

k could be the pure exogenous variables, other endogenous variables, their lagged

variables and their interactions as well as their power.

Note that this model could be extended by using the transformation or function of

the time t, such as log(t), f(t)¼ (t� d)(t� u)2 for selected fixed values of d and u as

presented in the model in (2.36), and other functions of t, which does not have a

parameter. Furthermore, refer to the general models in (2.44) and (2.45).
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On the other hand, also note that the time t-variable can be considered as

representing technology improvement, as well as other variables of the system

in (2.74) that have a high or significant positive correlation with the time t.

Example 2.27. (A bivariate model with trend) This example presents an illus-

trative general method on how towrite or input the equation specification in order to

obtain statistical results based on a model either in (2.66), (2.71) or (2.74). For a

bivariate AR(1) model with trend in (2.74), the following equation specification

should be used or entered:

y1 ¼ cð11Þþ cð12Þ*tþ cð13Þ*x11þ . . . þ cð1kÞ*x1kþ ½arð1Þ ¼ cð1Þ�
y2 ¼ cð21Þþ cð22Þ*tþ cð23Þ*x21þ . . . þ cð2kÞ*x2kþ ½arð1Þ ¼ cð2Þ� ð2:75Þ

Hence, based on the estimated regression function, the following partial derivatives

are found:

qŷ1
qt

¼ ĉð12Þ and
qŷ2
qt

¼ ĉð21Þ ð2:76Þ

Note that, if log(y1) and log(y2) are used instead of y1 and y2 as dependent variables,

then a bivariate growthmodel is obtained. Then the partial derivatives in (2.76) can be

considered as the adjusted exponential growth rates of y1 and y2 respectively. &

Example 2.28. (Lagged-variable AR(1) bivariate model with trend) Based on

the data set inDemo.wf1, for an empirical example the lagged-variable autoregressive

bivariate model with trend is considered, which has the path diagram presented in

Figure 2.66.

Based on this theoretical proposed path diagram, the equations of a bivariatemodel

with trend are as follows:

m1t ¼ cð11Þþ cð12Þ*tþ cð13Þ*m1t�1 þ cð14Þ*gdpt þCð15Þ*gdpt�1 þm1t
gdpt ¼ cð21Þþ cð22Þ*tþ cð23Þ*m1t�1 þ cð14Þ*gdpt�1 þm2t

ð2:77Þ

Figure 2.66 Path diagram of the endogenous and exogenous variables

80 Time Series Data Analysis Using EViews

www.trading-software-collection.com



Note that this path diagram is presented under the following assumptions:

(1) The exogenous variables m1t�1, gdpt and gdpt�1 have direct effects on the

endogenous variablem1t. However, note that the statement �direct effect�may not

indicate a pure causal effect, but a relationship between an independent or source

variable and a dependent or downstream variable.

(2) Considering gdpt as an endogenous variable in the second equation, the exoge-

nous variables m1t�1 and gdpt�1 have direct effects on gdpt.

(3) Even though the time t-variable cannot be considered as a cause factor, the arrows

with broken lines from t to both endogenous variables,m1t and gdpt, are used to

represent the trend effects.

(4) Since gdpt is assumed to be a source factor of m1t, note that the relationships

between m1t�1and gdpt�1 should exist. However, their relationship is not taken

into account in this bivariate model.

By doing some experimentation, a lagged-variable AR(1) bivariate model was found

as the first full model that should be presented, with its statistical results presented in

Figure 2.67. Since several exogenous variables have insignificant adjusted effects,

further analysis should be done to develop a reduced model.

By deleting either gdpt or gdpt�1 from the first equation and deleting m1t�1 from

the second equation, there would be two alternative acceptable reduced models, in a

statistical sense. However, for illustration purposes, gdpt should be kept as a source

factor ofm1t in the first equation, because the second equationwill represent gdpt�1 as

the cause factor of gdpt. The statistical results are presented in Figure 2.68.

Note that based on the results presented in Figures 2.67 and 2.68, it is easy to write

the corresponding regression functions, as well as their models.

In relation to the bivariate model presented in Figure 2.68, the path diagram

presented in Figure 2.69 is obtained. Furthermore, based on the p-values of the

t-statistics, the following notes and conclusions are given:

(1) At the level of significance a¼ 0.05 and gdpt has a significant positive effect on

m1t, based on the p-value¼ 0.0815/2¼ 0.040 75.

Figure 2.67 Statistical results based on an AR(1) model in (2.77)
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(2) The time t has an insignificant effect onm1t, but it has a significant effect on gdpt.

Corresponding to this condition, the effect of the time t on the bivariate (m1t,

gdpt) can be tested using the Wald test. To continue further, the null multivariate

hypothesis H0:c(14)¼ c(23)¼ 0 is rejected, based on the chi-squared-statistic of

18.240 96 with df¼ 2 and the p-value¼ 0.0001. Hence it can be concluded that

the time t has a significant effect on the endogenous bivariate (m1t, gdpt).

(3) Through gdpt, gdpt�1 has a significant positive indirect effect on m1t.

(4) The relationship between gdpt�1 andm1t�1 is not presented in the diagram, but it

could be said that their relationship has been represented by the causal relation-

ship between the two endogenous variables gdpt and m1t. &

Example 2.29. (An advanced bivariate model with trend) This example and

some of the following examples will demonstrate alternative bivariate or trivariate

linear models based on the three variables,m1t, gdpt and prt, in Demo.wf1. Since their

lagged variables and the time t could also be used in the model, and by considering

their possible causal relationships, many multivariate models with trends could be

obtained. Many of those models could be acceptable models, in a statistical sense.

Figure 2.68 Statistical results based on a reduced model of the model in Figure 2.67

Figure 2.69 Path diagram of the bivariate regression function in Figure 2.68
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For illustrative purposes, supposed that the following bivariate AR(2) model with

trend exists:

m1t ¼ cð11Þþ cð12Þ*tþ cð13Þ*m1t�1 þ cð14Þ*gdpt
þ cð15Þ*prt þ cð16Þ*prt�1 þm1t

m1t ¼ r11m1t�1 þ r12m1t�2 þ «1t
gdpt ¼ cð21Þþ cð22Þ*tþ cð23Þ*m1t þ cð24Þ*gdpt�1

þ cð25Þ*prt þ cð26Þ*prt�1 þm2t
m2t ¼ r21m2t�1 þ r12m2t�2 þ «2t

ð2:78Þ

In most cases, it has been recognized that an analyst would directly apply her/his

proposed or defined model without considering or discussing the limitations or

assumptions of the model, including the basic assumptions. For the first stage of this

discussion, the model in (2.78) is applied directly. This would give the statistical

results in Figure 2.70, with their residual graphs in Figure 2.71.

Based on this model, several independent variables have insignificant adjusted

effects. In general, an attempt would bemade to obtain a reduced acceptablemodel by

deleting the independent variables having large p-values.

Figure 2.70 Statistical results based on model with trend in (2.78)

Figure 2.71 Residual graphs of the regressions in Figure 2.70

Continuous Growth Models 83

www.trading-software-collection.com



Here, however, experimentation has been done to obtain other types of reduced

models. A reduced model was found by deleting the indicator ar(2) from both

regressions, even though ar(2)¼ r12 has a significant effect on the first regression.

Based on the statistical results in Figure 2.72, this AR(1) bivariate model could be

consideredasanacceptablemodel, in a statistical sense, but it certainlywouldnotbe the

bestmodel. This reducedmodelwould be considered as an unexpected reducedmodel.

Note that the important findings based on this model are the statistical results

showing that gdpt has a significant adjusted effect onmt, based on the first regression,

and mt also has a significant adjusted effect on gdpt, based on the second regression.

Hence, based on this bivariate model, it may be concluded that mt and gdpt have

simultaneous causal relationships. However, in practice, a simultaneous causality

between a pair of variables should have been defined based on a theoretical basis,

before doing the testing hypothesis.

On the other hand, even though the time t has insignificant effects onmt and gdpt, it

is still kept in the model because there is a need to present the model with trend. If the

time t is deleted, this would give a reduced model, which will be discussed and

presented in Chapter 4.

Furthermore, note that the statistical results in Figure 2.72 are obtained by using the

WLS (weighted least squares) estimation method, because the residual graphs

indicate that the error terms of the bivariate model in (2.78) are heterogeneous.

To test an hypothesis by using the t-statistic presented in the printout, other

hypotheses could be tested for each or both of the endogenous variablesmt and gdptby

using the Wald tests. The following hypotheses are given as examples:

(i) Univariate Hypotheses

(1) The effects of all exogenous variables, t,m1t�1, gdpt, prt and prt�1, as well as

the indicator AR(1) on the endogenous variablem1t, can be tested by entering

the equation c(12)¼ c(13)¼ c(14)¼ c(15)¼ c(16)¼ c(17)¼ 0. The null

Figure 2.72 Statistical results based on the unexpected reduced model of (2.78) by using the

WLS estimation method
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hypothesis is rejected based on the chi-squared-statistic of 263 316.3 with

df¼ 6 and the p-value¼ 0.0000.

(2) The joint effects of (prt, prt�1) on the univariatemt can be tested by entering

the equation c(15)¼ c(16)¼ 0. The null hypothesis is rejected based on the

chi-square-statistic of 20.431 86 with df¼ 2 and the p-value¼ 0.0000.

(ii) Multivariate Hypotheses

(1) The adjusted effect of time t on the bivariate (m1t, gdpt) can be tested by

entering the equation c(12)¼ c(22)¼ 0. The null hypothesis is accepted

based on the chi-squared-statistic of 1.799 027 with df¼ 2 and the

p-value¼ 0.4086.

(2) The adjusted joint effects of (prt, prt�1) on the bivariate (m1t, gdpt) can be

tested by entering the equation c(15)¼ c(16)¼ c(25)¼ c(26)¼ 0. The null

hypothesis is rejected based on the chi-squared-statistic of 37.292 03 with

df¼ 4 and the p-value¼ 0.0000. &

Example 2.30. (Residual analysis) This example presents an illustrative residual

analysis based on the bivariate model presented in Figure 2.72. The main objective of

the residual analysis is to find out the limitation of the model. For further information

on the residual analysis refer to the notes and comments presented in Section 2.14.

In order to do the residual analysis in detail, first the observed error terms of both

regressions should be generated, using the following steps.

(1) With themodel or the statistical results on the screen, clickProc/Make Residuals,

which brings up the options in Figure 2.73 on the screen.

Figure 2.73 The options for making residuals
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(2) Then by clicking OK, both residual variables will be obtained on the screen,

namelyResid 01 andResid 02.On the other hand, other symbolsmaybeused as the

base-name for residuals, for example �E�, giving two series of residuals, namely

E1¼Resid 01 and E2¼Resid 02. For illustrative purposes, based on these two

residuals, E1 and E2, the following residual analysis could be performed.

(3) After presenting the variables E1 and E2 on the screen, click View/Descriptive

stat/Common Samples, giving the descriptive statistics in Figure 2.74. These

results show that the average (mean) values of both residuals are very close to

zero. However, the normality assumption of each residual is rejected based on the

Jarque–Bera test. Refer to the notes and comments in Section 2.14.

(4) In order to analyze each residue, first only one residue is shown on the screen, for

example E1:
. By selecting View/Correlogram/Level . . . , the correlogram of the residual E1

in Figure 2.75 is obtained. This figure shows that the null hypothesis of no first-

Figure 2.74 Descriptive statistics for both residuals, E1 and E2

Figure 2.75 Correlogram of E1
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order autocorrelation is accepted based on the Q-statistic with a

p-value¼ 0.770.
. By selecting View/Unit Root Test/Augmented Dickey-Fuller Test/Level . . . ,
the unit root test in Figure 2.76 is obtained,which shows that the null hypothesis

E1 has a unit root, but is rejected based on the t-statistic with a

p-value¼ 0.0000.

(5) The first autocorrelation of the residual E1 could also be tested by using a simple

linear regression of E1(�1)¼E1t�1 on E1t. Then t0¼�0.294 250 with a

p-value¼ 0.7689.

(6) Besides using the Jarque–Bera test for the normality of each residual, the

empirical distribution of E1 can also be tested by selecting View/Descriptive

Statistics and Tests, giving the options in Figure 2.77. Then by clicking the

option Empirical Distribution Tests . . . , the options in Figure 2.78 are

obtained.

(7) By entering m¼ 0 without a value of s, the statistical results in Figure 2.79 are

obtained. Note that this table presents three statistics, namely W2, U2 and A2,

with p-values < 0.0025 and a statistic SGMAwith a p-value¼ 0.0000. Therefore,

the data do not support the empirical normal distribution of E1. &

Figure 2.76 A unit root test for E1

Figure 2.77 Options of descriptive statistics and tests
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2.12.1 Kernel density and theoretical distribution

By selecting View/Graph . . . the list of graph options in Figure 2.80 is obtained. Then
select Distribution/Kernel Density and click �Options� in order to find the options for
the kernel density, as presented in the window on the right box below. Figure 2.81

presents two selected graphs of the residual E1, namely the kernel density and its

theoretical distribution. Note that there are many alternative graphs that can be

Figure 2.78 Options of the EDF test

Figure 2.79 The empirical normal distribution tests for E1.
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presented, but it is very difficult to select the graph that could be considered as the best

one. Refer to the special notes and comments presented in Section 2.14.

Example 2.31. (Path diagram of the model in (2.78)) Tostudy the limitationor the

characteristicsof themodel in(2.78),aswellasothermultivariategeneral linearmodels,

it is necessary to look at its path diagram.Corresponding to themodel in (2.78), the path

diagramorcausalrelationshipsbetweentheendogenousandexogenousvariablesshould

be developed, as presented in Figure 2.82.

This diagram is constructed under the following conditions and assumptions:

(1) The endogenous variables m1t and gdgt have simultaneous causal effects,

because these variables have double status, endogenous and exogenous variables,

as presented in the equation of the bivariate model in (2.78).

(2) The first regression in (2.78) is an additive model of the independent variables t,

m1t�1, gdpt, prt and prt�1. Hence, these independent or exogenous variables

could be considered as cause, source or explanatory variables of the endogenous

variable m1t. These relationships could be represented by an arrow from each

Figure 2.80 The kernel density options

Figure 2.81 Kernel density with (a) normal bandwidth and (b) theoretical distribution of the

residual E1
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source variable to the endogenous or downstream variables. The same applies for

the second regression.

(3) Variables t, prt and prt�1 are considered as pure exogenous variables. Corre-

sponding to these variables, several questions could be raised about their

relationships. These should be considered as the limitations of the proposed

model in (2.78). One of the questions is related to the status of the lagged variable

prt�1 and whether it could have a direct effect onmt and gdpt or an indirect effect

through prt. It is probable that it would have an indirect effect. Find the result in

the following example.

(4) The model in (2.78), as well as in Figure 2.82, does not take into account the

possible causal effects between the pure exogenous or independent variables t,

prt, prt�1,m1t�1 and gdpt�1. However, the bivariate correlations, as well as their

multicollinearity, should be taken into account in the estimation process.

(5) Note that the relationships between the lagged variables prt�1,m1t�1 and gdpt�1

should have been presented by the causal relationships between prt, m1t and

gdpt. &

Example 2.32. (A modified path diagram and trivariate model) Corresponding

to the path diagram in Figure 2.82, a modified path diagram may be considered, as

presented in Figure 2.83.

Figure 2.82 Path diagram of the endogenous and exogenous variables of the model in (2.78)

Figure 2.83 A modified path diagram in Figure 2.82

90 Time Series Data Analysis Using EViews

www.trading-software-collection.com



Based on this diagram, and the unexpected reduced model presented in Exam-

ple 2.30, the following trivariatemodelwould be obtained as an acceptablemodel, in a

statistical sense:

m1t ¼ cð11Þþ cð12Þ*tþ cð13Þ*m1t�1 þ cð14Þ*gdpt
þ cð15Þ*prt þ cð16Þ*prt�1 þm1t

m1t ¼ r11m1t�1 þ «1t

gdpt ¼ cð21Þþ cð22Þ*tþ cð23Þ*m1þ cð24Þ*gdpt�1

þ cð25Þ*prt þ cð26Þ*prt�1 þm2t

m2t ¼ r21m2t�1 þ «2t

prt ¼ cð31Þþ cð32Þ*prt�1 þm3t

m3t ¼ r31m3t�1 þ r32m3t�2 þ «3t

ð2:79Þ

By using the WLS estimation method, the statistical results of the model in (2.79),

presented in Figure 2.84, show that prt�1 has a significant positive effect on prt and the

partial autocorrelations r31 and r32 are significantly positive. For illustrative pur-

poses, the statistical results found by using the SUR estimation method are presented

in Figure 2.84. Note that the indicator ar(1) corresponding to C(17), in the first

regression, is insignificant with a p-value¼ 0.3017. Therefore, this may be a reduced

model. Do this as an exercise. &

Example 2.33. (Further modified path diagram and trivariate model) Based on

the path diagram in Figure 2.83, a further modified path diagram could be obtained, as

presented in Figure 2.85.

Figure 2.84 Statistical results based on the model in (2.79)
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Then corresponding to this path diagram, there would be three autoregressive

univariate linear regressions with trend, as follows:

m1t ¼ cð11Þþ cð12Þ*tþ cð13Þ*m1t�1 þ cð14Þ*gdpt
þ cð15Þ*prt þm1t

m1t ¼ r11m1t�1 þ «1t

gdpt ¼ cð21Þþ cð22Þ*tþ cð23Þ*m1þ cð24Þ*gdpt�1

þ cð25Þ*prt þm2t

m2t ¼ r21m2t�1 þ «2t

prt ¼ cð31Þþ cð32Þ*tþ cð33Þ*prt�1 þm3t

m3t ¼ r31m3t�1 þ r32m3t�2 þ «3t

ð2:80Þ

By using the WLS estimation method, at a level of significance of a¼ 0.05, the

statistical results of the model in (2.80) show that the time t and prt�1 have significant

positive effects on prt, and the partial autocorrelations r31 and r32 are significantly
positive. Hence this model can be considered as an acceptable model with trend, in a

statistical sense.

As a further study, thought should be given to the possible effects of the lagged

variablesm1t�1 and gdpt�1 on prt. For this reason anothermodified trivariatemodel is

presented in the following example. &

Example 2.34. (Another modified path diagram and trivariate model) Based on

the path diagram inFigure 2.85, anothermodified path diagramcould be as pre- sented

in Figure 2.86.

Figure 2.85 A modified path diagram in Figure 2.83
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Corresponding to this path diagram, there would be three univariate autoregressive

linear regressions with trend, as follows:

m1t ¼ cð11Þþ cð12Þ*tþ cð13Þ*m1t�1 þ cð14Þ*gdpt
þ cð15Þ*prt þm1t

m1t ¼ r11m1t�1 þ «1t

gdpt ¼ cð21Þþ cð22Þ*tþ cð23Þ*m1t þ cð24Þ*gdpt�1

þ cð25Þ*prt þm2t

m2t ¼ r21m2t�1 þ «2t

prt ¼ cð31Þþ cð32Þ*tþ cð33Þ*prt�1 þ cð34Þ*m1t�1

þ cð35Þ*gdpt�1 þm3t

m3t ¼ r31m3t�1 þ r32m3t�2 þ «3t

ð2:81Þ

However, the statistical results based on this model show that each of the lagged

variables, m1t�1 and gdpt�1, has an insignificant adjusted effect on prt with large p-

values of 0.7864 and 0.8487 respectively. The joint effects ofm1t�1 and gdpt�1 on prt
also have an insignificant effect, based on the chi-squared-statistic of 0.097 395 with

df¼ 2 and the p-value¼ 0.9525.

Based on these findings, it can be concluded that the model in (2.81) is not an

acceptable model, in a statistical sense. Considering the autoregressive trivariate

modelswith trends presented in the last three examples, it could be said that themodel

in (2.80) is the best model. Note that the model in (2.80) consists of three additive

multiple regression models.

Based on the same Figure 2.85, a trivariate model having a two-way interaction

factor(s) might be considered, as presented in the following illustrative example. &

Figure 2.86 A modified path diagram in Figure 2.85
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Example 2.35. (A trivariate model with interaction factors) Based on the path

diagram in Figure 2.85, a trivariatemodel with interaction factors could be applied, as

follows:

m1t ¼ cð11Þþ cð12Þ*tþ cð13Þ*m1t�1 þ cð14Þ*gdpt
þ cð15Þ*prt þ cð16Þ*gdpt*prt þm1t

m1t ¼ r11m1t�1 þ «1t
gdpt ¼ cð21Þþ cð22Þ*tþ cð23Þ*m1t þ cð24Þ*gdpt�1

þ cð25Þ*prt þ cð26Þ*m1t*prt þm2t
m2t ¼ r21m2t�1 þ «2t
prt ¼ cð31Þþ cð32Þ*tþ cð33Þ*prt�1 þm3t
m3t ¼ r31m3t�1 þ r32m3t�2 þ «3t

ð2:82Þ

Byusing theWLSestimationmethod, statistical results are obtained that show that the

interaction factor gdpt
�prt has an insignificant adjusted effect on m1t based on the t-

test with a p-value¼ 0.5786; the interaction factor mt
�prt also has an insignificant

adjusted effect on gdpt with a p-value¼ 0.8330.

However, by deleting themain factorprt from thefirst two regressions, an acceptable

reduced model with interaction factors is obtained, as presented in Figure 2.87. Based

on this figure, the following notes and conclusions could be presented:

(1) At the level of significance of a¼ 0.10, the interaction factor gdpt
�prt has a

significant negative effect onm1t, based on the t-statistic of t0¼�1.458 799with

a p-value¼ 0.1452/2 ¼ 0.0726 <a¼ 0.10. The interaction factor m1t
�prt has a

significant negative effect on gdpt, based on the t-statistic of t0¼�2.590 473

with a p-value¼ 0.0099/2¼ 0.004 95.

(2) By using theWald test, a conclusion can bemade that the time t has an insignificant

effect on the trivariate (m1t, gdpt, prt), based on the chi-squared-statistic of

3.330 221with df¼ 3 and a p-value¼ 0.3474. Since, at the level of significance of

Figure 2.87 Statistical results based on a reducedmodel of the autoregressivemodel in (2.82)
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a¼ 0.10 the time t has a significant adjusted effect on prt, the time t can be deleted

from the first two regression models to obtain a second reduced model. Do this as

an exercise. However, if the time t is deleted from the first two regressions, then a

model with the path diagram presented in Figure 2.88 would be obtained.

Note that, in this case, the time t could be considered to have indirect effects on both

time seriesm1t andgdptgoing through the seriespr. Furthermore, note that the effect of

the time t in the system could be considered to represent the effect(s) of variables out of

the system, which are highly or significantly positively correlated with the time t.&

2.13 Generalized multivariate models with trend

As an extension of themodels based on three time seriesm1t, gdpt and prt presented in

the previous section, here a set of six variables is considered: three exogenous

variables,X1,X2 andX3, two endogenous variables, Y1 and Y2, and the time t-variable.

The main objective of using the symbols X and Y for the variables is to present

illustrative models that would, in general, be applicable for various fields. Hence the

data used for the illustration should be considered as a hypothetical data set. Note that

the X and Y variables could be the original observable/measurable variables or their

transformations, such as the logarithmic and exponential transformations, the first

difference dYt¼ Yt� Yt�1 and d log(Yt)¼ log(Yt)� log(Yt�1)¼Rt, as well as the

interactions between selected main factors or variables.

For illustrative purposes, Figure 2.89 presents a hypothetical path diagram of the

six selected variables. Note that in this diagram there could be four downstream or

dependent variables, which are Y1, Y2, X1 and X3, because the arrows are directed to

these four variables. Hence, there would be a system of four multiple linear

regressions, starting from the simplest or autoregressive multivariate additive model.

2.13.1 The simplest multivariate autoregressive model

Corresponding to the path diagram in Figure 2.89, the simplest multivariate auto-

regressive (MAR) linear model is defined as a set of four autoregressive additive

regression models. Other authors use the name VAR (i.e. vector autoregressive) for

Figure 2.88 A reduced model path diagram of model (2.82)
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the model. Since EViews uses the symbol or term �VAR� for a special function or

estimation method to present a special multivariate time series model, then the term

�MAR�will be used to present the general multivariate autoregressive model, and the

VARmodel is a special case of the MARmodel. The VARmodel will be presented in

Chapter 6.

In order to perform the data analysis based on this MAR additive model, the

following equation specification should be used:

y1 ¼ cð11Þþ cð12Þ*tþ cð13Þ*y2þ cð14Þ*x1þ ½arð1Þ ¼ cð15Þ; . . .�
y2 ¼ cð21Þþ cð22Þ*x1þ cð23Þ*x2þ ½arð1Þ ¼ cð24Þ; . . .�
x1 ¼ cð31Þþ cð32Þ*x2þ cð33Þ*x3þ ½arð1Þ ¼ cð34Þ; . . .�
x3 ¼ cð41Þþ cð42Þ*x2þ ½arð1Þ ¼ cð43Þ; . . .�

ð2:83Þ

This model can also be considered as an autoregressive structural equation model

(AR_SEM), specifically the simplest AR_SEM, that does not contain an interaction

factor as an independent variable.

In relation to the independent variable of the time t in the first regression, it could

also be used as an additional independent variable of the other regressions, if it is

considered relevant (see the previous examples). Furthermore, note again that the time

t could be considered as representing other variables out of the system equations that

are highly or significantly linearly correlated with the time t.

Example 2.36. (Experimentation based on the model in (2.83)) Figure 2.90 pre-

sents the statistical results of amultivariateAR(1)model in (2.83). The equation of the

regression functions can easily be written based on the printout, so will not be pres-

ented again. Those equations can easily be obtained by clickingView/Representations.

Even though some of the independent variables have insignificant adjusted effects

with large p-values, this will not be considered as a problem. It is common for some of

the independent variables to have insignificant adjusted effects if a model has several

Figure 2.89 A hypothetical path diagram
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or many independent variables. However, alternative reduced models can be devel-

oped if required. Do this as an exercise.

Other problems that should be considered are related to the error terms. Figure 2.91

presents the residual graphs of the four regression functions in Figure 2.92. These

graphs, especially the X3 residual graph, show the heterogeneity of the error terms.

Therefore, it is suggested that the WLS estimation method should be used or applied

instead of the OLS method. On the other hand, tests can be conducted on residuals in

order to identify the limitation of the model, which have been presented in the

previous examples. &

Figure 2.90 Statistical results based on the multivariate AR(1) model in (2.83), using an

hypothetical data set

Figure 2.91 Statistical results based on amodifiedmodel (2.83), using an hypothetical data set
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Example 2.37. (Other modified models of the model in (2.83)) Another modified

model of the model in (2.83) is the lagged variable multivariate additive model,

namely the LV_M model. Figure 2.93 presents statistical results based on an acce-

ptable LV_M model, where each regression has a good value of the DW-statistic.

Furthermore, the LV_M model could be used with autoregressive errors.

Figure 2.92 Residual graphs of the four regressions in Figure 2.91

Figure 2.93 Statistical results based on a lagged-variable multivariate additive model
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Based on the residual graphs in Figure 2.94, the following notes and conclusions

can be presented:

(1) The estimated values of the error terms are very large. It is suggested that the

logarithmic transformation should be used. Themodel of the tanslog linearmodel

would certainly give amuch smaller estimated value of the error terms. However,

here the result will not be presented.

(2) The residual graphs also show the heterogeneity of the error terms. To overcome

this problem it is suggested that the ARCH (i.e.autoregressive conditional

heteroskedasticity) model(s) should be used. The ARCH models will be pre-

sented in Chapter 8.

(3) Note that these residual graphs, specifically the residual graph of Y2 andX1, also

show the existence of a breakpoint or an outlier. By looking at the observed

values of the endogenous variable, Y2, the breakpoint(s) can be identified. Do

this as an exercise. Based on those findings, a dummy variable of the time t

should be used as an additional dependent variable. However, the model with

dummy variable(s) will be presented in Chapter 3.

(4) On the other hand, if there is one outlier or more, the outliers should be handled as

suggested in Example 2.4. &

Figure 2.94 Residual graphs of the additive model in Figure 2.93
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2.13.2 Multivariate autoregressive model with two-way interactions

In fact, a two-way interaction model has been presented in Example 2.35. In this

subsection, general two-way interactionmultivariatemodels are considered, based on

the path diagram in Figure 2.89. Two types of two-way interaction models will be

presented.

The first type is constructed based on the model in (2.83) by adding the two-way

interaction factor(s) of the independent variables within each regression, except the

time t. Therefore, the following equation specification is obtained:

y1 ¼ cð11Þþcð12Þ*tþcð13Þ*y2þcð14Þ*x1þcð15Þ*y2*x1þ½arð1Þ ¼ cð16Þ; . . .�
y2 ¼ cð21Þþcð22Þ*x1þcð23Þ*x2þcð24Þ*x1*x2þ½arð1Þ ¼ cð24Þ; . . .�
x1 ¼ cð31Þþcð32Þ*x2þcð33Þ*x3þcð34Þ*x2*x3þ½arð1Þ ¼ cð35Þ; . . .�
x3 ¼ cð41Þþcð42Þ*x2þ½arð1Þ ¼ cð43Þ; . . .�

ð2:84Þ

For the second type, each of the other exogenous variables are considered that have

an indirect effect on the corresponding endogenous variables. Hence, the following

equation specification is obtained:

y1 ¼ cð11Þþ cð12Þ*tþ cð13Þ*y2þ cð14Þ*x1þ cð15Þ*y2*x1
þ cð16Þ*y2*x2þ cð17Þ*x1*x2þ cð18Þ*x1*x3þ ½arð1Þ ¼ cð19Þ; . . .�

y2 ¼ cð21Þþ cð22Þ*x1þ cð23Þ*x2þ cð24Þ*x1*x2
þ cð25Þ*x1*x3þ ½arð1Þ ¼ cð26Þ; . . .�

x1 ¼ cð31Þþ cð32Þ*x2þ cð33Þ*x3þ cð34Þ*x2*x3þ ½arð1Þ ¼ cð35Þ; . . .�
x3 ¼ cð41Þþ cð42Þ*x2þ ½arð1Þ ¼ cð43Þ; . . .�

ð2:85Þ

Note that the first regression shows that the indirect effect ofX2 on Y1 is going through

Y2 andX1, and the indirect effect ofX3 onY1 is going throughX1. Similarly, the indirect

effect ofX2 on Y2, in the second regression, is going throughX1. Note that only the first

regressions in (2.84) and (2.85) have the time t as an independent variable. These

models can easily be extended to a multivariate model with all regressions having the

time t as an independent variable. Further extension or modification could be done by

using the transformed variables, as well as the lagged endogenous and exogenous

variables.

Example 2.38. (Experimentation based on the model in (2.84)) Figure 2.95 pre-

sents statistical results based on themodel in (2.84). Three of the independent variables

in the first regression are insignificantwith large p-values. In order to keep the two-way

interaction in the model, then either one or both of the main factors should be deleted,

and similarly for the second regression. After experimentation, an acceptable model is

obtained, as presented in Figure 2.96.
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Note that Figure 2.96 shows that each of the interaction factors, as an independent

variable, has a significant adjusted effect on the corresponding dependent variable. As

an illustration, based on the first regression, the following equation is obtained:

Y1 ¼ Cð11ÞþCð12Þ*T þCð13Þ*Y2þCð15Þ*X1*Y2 þ ½ARð1Þ ¼ Cð16Þ� ð2:86Þ
with a partial derivative

qY1
qY2

¼ cð13Þþ cð15Þ*X1 ð2:87Þ

Figure 2.95 Statistical results based on the two-way interaction model in (2.84)

Figure 2.96 Statistical results based on a reduced interaction model in (2.84)
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This finding or equation, in a mathematical sense, indicates that the (partial) effect of

Y2 on Y1 is dependent on X1. On the other hand, there is also the following partial

derivative, which indicates that the effect of X1 on Y1 is dependent on Y2:

qY1
qX1

¼ cð15Þ*Y2 ð2:88Þ
&

2.13.3 Multivariate autoregressive model with
three-way interactions

In fact, a three-way interactionmodel has been presented in Example 2.36 as anAR(1)

model with trend and time-related effects. Based on the theoretical causal model in

Figure 2.89, the set of three variables Y2, X1 and X2 may have either pairwise

or complete associations. Similarly for the three variables,X1,X2 andX3. If they have a

complete association, then using a model with three-way interaction(s) could be

considered. Hence, corresponding to the path diagram in Figure 2.89, a multivariate

autoregressive model with three-way interactions may also be obtained, as follows:

y1 ¼ cð11Þþ cð12Þ*tþ cð13Þ*y2þ cð14Þ*x1þ cð15Þ*y2*x1
þ cð16Þ*y2*x2þ cð17Þ*x1*x2þ cð18Þ*x1*x3
þ cð19Þ*y2*x1*x2þ cð100Þ*x1*x2*x3þ ½arð1Þ ¼ cð101Þ; . . .�

y2 ¼ cð21Þþ cð22Þ*x1þ cð23Þ*x2þ cð24Þ*x1*x2
þ cð25Þ*x1*x3þ cð26Þ*x1*x2*x3þ ½arð1Þ ¼ cð27Þ; . . .�

x1 ¼ cð31Þþ cð32Þ*x2þ cð33Þ*x3þ cð34Þ*x2*x3þ ½arð1Þ ¼ cð35Þ; . . .�
x3 ¼ cð41Þþ cð42Þ*x2þ ½arð1Þ ¼ cð43Þ; . . .�

ð2:89Þ
Note that the three variables Y2, X1 and X3 cannot have a complete association,

because the path diagram shows that there is no direct association between Y2 and X3.

Hence, the three-way interaction of the variables Y2, X1 and X3 is not used as an

independent variable of the first regression.

Example 2.39. (Experimentation based on the model in (2.89)) Figure 2.97 pre-

sents statistical results based on themodel in (2.89). Note that some of the independent

variables of the first regression are insignificant, so an attempt should bemade to obtain

a reduced model, by using a similar process to that presented in the previous example.

By using the trial-and-error method, an acceptable reduced model can certainly be

found with a three-way interaction factor.

Note that the results in Figure 2.97 already show that the three-way interaction

X1�X2�X3 has a significant adjusted effect on Y2 with a p-value¼ 0.0003, corre-

sponding to the parameter C(26). On the other hand, at a significant level of 0.10,

X1�X2�Y2 has a significant positive adjusted effect on Y1 with a p-value¼ 0.1169/

2¼ 0.05 845, corresponding to the parameter C(19).

102 Time Series Data Analysis Using EViews

www.trading-software-collection.com



Note that this statistical result needs to be presented by using the previous version of

EViews 6with a statistical error of Prob(F-statistic), since the latest version of EViews

6 (which was received on 29 October 2007) presents the �Near singular matrix� error
message, and special notes on the three-way interaction model need to be presented.

For this reason, the trial-and-error method is used to obtain an alternative three-way

interaction model, as presented in Figure 2.98.

Figure 2.97 Statistical results based on the three-way interaction model in (2.86)

Figure 2.98 Statistical results based on the three-way interaction model, which is a reduced

model of (2.89)
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Based on this table the following notes and conclusions are produced:

(1) Thismodel should be considered as an acceptablemodel, even though some of the

independent variables are insignificant, specifically for the first regression.

(2) Corresponding to the parameter C(26), the three-way interaction factor

X1�X2�X3 has a significantly negative adjusted effect on Y2.

(3) The DW-statistic of the third regression could be increased or modified by using

either a higher autoregressive model or adding the lag(s) of the endogenous

variable X1 as an independent variable.

(4) For illustration purposes, Figure 2.99 presents an alternative model, which

shows that the three-way interaction X1�X2�Y2 has a significantly negative

effect on Y1. &

2.14 Special notes and comments

Corresponding to what has been done in experimentation with the multivariate

models, there are various notes and comments that need to be presented.

2.14.1 The true population model

It is well known that researchers never know the true values of the population

parameters, such as the means, standard deviations and other parameters, or the true

populationmodel. It is also recognized that any proposedmodel could be an estimable

model, in a statistical sense, even though the model might not be an appropriate

model.

Figure 2.99 Statistical results based on an alternative three-way interaction model
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For these reasons, best judgment should be used to define alternative statistical

models, and not only one univariate linear model having all selected variables. This is

supported by knowledge and experience in the particular field of study, as well as �a
broad experiencewith how particular techniques of data analysis haveworked out in a

variety of fields of applications� (Tukey, 1962, in Gifi, 1990, p. 23). Furthermore,

Tukey stated: �In data analysis we must look to a very heavy emphasis on judgment.�
On the other hand, Hampel (1973, in Gifi, 1990, p. 27) stated:

Often in statistics one is using a parametric model, such as the commonmodel of normally

distributed errors, or that of exponentially distributed observations. Classical (paramet-

ric) statistics derives results under the assumptions that these models are strictly true.

However, apart from some simple models perhaps, such models are never exactly true. We

should also remember that we never know the exact distribution of ordinary data; and even

if we did, or as far as we do, there remain serious questions about how to handle the excess

knowledge of details. After all a statistical model has to be simple (where �simple�, of course
has a relative meaning, depending on state and standards of the subject matter field);

Ockham�s razor is an essential tool for the progress of science.

2.14.2 Near singular matrix

The process of data analysis applying to any time series model is a straightforward

method using EViews. However, note that there will always be problems in selecting

the best acceptablemodel among such a large number of possible choices, aswell as in

selecting the appropriate estimation method(s).

Furthermore, note that the process of data analysis in selecting an acceptablemodel,

in a theoretical and statistical sense, is really a trial-and-error process, and it is believed

that theprocess cannot begeneralized because it is highly dependent on thedata that are

available or used. Even though EViews can simplify the work to try many alternative

models, in some cases the error message �Near singular matrix� could be received.

This error message indicates that the independent variables of the model have

(almost) a perfect multicollinearity based on the data sets used. However, there might

be nothing wrong with the model, since it could be an estimable model based on other

data sets. Hence, if the statistical results are obtained, then it is certain that the model

should be a good model, in a statistical sense. Furthermore, if the model has been

defined based on a good or strong theoretical base, then it may be concluded that the

model is an acceptable model, in both a theoretical and statistical sense.

Talking about the error message or multicollinearity, Blanchard (in Gujarati,

2003, p. 263) stated that �Multicollinearity is God�s will, not a problem with OLS

(ordinary least square) or statistical technique in general.� Based on this statement,

there should not be toomuch concern aboutmulticollinearity, since the bivariate and

multiple correlations between the independent variables always exist, even though

some of them may not be correlated, in a theoretical sense. Additionally, their

quantitative values are highly dependent on the data set used or available for the

analysis.

Talking about a data set, Agung (2004) defined it as a set of multidimensional

scores/measurements that happen to be collected or available for an analyst or a
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researcher. It is recognized that unexpected estimated values of the model parameters

can be obtained, even though the model is a good one, because of the unpredictable

effect(s) of multicollinearity between the independent variables of the model.

Unexpected statistical results have been presented in several dissertations of the

author�s students, such as those of Supriyono (2003), Ary Suta (2005) and Hamzal and

Agung (2007). Example 2.40, aswell asExample 2.41, inSection2.14.3below, present

illustrative contradictory statistical results, as the cause of high or significant bivariate

correlations between the independent variables. Note again that each of the indepen-

dent variables always has quantitativemultiple correlations with the other independent

variables, even though some of those variables might not be correlated substantively.

On the other hand, it has been found thatmany papers in the international journals,

such as the Journal of Finance and Strategic Management, do not discuss multi-

collinearity of the independent variables of their models, even though each paper

presents several alternative models. As an extreme illustrative example, Coombs

and Gilley (2005) present two sets of 12 regressions without considering the

multicollinearity problem of their independent variables.

As a comparison, if EViews presents the �Near singular matrix� error message, the

SPSS could provide the VIF (i.e. variance inflation factor) of each independent

variable of amultiple regression, but for amultivariate linearmodel. If an independent

variable hasVIF > 10, then the independent variable has a highmulticollinearity with

the others. However, corresponding to Blanchard�s statement above, additional

analysis is not required as long as best knowledge and experience has been used

in defining the model.

To solve the �Near singular matrix� error message, experimentation should be

performed or trial-and-error methods used to delete an independent variable or two

from the model, or additional variable(s) and/or serial correlation indicator(s) should

be inserted. However, it is suggested that an independent variable of a model should

not be deleted that is only based on the largest p-value. Talking about the p-value of an

independent variable, Hosmer and Lemesshow (Hosmer and Lemesshow, 2000, p.

118) stated:

The choice of pE¼ 0.05 is too stringent, often excluding important variables from the

model. Choosing a value for pE in the range from 0.15 to 0.20 is highly recommended.

Sometimes the goal of the analysis may be broader, and models containing more variables

are sought to provide a more complete picture of possible models. In these cases, use of

pE¼ 0.25 or even larger might be a reasonable choice.

In many cases, it has been found that an important independent variable, in a

theoretical sense, has an insignificant adjusted effect or a large p-value, but the other

has a significant adjusted effect. Hence, the least important variable should be deleted

from themodel, even though it has a significant adjusted effect or a very small p-value.

Finally, considering EViews, experience with data analyses using EViews 4 and 5,

as well as 6, showed that there was a problem. In fact, the first draft of this book was

presented using EViews 4. In order to update the book using EViews 6, it was found

that some of the multivariate autoregressive models or system of equations were

estimable models based on EViews 4, but the latest EViews 6 produced the
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�Near singular matrix�. To date, this problem has not yet been solved. Refer to the

problems presented in the following Examples 2.40 and 2.41.

2.14.3 �To Test or Not� the assumptions of the error terms

In this subsection, the white noise process of the error terms {«t} of the time series

models is considered. The basic assumption of the error terms of the univariatemodel,

i.e. the {«t} sequence, is a white noise process such that

Eð«tÞ ¼ Eð«t�1Þ ¼ � � � ¼ 0

Eð«2t Þ ¼ Eð«2t�1Þ ¼ � � � ¼ s2

Eð«t «t�sÞ ¼ Eð«t�j «t�j�sÞ ¼ 0 for all j and s

ð2:90Þ

for each time period t. Note that Eð«2t Þ ¼ Varð«tÞ and Eð«t«t�sÞ ¼ Covð«t; «t�sÞ.
Furthermore, note that the true values ofE(«t),Eð«2t Þ andE(«t«t�s) are never known

by the researchers. Hence, they could be considered as theoretical or abstract

indicators. In practice, since only a single observation exists within each time period

or at one time point t, then only one set of the estimated error terms, say {et, t¼ 1,2,

. . ., T}, is observed, where et is a constant or fixed number with E(et)¼ et, which

highly depends on the sampled data and themodel used in the analysis. Hence, there is

not a sufficient number of observations to test the assumptions in (2.90) for each time

point. As a result, these cannot be proven, but they should be assumed to be valid for

the presentmodel(s). By applying a lagged-variable or autoregressivemodel, which is

either first- or higher-order autoregressive, it is common to assume that the error terms

{«t} are white noise processes.

On the under hand, in order for the error term «t to have an expected value of zero for
each time point t, E(«t)¼ 0 in particular, an assumption should be used that «t has a
certain density or distribution function. In general it is assumed that «t is normally

distributed for each time point t. This normal density function also cannot be proved

but is assumed.

Note that the normal distribution of various defined statistics, the mean statistic in

particular, has been proven based on the central limit theorem. In practice, however,

the sample space of the mean statistic, say �X, can be considered to have an

approximate normal distribution, for a sample size of n > 30. Conover (1980, p.

444) stated that for n > 20, the rth quintile of a binomial random variable may be

approximated using the rth quintile of a standard normal random variable. On the

other hand, the set of numbers or scores {et, t¼ 1,2, . . ., T}, which might be observed

by a researcher, will not have a specific density function, including the normal

distribution. Refer again to Shewhart�s finding presented in Section 2.4.3.

Corresponding to the multivariate normal distribution of the error vector of a

multivariate linearmodel, the three types ofmultivariate central limit theorems should

be considered: (i) multivariate central limit theorem I (Lineberg–Levy), (ii) multi-

variate central limit theorem II (Wald and Wolfowitz, 1944) and (iii) multivariate

central limit theorem III (presented in Puri and Sen, 1993, pp. 22–25).
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Based on the information and statements above, aswell as in Section 2.4.3, it can be

concluded that the assumptions of the error terms {«t} of a model do not need to be

tested for the following summary reasons:

(1) The true sequence of {«t} is never known, as well as the true population model.

(2) A sampled data is defined as a set of multidimensional scores/measurements,

which happen to be selected by a researcher,with a single sample unit in each time

point t. Hence, there is not a sufficient number of observations to do the testing.

(3) In order to test the assumptions, especially the normal distribution, a distribution

function of a statistic should be used, such as a normal distribution, the chi-square

distribution, Student�s t-distribution and Snedecor�s F-distribution, which is

assumed again to be true. Such a situation would produce circular problems.

Note that it has been proved that the chi-square distribution is derived from a set of

independent normal density functions, the t-distribution is derived from two

independent random variables, one having a normal distribution and the other a

chi-square distribution, and the F-distribution is derived from two independent

chi-square distributions (Garybill, 1976, pp. 63–66; Wilks, 1962, pp. 183–186;

Parzen, 1960, pp. 325–326).

(4) On the other hand, if a test is performed, then the conclusion of the testing

hypothesis cannot be taken for granted. For examples, some of the author�s
students, such as Lindawati (2002) and Alamsyah (2007), present hypotheses

that an independent variable has a positive effect on a dependent variable, but

their statistical results show that the independent variable has a negative effect.

Considering the conclusion of a testing hypothesis, Freund, Williams and

Peters (1993, p. 442) stated: �If we say something is statistically significant, we

do not mean to imply that it is necessarily of any practical significance or

importance.�

Example 2.40. (Unexpected effect of multicollinearity) Suppose the relationship

between the variables X1, X2, X3, Y1, Y2 and the time t is to be studied by using the

following AR(2) bivariate model with trend:

y1 ¼ cð11Þ þ þ cð12Þ*tþ cð13Þ*y2þ cð14Þ*x1þ cð15Þ*x2þ cð16Þ*x3
þ ½arð1Þ ¼ cð17Þ; arð2Þ ¼ cð18Þ�

y2 ¼ cð21Þ þ cð22Þ*tþ cð23Þ*x1þ cð24Þ*x2þ cð25Þ*x3
þ ½arð1Þ ¼ cð26Þ; arð2Þ ¼ cð27Þ�

ð2:91Þ

The statistical results in Figure 2.100 using EViews 4 should be presented, since

EViews 6 gave the �Near singularmatrix� errormessage. This gives the special notes

and comments as follows:

(1) The output presents an error message �Convergence not achieved after 1 weight
matrix, 1000 total coef iterations�. Even though this gives the statistical results,
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specifically the parameter estimates, it could be said that the estimates are

unacceptable estimates, in a statistical sense. In other words, the estimates are

not optimal estimates.

(2) This errormessage does not directlymean that the proposedmodel is a badmodel,

since optimal estimates could be obtained by using other data sets. Refer to the

special notes and comments on the true population models and multicollinearity

problems presented in Sections 2.14.1 and 2.14.2.

(3) By using the latest version of EViews 6, which was received on 29 October 2007,

the results in Figure 2.101were obtained, which presents another statement of the

error message, namely �Convergence not achieved after 500 iterations.�

Figure 2.100 Statistical results based on model (2.91), using EViews 4

Figure 2.101 Statistical results using the latest EViews 6, based on the same model as

presented in Figure 2.100
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Figure 2.102 Statistical results based on a modified model in Figure 2.101

Figure 2.103 Residual graphs of the regressions in Figure 2.102
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(4) Then for illustration purposes, after using the trial and error methods, the results

in Figure 2.102 were obtained, with a note �Convergence achieved after 11

iterations�, and its residual graphs in Figure 2.103. Therefore, the corresponding
model should be considered as a good fit model. However, it might not be the

best fit model, since there could be many other alternative models giving

optimal estimates. Based on this model the following notes and conclusions are

derived:
. There is confidence that other modified models with trend can be found by

using other types of independent variables, such as the transformed variables as

well as the lags of endogenous or exogenous variables.
. The first regression hasX2 as an independent variable, but the second regression

has X2(�1). This model should be considered as an unexpected model, since

there is nogood reason for selecting these independent variables.Note that either

X2 or X2(�1) may be used as an independent variable of both regressions.
. The residual graph of the first regression indicates that there is an outlier or a

breakpoint. For this reason, it is suggested to do further data analysis (refer to

the notes in Example 2.4).
. Corresponding to the statistical results in Figure 2.102, the associations between

the variables can be presented as a path diagram, as in Figure 2.104. Note that

the dotted lines represent the fact that the independent variables have insigni-

ficant effects on the corresponding dependent variable(s), at a significant level

of 0.10.
. However, at a significant level of 0.10, in fact, X3 has a significantly positive

effect on Y1, based on the t-statistic with a p-value¼ 0.1794/2¼ 0.0897 < 0.10,
and the time t has a significantly positive effect on Y2, based on the t-statistic

with a p-value¼ 0.1218/2¼ 0.0609.
. Furthermore, note that the model does not present the possible causal relation-

ships between the independent variables t, X1, X2 and X3. However, their

Figure 2.104 Path diagram based on statistical results in Figure 2.102
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coefficients of correlation or multicollinearity should be taken into account in

the estimation process. Figure 2.105 presents the correlation matrix between

the variables considered with their significant levels, which shows that they are

highly correlated. This indicates that the independent variables of the model

should have high multicollinearity. As a result, the parameter estimates could

be contradictory with what would be expected, because of the unpredictable

effects of multicollinearity, as presented above. &

Example 2.41. (Other unexpected effects of multicollinearity) One of the au-

thor�s students, Hamsal (2006), in his dissertation, presents the following reduced

regression function to test the hypothesis that the effect of strategic flexibility (X1)

on overall firm performance (Y) depends on strategic consistency (X2) and perceived

environment (X3):

Y ¼ 6:932� 2:490
ð0:006Þ

X2 � 1:892
ð0:020Þ

X3 þ 0:240
ð0:011Þ

X1*X2 þ 0:143
ð0:111Þ

X1*X3

þ 0:437
ð0:034Þ

X2*X3 � 0:044
ð0:082Þ

X1*X2*X3

F-statistic ¼ 11:13 Significant level ¼ 0:000 R2 ¼ 0:562

ð2:92Þ

Note that, at a significant level of a¼ 0.10, five out of the six independent variables

have significant adjusted effects, with their p-values presented in parentheses. In fact,

at a significant level of 0.10, X1
�X3 also has a positive significant adjusted effect on Y,

based on the p-value¼ 0.111/2¼ 0.0555. In a statistical sense, this regression

function would be considered as a good or an acceptable regression.

Figure 2.105 The correlation matrix of the selected six variables
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Considering the bivariate correlation between the independent variables, Hamsal

presents preliminary data analysis to show that each pair of all independent variables

has significant positive correlations. Since each of the independent variables has a

significant adjusted effect, these results should be considered as a contradiction to the

results in the previous example, specifically Figures 2.101 and 2.102.

Hence, based on the last two examples, it could be concluded that the impact of

multicollinearity or multiple correlations on the estimated values of the model

parameters is unpredictable. &

2.15 Alternative multivariate models with trend

Based on the set of variables, manymore models with trend could be defined. Thus an

infinite number of lagged-variable autoregressivemodels might be produced by using

lagged variables, either endogenous or exogenous variables, or both. For illustrative

purposes, the following alternative models are presented, which could be extended to

more complex models.

However, the empirical examples for all models will be presented with only a limited

discussion, because theprevious examples shouldbeconsidered sufficient to represent the

models.

2.15.1 The lagged endogenous variables:
first autoregressive model with trend

This model can be presented in a matrix equation as follows:

Yt ¼ AþB*tþC*Yt�1 þmt

mt ¼ D*mt�1 þ «t
ð2:93Þ

where Yt is a K� 1 vector of endogenous variables, mt is a K� 1 vector of the

corresponding residual terms, A, B and C are vectors or matrices of the model

parameters and D is a diagonal matrix of the first serial correlation of the K

regressions, namely D¼ diag(r1, r2, . . . , rK).
By using the two endogenous variables Y1 and Y2 presented above, two additive

regressions are found, as follows:

y1t ¼ cð11Þþ cð12Þ*tþ cð13Þ*y1t�1 þ cð14Þ*y2t�1 þ ½arð1Þ ¼ cð15Þ�
y2t ¼ cð21Þþ cð22Þ*tþ cð23Þ*y1t�1 þ cð24Þ*y2t�1 þ ½arð1Þ ¼ cð25Þ� ð2:94Þ

Corresponding to themodel in (2.93), thematrixD of thismodel is diag(r1, r2)¼ diag

(c(15), c(25)).

Furthermore, the multivariate Yt¼ (X1,X2,X3,Y1,Y2)t may also be used as the

dependent variable of the model in (2.93).
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Example 2.42. (Application of themodel in (2.94)) Figure 2.106 presents the statis-

tical results based on the model in (2.94), as well as its reduced model.

Note that the reducedmodel is obtained by doing experimentation in order to delete

either of the indicators ar(1) or y2(�1), or both, from the first regression. Three

possible reduced models have therefore been observed, with the best one presented in

Figure 2.106.

In fact, by considering the hypothesis H0: c(14)¼ c(15)¼ 0, which is rejected

based on the chi-square statistic of 0.177 511 with df¼ 2 and a very large p-value

0.9151, it can be concluded that the reduced model should be obtained by deleting

both indicators ar(1) and y2(�1). &

2.15.2 The lagged endogenous variables:
first autoregressive model with exogenous variables and trend

This model would be an extension of the model in (2.93), by adding a multivariate

exogenous variable Xt. The model can be presented in a matrix equation as follows:

Yt ¼ AþB*tþC1*Yt�1 þC2*Xt þmt

mt ¼ D*mt�1 þ «t
ð2:95Þ

Figure 2.106 Statistical results based on (a) the model in (2.94) and (b) its reduced model
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By using the set of variables X1, X2, X3, Y1 and Y2, and the time t-variable, a set of two

additive regression models can be obtained, as follows:

y1t ¼ cð11Þþ cð12Þ*tþ cð13Þ*y1t�1 þ cð14Þ*y2t�1

þ cð15Þ*x1t þ cð16Þ*x2t þ cð17Þ*x31 þ ½arð1Þ ¼ cð18Þ�
y2t ¼ cð21Þþ cð22Þ*tþ cð23Þ*y1t�1 þ cð24Þ*y2t�1

þ cð25Þ*x11 þ cð26Þ*x2t þ cð27Þ*x3t þ ½arð1Þ ¼ cð28Þ�
ð2:96Þ

Example 2.43. (Application of the model in (2.96)) By using the equation

specification in (2.96), the �Near singular matrix� error message is obtained. Then

by using the trial-and-error method, the model presented in Figure 2.107 is obtained.

Based on this figure, the following notes and conclusions can be made:

(1) Theindicatorar(1)inthefirstregressionhasalargep-value.Therefore,thisindicator

canbedeletedfromthefirstregression,sincethelaggedvariableY1(�1)isalreadyin

the model in order to take into account the serial or autocorrelation problem.

(2) In the second regression, t also has a large p-value. However, since themodelwith

trend is being considered, it should not be deleted from the regression.

(3) The two regressions have different sets of exogenous variables; namely the

first regression does not have X3 and the second regression does not have X2

and X3. &

2.15.3 The mixed lagged variables:
first autoregressive model with trend

This model can be considered as an extension of the model in (2.95), with the

following matrix equation:

Yt ¼ AþB*tþC1*Yt�1 þC2*Xt þmt

mt ¼ D*mt�1 þ «1;t
Xt ¼ EþF*Xt�1 þ nt
nt ¼ G*nt�1 þ «2;t

ð2:97Þ

Figure 2.107 Statistical results based on a reduced model of (2.96)
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By using the set of variables X1, X2, X3, Y1 and Y2, and the time t-variable, a set of five

regressions would be found, as follows:

y1t ¼ cð11Þþ cð12Þ*tþ cð13Þ*y1t�1 þ cð14Þ*y2t�1

þ cð15Þ*x1t þ cð16Þ*x2t þ cð17Þ*x31 þ ½arð1Þ ¼ cð18Þ�
y2t ¼ cð21Þþ cð22Þ*tþ cð23Þ*y1t�1 þ cð24Þ*y2t�1

þ cð25Þ*x11 þ cð26Þ*x2t þ cð27Þ*x3t þ ½arð1Þ ¼ cð28Þ�
x1t ¼ cð31Þþ cð32Þ*x1t�1 þ cð33Þ*x2t�1 þ cð34Þ*x3t�1 þ ½arð1Þ ¼ cð35Þ�
x2t ¼ cð41Þþ cð42Þ*x1t�1 þ cð43Þ*x2t�1 þ cð44Þ*x3t�1 þ ½arð1Þ ¼ cð45Þ�
x3t ¼ cð51Þþ cð52Þ*x1t�1 þ cð53Þ*x2t�1 þ cð54Þ*x3t�1 þ ½arð1Þ ¼ cð55Þ�

ð2:98Þ
Note that the first two regressions are exactly the same as themodel in (2.96) and show

the effects of the bivariate {Y1t�1, Y2t�1} on both Y1t and Y2t. These two regressions

also show that the four exogenous variablesX1t,X2t,X3t and the time t have effects on

both Y1t and Y2t. The last three regressions show a trivariate model of the exogenous

variables X1, X2 and X3 without trend. This multivariate model is an AR(1) additive

linear model based on the model parameters C(ij), and is also linear based on all

independent variables.

The association patterns between the variables in this model are presented as a path

diagram in Figure 2.108. Note the different sets of arrows, as follows:

(1) The first two regressions have dependent variables Y1t and Y2t, with independent

variables t, Y1t�1 and Y2t�1, and are presented by a set of six arrows in the right-

hand box and a solid/thick arrow from a set of three exogenous variables, namely

X1t, X2t and X3t, in the left-hand box.

(2) The last three regressions have dependent variables X1t, X2t and X3t, with their

first lags, namely X1t�1, X2t�1 and X3t�1, as independent variables and are

presented in the left-hand box.

(3) It is well known that these five regressions do not consider the possible causal

relationships between their independent variables. For example, the first two

Figure 2.108 Path diagram of the model in (2.98)
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regressions do not consider the type of relationships between the six independent

variables X1t, X2t, X3t, Y1t�1, Y2t�1 and t. Compare this with the interaction

models presented in Sections 2.13.2 and 2.13.3. However, their quantitative

coefficient of correlations or multicollinearity should have an unexpected impact

on the estimates of the model parameters.

(4) Themultivariatemodel or the system equations in (2.98) can easily bemodified in

order to produce many alternative time series models by using the transformed

variables, such as their natural logarithms, their higher lagged variables, aswell as

their first differences.

Example 2.44. (Experimentation based on the model in (2.98)) Figure 2.109

presents the statistical results based on the model in (2.98). Based on this model, the

following notes and conclusions are presented:

(1) The equations of each regression model can easily be written, as well as each

regression function.

(2) By observing the probability of the t-statistic, it can be concluded whether a

regression should be modified or not. The following are examples:

. Indicator AR(1) in the first regression has a large p-value¼ 0.6172; this

indicator can be deleted to obtain a reducedmodel. The regression will become

an LV(1) model with exogenous variables and trend.

Figure 2.109 Statistical results based on a reduced model of (2.98) by using the least squares

estimation method
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. On the other hand, the regression of X3 shows two parameters, namely C(52)

and C(53), that have large p-values, corresponding to the independent variables

X1(�1) and X2(�1). Even though X3(�1) has a significant effect, a choice can

be made to delete either one of the three independent variables, based on which

variable is the least important variable, in a theoretical sense. Since the data is a

hypothetical data set, do this as an exercise based on the empirical data set.
. For further illustration purposes, a test is carried out to discover the joint effects

of the first lagged variablesX1(�1) andX2(�1) onX3. It was found that the null

hypothesisH0: C(52)¼C(53)¼ 0 is accepted based on the chi-square-statistic

of 0.110 607with df¼ 2 and avery largep-value¼ 0.9462. In a statistical sense,

this indicates that both X1(�1) and X2(�2) can be deleted to obtain a reduced

model.

(3) As a result, it could be said that many estimable five-dimensional multivariate

models can be constructed based on any set of five-dimensional time series. &

2.16 Generalized multivariate models with time-related effects

A further extension of the multivariate models with trend is a multivariate model with

time-related effects. In this type ofmodel, there are two-way interactions between the

time t and each of selected exogenous variables, as additional independent or

exogenous variables of each regression in the system. Since the equation of this

type of model could easily be derived from the previous illustrative models, they will

not be presented again in detail. For example, based on the model in (2.95), the

following general model may be obtained:

Yt ¼ AþB*tþC1*Yt�1 þC2*Xt þ ½C3*Yt�1 þC*Xt�*tþmt

mt ¼ D*mt�1 þ «t
ð2:99Þ

Note that this model could easily be extended to more complex models, which can be

derived from other models described in the previous subsections. As an illustrative

example from International Journals, Bansal (2005) presents a data analysis based on a

multiple regression or univariate linear model with trend and time-related effects. The

followingexamplepresentsasimplebivariatemodelwith trendandtime-relatedeffects.

Example 2.45. (Bivariate model with time-related effects) Corresponding to the

models with endogenous variables, Y1 and Y2, presented in the previous exam- ples,

experimentation is performed in order to obtain a bivariate model with time-related

effects, where each regression has a DW-statistic of around 2.0. Finally, a pair of

regressions with trend and time-related effects was found, as presented in Figure

2.110, with DW-statistics of 2.01 and 2.07 respectively.
Based on this figure, the following notes and conclusions are presented:

(1) The first regression is a first-order lagged-variable regression, namely an LV(1)

regression with trend and time-related effects, and the second regression is an

LV_AR(1,1) model with trend and time-related effects.
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(2) Even though t�X1 has an insignificant adjusted effect on Y1, the three interaction
factors, namely t�Y1(�1), t�Y2 and t�X1 have a significant joint effect on Y1,

based on the chi-squared-statistic of 9.883 673 with df¼ 3 and a p-value

0.0196. Therefore, this regression shows that the effect of t on Y1 is significantly

dependent on the variables Y1(�1), Y2 and X1; specifically it is dependent on the

function [�13.004 þ 0.005�Y1(�1) þ 0.007� Y2� 0.001�X1], as presented by

the following regression function:

Ŷ1 ¼ 984:285þ 0:448*Y1ð�1Þ�0:536*Y2þ 0:383*X1
þ ½�13:004þ 0:005*Y1ð�1Þþ 0:007*Y2�0:001*X1�*t ð2:100Þ

(3) On the other hand, note thatX1 and t�X1 do not have significant effects on Y1, so a
reducedmodelmay be produced by deleting either one or both of them. However,

at a significant level ofa¼ 0.10, the joint effect ofX1 and t�X1 is significantwhen
based on the chi-squared-statistic of 5.670 178 with df¼ 2 and a p-

value¼ 0.0587.

(4) Therefore, there may be two alternative models. By deleting X1, the statistical

results presented in Figure 2.111 are obtained and by deleting t�X1 the statistical
results in Figure 2.112 are obtained. Both of thesemodels should be considered as

good fit models.

(5) These findings indicate that even though two or more independent variables have

insignificant adjusted effects, all of those variables should not be deleted in order

to have a statistically acceptable reduced model, even though, in some cases, it

has been recognized that an independent variable should be deleted that has a

significant adjusted effect.

(6) Note that by deletingX1 from themodel in Figure 2.110, the printout in Figure 2.111

is obtained without the parameter C(14). Note that the symbols of the model

parameters do not need to be modified. On the other hand, by deleting t�X1, the
printout in Figure 2.112 is obtained without the parameter C(18).

Figure 2.110 Statistical results based on a model with trend and time-related effects
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(7) Since the three models considered are statistically acceptable models, then which

one could be considered as the best model. Therewould be some reasons to select

any of the models as the best one. However, from the author�s point of view, the
model in Figure 2.111 is considered as the best model, since the adjusted effect of

t on Y1 is highly dependent on each of the other independent variables.

(8) At a significant level ofa¼ 0.10, Figure 2.111 shows that each of the independent

variables X1 and X2 has an insignificant adjusted effect on Y2 with p-values of

0.1798 and 0.1276 respectively. A reducedmodel does not need to be constructed,

since each of these variables in fact has a significant positive effect on Y2 with

p-values of 0.1798/2¼ 0.0899 and 0.1276/2¼ 0.0638 respectively, which are less

than 0.10. &

Figure 2.111 Statistical results based on a reduced model in Figure 2.110

Figure 2.112 Statistical results based on another reduced model
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3

Discontinuous growth models

3.1 Introduction

In the previous chapter, continuous growthmodels were presented. Although the time

t-variable is a discrete variable, the corresponding regression functions are differen-

tiable with respect to the t-variable. However, in many cases, it was found that it is

more appropriate to apply discontinuous growth models, either piecewise or step

growthmodels, over thewhole period of the observation time. For example, for theRS

(retail sales) variable, its scatter plot supports the use of at least two pieces of a growth

model. In some cases, a perfect judgment could bemade using a discontinuous growth

model, even before taking or having the corresponding time series data: for example,

the growth of international tourists to Indonesia within three time periods, before the

first Bali bomb in 2002, between the first and the second bomb in 2005 and after

the second bomb. The impact of economic crises on Indonesia has been studied by the

Demographic Institute, Faculty of Economics, University of Indonesia, and spon-

sored by the World Bank (Agung, dkk., 1999b).

This chapter will present illustrative examples of piecewise and step regression

models, based on the data set in the Demo_Modified workfile. Note that a discontinu-

ous growthmodel should consist of two ormore pieces of a continuous growthmodel.

As a result, each piece of the discontinuous growth model can easily be derived by

using all continuous growth models presented in Chapter 2.

3.2 Piecewise growth models

Figure 3.1 presents illustrative graphs of four piecewise linear regression functions.

The graphs in Figure 3.1(a) and (b) present two polygon graphs or broken lines at one

point, say at t¼ t1, and at two points, say t¼ t1 and t¼ t2 respectively, and the graphs

in Figure 3.1 (c) and (d) present the step linear regression functions at one point and

two points respectively.

In order to present the equations of discontinuous growthmodels, dummy variables

of the time t-variable should be defined or generated.
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 (a). Broken line at a point  
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   (b). Broken line at 2-points 
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(c). Step lines at a point 

y

                                              x 
    (d). Step lines at 2-points 

Figure 3.1 Illustrative piecewise simple regression functions

Piecewise regression models have been presented in several books in applied

statistics, such as Neter and Wasserman (1974) and Agung (1998, 1992b, 1992c, and

1992d). Agung presented a special two-piece growth model called GPP (Garis Patah

Paritas—BrokenLine of Parities) by age ofmothers, aswell as three-piece regressions.

3.2.1 Two-piece classical growth models

Corresponding to the classical growthmodel in (2.3), it should be easy to derive a two-

piece classical growth model by using a dummy variable of two defined time periods.

For example, the two-piece growthmodel has one discontinuity or break point at time

t¼ t1; then there are two dummy variables defined asD1¼ 1 if t¼< t1 andD1¼ 0 if

otherwise and D2¼ 0 if t¼< t1 and D2¼ 1 if otherwise. Hence, the following

alternative piecewise growth models exist.

3.2.1.1 General two-piece growth model with an intercept

This model has a general form as follows:

logðytÞ¼ ðCð1ÞþCð2Þ�tÞþCð3Þ�D2þCð4Þ�t�D2þmt

¼ ðCð1ÞþCð2Þ�tÞþ ðCð3ÞþCð4Þ�tÞ�D2þmt

ð3:1Þ
In fact, this model represents the two classical growth models, as follows:

logðytÞ ¼ Cð1ÞþCð2Þ�tþmt for t � t1 ð3:2aÞ
logðytÞ ¼ ðCð1ÞþCð3ÞÞþ ðCð2ÞþCð4ÞÞ�tþmt for t > t1 ð3:2bÞ

Note that themodel in (3.2a) shows thatC(2) is the growth rate of Yt during the time

period t� t1 and (C(2) þ C(4)) is the growth rate of Yt during the time period t> t1,

based on the model in (3.2b).

The main objective of this model is to test the hypothesis of the growth rate

difference between the two time periods considered. In general, the hypothesis should
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be the one-sided hypothesis. For example, for a right-hand hypothesis,

H0 : Cð4Þ � 0 versus H1 : Cð4Þ > 0 ð3:3Þ

3.2.1.2 General two-piece growth model without an intercept

This model has a general form as follows:

logðytÞ ¼ ðCð1ÞþCð2Þ�tÞ�D1þðCð3ÞþCð4Þ�tÞ�D2þmt ð3:4Þ
or

logðytÞ ¼ Cð1ÞþCð2Þ�t for t � t1

logðytÞ ¼ Cð3ÞþCð4Þ�t for t > t1
ð3:5Þ

The main objective of this model is to test the one-sided hypothesis on the growth

rates of Yt within each defined time period. For example: (i) H0: C(2)� 0 versus H1:

C(2)> 0 for the growth rate of Yt in the first time period and (ii) H0: C(4)� 0 versus

H1: C(4)> 0 for the growth rate in the second time period.

Note that the model in (3.4) is called the model without intercept, corresponding to

the two dummy independent variables. However, the two regressions in (3.5) within

each time period represent models with intercepts C(1) and C(3) respectively.

3.2.1.3 Classical growth model having a corner point

A general piecewise growth model that has a corner point at time t¼ t1 can be

presented as

logðytÞ ¼ Cð1ÞþCð2Þ�tþðCð3Þ�D2�ðt�t1Þþmt ð3:6Þ
This model represents the following two regressions, with an intercept at t¼ t1 and

log(yt)¼C(1) þ C(2)�t1:

logðytÞ ¼ Cð1ÞþCð2Þ�tþmt; 8t � t1

logðytÞ ¼ Cð1ÞþCð2Þ�tþCð3Þ�ðt�t1Þþmt; 8t > t1
ð3:7Þ

where C(2) and [C(2) þ C(3)] are the growth rates of Yt in the first and second time

periods respectively. Note that thismodel is in fact a special case of themodels in (3.1)

or (3.4). Furthermore, the two-piece growth model in (3.6) can also be presented by

using the dummy variable D1, which gives the following equation:

logðytÞ ¼ Cð1ÞþCð2Þ�tþCð3Þ�D1�ðt�t1Þþmt ð3:8Þ

This model represents the following two regressions, with an intercept at t¼ t1 and

log (yt)¼C(1) þ C(2)�t1:

logðytÞ ¼ Cð1ÞþCð2Þ�tþCð3Þ�ðt�t1Þþmt; 8 t � t1

logðytÞ ¼ Cð1ÞþCð2Þ�tþmt; 8 t > t1
ð3:9Þ
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Example 3.1. (To generate dummy variables) Note that the graph of RS (retail

sales) by time and its descriptive statistics show that a two-piece growth model can

be presented with a breakpoint at time t¼ 119. Hence, in the first stage two

dummy variables should be defined, namely Drs1 and Drs2, using the following

steps:

(1) After opening the Demo_Modified workfile, click Genr . . . ; the window in

Figure 3.2 will be seen on the screen. Then enter the equation Drs1¼
1�(t� 119) þ 0�(t> 119) in the �Enter Equation� space.

(2) Click OK . . . and an additional variable Drs1 will appear in the data set.

(3) Go through the same process to generate the second dummy variable. Again click

Genr. . . and enter the equation Drs2¼ 1�(Drs1¼ 0) þ 0�(Drs1¼ 1)) in the

�Enter Equation� window; then click OK . . . .
(4) In order to make sure that the correct dummy variables have been generated,

block the variables and then click View/Show . . . OK. &

Example 3.2. (Piecewise growth model for RS) Since this concerns time series

data, an example is presented using an AR(1) growth model. Entering

logðrsÞ ¼ Cð1ÞþCð2Þ�tþCð3Þ�Drs2þCð4Þ�Drs2�tþ ½arð1Þ ¼ cð5Þ� ð3:10Þ

in the �Equation specification� window would give the results in Figure 3.3, with its

residual graph in Figure 3.4.

Based on these results, the following conclusions can be derived:

(a) The growth rate of RS is C(2)¼ 0.016 755 for t� 119 and C(2) þ C(4)¼
�0.012 407 for t> 119.

Figure 3.2 The window to generate series by equation
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(b) The growth rate of RS for t> 119 is significantly lower than the growth rate of RS

for t� 119, because the hypothesis H0: C(4)� 0 is rejected. This is based on the

t-test, with t0¼�4.43 and a p-value of 0.0000/2¼ 0.0000.

(c) The growth rate of RS for t� 119 is significantly positive, because the null

hypothesisH0:C(2)� 0 is rejected; this is based on the t-test, with t0¼ 6.33 and a

p-value of 0.0000/2¼ 0.0000.

(d) The small value of DW¼ 1.21 indicates that the model should be modified by

using a higher-order autoregressivemodel. By using the trial-and-errormethods, a

fourth-order autoregressive growth model having DW¼ 2.04 is obtained, as

presented in Figure 3.5, with its residual graph in Figure 3.6.

(e) In order to test the hypothesis on the growth rate of RS for t> 119, two kinds of

hypotheses will be considered. The first hypothesis is a two-sided hypothesis:

H0 : Cð2ÞþCð4Þ ¼ 0 versusH1 : Cð2ÞþCð4Þ „ 0 ð3:11Þ

Figure 3.3 Statistical results based on the model in (3.8)

Figure 3.4 Residual graph of the regression in Figure 3.3
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and the second is a left-hand hypothesis:

H0 : Cð2ÞþCð4Þ � 0 versusH1 : Cð2ÞþCð4Þ < 0 ð3:12Þ
Both hypotheses can be tested using the Wald tests, by using the following

processes:

(e.1) Click View/Coefficient Tests/Wald-Coefficient Restriction . . . ; then by

entering the equation C(2) þ C(4)¼ 0, the statistical results given in

Figure 3.7 are obtained.

(e.2) Click OK. . . , which gives the needed statistical tests in Figure 3.7 on the

right-hand side. This result shows that the null hypothesis in (3.11), H0 :

C(2) þ C(4)¼ 0, is rejected based on the F- and chi-square-statistics with

p-values¼ 0.0001. Hence, it can be concluded that RS has a significant

growth rate for t> 119.

Figure 3.5 Statistical results based on an AR(4) growth model in (3.8)

Figure 3.6 Residual graph of the regression in Figure 3.5
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(e.3) However, to test the left-hand hypothesis in (3.10), the t-statistic should be

used. The observed value of the t-statistic can be easily computed by using

the statistics in Figure 3.7, in the row of C(2) þ C(4), that is

t0 ¼ Value=Std Err ¼ � 0:013 025

0:003 285
¼ �3:964 992

Then, in making the conclusion of the testing hypothesis, two alternative

methods are now presented, as follows:

(i) If the total number of observations is sufficiently large, that is n> 20

(Conover, 1980), the simplest method is to make the critical value of the

t-test equal to tc¼�2.0 or �1.96; then the null hypothesis H0: C(2) þ
C(4) � 0 is rejected, since the observed value of t0¼�3.964 992

< tc¼�2.

(ii) Note that the p-value of the F-statistic should be equal to the p-value of

the two-sided t-test. Since t0< 0, then for testing the left-hand- sided

hypothesis in (3.10), its p-value¼ 0.0001/2¼ 0.000 05.

Hence it can be concluded that, for t> 119, the time series RS has a

significant negative growth rate.

(e.4) On the other hand, if a left-sided hypothesis that a growth rate of RS is less

than �0.01 during the time period t> 119 needs to be tested, then the

statistical hypothesis should be written as

H0 : 0:01þCð2ÞþCð4Þ � 0 versus H1 : 0:01þCð2ÞþCð4Þ< 0 ð3:13Þ

The statistical tests are obtained by entering C(2) þ C(4)¼�0.01 in the

�Coefficient restriction . . .� window; then click OK, giving the results in

Figure 3.8(a). Based on this result, the observed value of the t-statistic is

found: t0¼�0.003 025/0.003 285¼�0.920 852. Since t0>�2.0, the null

hypothesis is accepted.

(f) To test the effect of all independent variables t,Drs2 andDrs2�t on the dependent
variable, the following hypothesis is used:

H0 : Cð2Þ ¼ Cð3Þ ¼ Cð4Þ ¼ 0 versus H1 : If Otherwise ð3:14Þ

Figure 3.7 The Wald test for the null hypothesis H0: C(2) þ C(4)¼ 0
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The Wald test can be obtained by entering C(2)¼C(3)¼C(4)¼ 0, as presented

in Figure 3.8(b). This result shows that the null hypothesis is rejected based on the

F- and chi-square-statistics with p-values¼ 0.0000. &

Example 3.3. (Application of the model in (3.4)) Corresponding to the AR(4)

growth model presented in the previous example, this example presents statistical

results, as presented in Figure 3.9, based on themodel without an intercept in (3.4), by

entering the following equation specifications:

logðrsÞ ¼ ðCð1ÞþCð2Þ�tÞ�Drs1þðCð3ÞþCð4Þ�tÞ�Drs2
þ ½arð1Þ ¼ cð5Þ; arð2Þ ¼ cð6Þ; arð3Þ ¼ cð7Þ; arð4Þ ¼ cð8Þ� ð3:15Þ

Based on this result, the p-values can be directly obtained for testing the one-sided

hypothesis on the growth rates of RS during each time period. They are H1: C(2)> 0

Figure 3.8 The Wald tests for testing (a) the hypothesis (3.13) and (b) the hypothesis (3.14)

Figure 3.9 Statistical results and a Wald test based on the model in (3.15)
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and H2: C(4)< 0. Note that the data support the hypothesis that RS has a significant

positive growth rate of 0.0168 19 for t� 119with a p-value¼ 0.0000/2 and a significant

negativegrowth rate of�0.013 025 for t> 119with ap-value¼ 0.0001/2. Furthermore,

a test for the hypothesis that both growth rates ofRS are equal to zerowill be presented,

with H0: C(2)¼C(4)¼ 0. Using the same process as presented above gives the result

in Figure 3.9 on the right-hand side. Hence, the null hypothesis is rejected based on the

F-test, with F0¼ 64.137 18, df¼ (2, 168) and a p-value¼ 0.0000.

On the other hand, a similar process may also be used to test the hypothesis that

both growth rates of RS are equal, with H0 : C(2)¼C(4). The null hypothesis is

rejected based on the F-statistic of F0¼ 53.095 00 with df¼ (1, 168) and a p-

value¼ 0.0000. &

3.3 Piecewise S-shape growth models

3.3.1 Two-piece linear growth models

Corresponding to the S-shape or bounded growth model in (2.16), a basic two-piece

S-shape growth model should be defined as

log
Yt�L1

U1�Yt

� �
¼ Cð1ÞþCð2Þ�tþmt for t � t1 ð3:16aÞ

log
Yt�L2

U2�Yt

� �
¼ Cð3ÞþCð4Þ�tþmt for t > t1 ð3:16bÞ

where L1 and U1 are defined (subjectively selected) fixed values of lower and upper

bounds of Yt in the time period t� t1 and L2 and U2 are defined values of lower and

upper bounds of Yt in the time period t> t1. Note that, in some cases, L2¼U1.

In order to perform the data analysis, first a new variable or series should be

generated, namely Lny, such as

Lny ¼ logððY�L1Þ=ðU1�YÞÞ for t � t1
Lny ¼ logððY�L2Þ=ðU2�YÞÞ for t > t1

ð3:17Þ

Then, following the growth models in (3.1) and (3.4), the S-shape growth models

with intercepts can be written as

Lny ¼ ðCð11ÞþCð12Þ�tÞþ ðCð21ÞþCð22Þ�tÞ�D2þmt ð3:18Þ
or

Lny ¼ ðCð11ÞþCð12Þ�tÞ�D1þðCð21ÞþCð22Þ�tÞþmt ð3:19Þ
Note that C(11) is the intercept of the model in (3.18) and for the model (3.19) the

intercept isC(21). Then themodel can also be presented as a growthmodel without an

intercept as follows:

Lny ¼ ðCð11ÞþCð12Þ�tÞ�D1þðCð21ÞþCð22Þ�tÞ�D2þmt ð3:20Þ
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It is recognized that it is easier or more convenient to apply the model in (3.20),

especially for piecewise time series models with multivariate exogenous variables,

whichwill be presented in Section 3.8. For thismodel it should be easy to construct the

table of its parameters, as presented in Table 3.1. Note that the symbol CV in general

indicates a defined Categorical Variable. In this case it is a dichotomous variable or

time period, based on the time t.

In general, there may be an I x J table of model parameters, namely C(ij) or C(i, j),

for i¼ 1, 2 . . . , I and j¼ 1, 2, . . . , J. In some cases, there can be a regression with

dummy variables, where the regressions within the defined time periods have unequal

sets of independent variables, so that j¼ 1,2, . . . , Ji. In this case, an incomplete table of

the model parameters might exist. For example, Table 3.2 presents an incomplete

2� 5 table by time period and independent variables, since the first regression does

not have X1 as an independent variable and the second regression does not have X3 as

an independent variable.

Corresponding to this table, the two-piece growth model can be presented as

Lny ¼ ðCð11ÞþCð12Þ�tþCð14Þ�X2þCð15Þ�X3Þ�D1
þðCð21ÞþCð22Þ�tþCð23Þ�X1þCð24Þ�X2Þ�D2þmt

ð3:21Þ

where the subscripts of the parameters C(ij) are not properly ordered, corresponding

to the jth exogenous variable used as an independent variable of the regression in the

ith time period. The general piecewise growthmodelswill be presented in Section 3.8,

which can easily be derived from the additive and interaction growth models

presented in Chapter 2. For example, this situation could happen with the growth

in productivity, gross domestic product, development, retail sales andmacroeconomic

indicators in general, because some produce factors such as internal and external

environmental factors. The process of the data analysis is straightforward using the

same steps presented above.

For illustration purposes, Figure 3.10 present two graphs of two-piece polynomial

growth models, with U1¼ L2. In practice, however, there may be either U1< L2 or

U1> L2 if there is a breakpoint at t¼ t1, e.g. for the social and economic indicators in a

regionor country before and after a critical event, such as a terrorist or a natural disaster.

There may even be three or more pieces of growth model (refer to Figure 1.24).

Table 3.1 Parameters of the model in (3.20)

CV D1 D2 Constant T

1 1 0 C(11) C(12)

2 0 1 C(21) C(22)

Table 3.2 Incomplete 2� 5 table of the model parameters

CV D1 D2 Constant (1) T (2) X1 (3) X2 (4) X3 (5)

1 1 0 C(11) C(12) — C(14) C(15)

2 0 1 C(21) C(22) C(23) C(24) —
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Example 3.4. (To generate the series Lny) For time series data, the process in

generating a new variable, namely Lny, are as follows:

(1) After opening the Demo_Modified workfile, click Sample and then enter D1¼ 1

in the IF condition window, as presented in Figure 3.11. Note that the dummy

variables have been defined or constructed for the two time periods: 1952q1 up to

1975q4 and 1976q1 up to 1996q4.

(2) Click OK, which selects a subsample for the time period 1952q1 up to 1975q4

corresponding to the dummy variable D1¼ 1.

(3) Then by clicking Quick/Generate Series . . . the window in Figure 3.11(b) is

produced, and the equation Lny¼ log((m1� 100)/(320�m1)) can be entered;

then click OK. The lower and upper bounds ofM1 are defined by using personal

judgment based on the minimum and maximum scores of M1 in the first time

period, just for illustration purposes.

(4) The scores of Lny for D1¼ 0 can be constructed by using the same process, such

as click the �Sample� option to enter D1¼ 0 in the �IF condition� window, then
clickOK, followed by selectingQuick/Generate Series . . . to enter a new variable

Lny¼ log((m1� 320)/(1400�m1)).

y

                                                 L2=U1

                          t1               θ         t 

y

                                                     L2=U1

    θ       δ                           t1                                      t

Figure 3.10 Illustrative two-piece bounded growth models

Figure 3.11 Two windows needed to generate a series in a subsample
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(5) Here, L2¼U1¼ 320 is used, which is a value between the observed values at

1975 : 4 and 1976 : 1. Any value ofU1> 320 could be used, but for the value of L2
it should be selected less than 320.

(6) In order tomake sure that the correct scores of the variable Lny have been selected

in both time periods, the scores should be presented on the screen together with

the dummy variables D1 or D2. If they are acceptable or correct scores, then the

whole data set or workfile can be saved.

(7) Note that, in some cases, theremay be an �ErrorMessage� to indicate that there is a
logarithm of a nonpositive number. If you have difficulty in generating a new

variable using EViews, go back to the Microsoft Excel file. &

Example 3.5. (Two-piece S-shape AR(1) growth model) By entering the

equation

Lny ¼ ðCð11ÞþCð12Þ�tÞþ ðCð21ÞþCð22Þ�tÞ�D2 ð3:22Þ

whereLny has been generated in the previous example, andD2¼ 1 for the second time

period and D2¼ 0 if otherwise, the results in Figure 3.12 are obtained, with the

residual graph presented in Figure 3.13.

Based on these outputs, the following notes and conclusions can be made:

(1) Such a large value ofR-squared¼ 0.870 757 indicates that the fitted and observed

values aremuch closer over time. However, themodel, in a statistical sense, is not

a good model, specifically for doing statistical inference. Note that the residual

plot shows that the sign (�) of the error terms have systematic changes over time

and the DW-statistic is very small.

(2) Hence, an attempt is made to apply an AR(1) piecewise growth model, using the

variable series

Lny c t D2D2�t ARð1Þ ð3:23Þ

Figure 3.12 Statistical results based on the model in (3.22)
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with the statistical results presented inFigure 3.14. Figure 3.15 presents its residual

graphs. Based on this model the following notes and conclusions can be made:
. By comparing the residual graphs in Figures 3.13 and 3.15, it can be concluded

that the AR(1)model in (3.22) is a better model, with theDW-statistic¼ 2.486.

Figure 3.14 Statistical results based on the model in (3.23)

Figure 3.13 Residual graph of the regression in Figure 3.12

Figure 3.15 Residual graph of the regression in Figure 3.14
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. The joint effect of the independent variables, namely t, D2 and t�D2, is
significantly based on the F-statistic of 2032.852 with a p-value¼ 0.0000.

However, each of these variables has an insignificant adjusted effect, so that a

better model should be found in the statistical sense.

(3) For illustration purposes, Figures 3.16 and 3.17 present statistical results based on

the following two equation specifications respectively:

Lny t t�D1 c t ARð1Þ ð3:24Þ
Lny D1 t�D1D2D2�t ARð1Þ ð3:25Þ

(4) Considering the three AR(1) models in (3.23), (3.24) and (3.25), it is found that

they are in fact the same two-piece regressions. Write the regression functions

within each time period based on the three outputs as an exercise.

(5) However, the output in Figure 3.17 does not present the F-statistic, compared to

the other outputs.

Figure 3.16 Statistical results based on the model in (3.24)

Figure 3.17 Statistical results based on the model in (3.25)
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(6) Furthermore, note that a higher-order autoregressive growthmodel, as well as the

lagged endogenous variables, could be used in many cases, as presented in the

following example. &

Example 3.6. (Two-piece S-shape LV(1) and LVAR(1,1) growth models) For a

further comparison, Figure 3.18 presents statistical results based on a two-piece S-

shape LV(1)_GM in (3.26) and Figure 3.19 presents the statistical results based on the

LVAR(1,1)_GM in (3.27):

Lny D1 t�D1D1�Lnyð�1ÞD2D2�t D2�Lnyð�1Þ ð3:26Þ
Lny D1 t�D1D1�Lnyð�1ÞD2D2�t D2�Lnyð�1Þ ARð1Þ ð3:27Þ

&

Example 3.7. (Two-piece S-shape LVAR( p,q) growth models) By experimen-

tation, it has been found that several good fit models can be applied to represent the

adjusted effect of the time t within each defined time period. One of those models is

presented in Figure 3.19(a) with its reducedmodel presented in Figure 3.19(b), which

is considered to be the best model for an illustration. Based on the results in

Figure 3.19(b) the following notes and conclusions may be made:

(1) In a statistical sense, thismodel is a goodfitmodel, since all independent variables

are significant with a sufficiently large value of the DW-statistic.

(2) Theregressioninthefirst timeperiodhas tandLny(�1)asindependentvariables,but

the regression in the second timeperiodhas t andLny(�2) as independent variables.

Therefore, thismodel can be considered as an unexpected two-piece growthmodel.

(3) These findings indicate that, based on time series data in various fields, a good fit

piecewise S-shape LVAR( p,q) growth model could be found by using the

Figure 3.18 Statistical results based on two-piece growthmodels: (a) the LV(1)_GM in (3.26)

and (b) the LVAR(1,1)_GM in (3.27)
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trial-and-error methods in order to obtain relevant values of p and q. It is

recognized that it is possible to have various sets of lagged endogenous variables

within each time period, but only one set of autoregressive (AR) indicators should

be used for all units of observations or both time periods, as presented in

Figure 3.19, as well as in the previous piecewise AR models. &

3.4 Two-piece polynomial bounded growth models

For illustration purposes, only three special cases will be presented: (i) the quadratic

growthmodel, (ii) the third-degree growthmodel and (iii) the generalized exponential

growth model.

3.4.1 Two-piece quadratic growth models

Special cases of quadratic growth models are defined as

Lny ¼ ðcð11Þþ cð12Þ�tÞþ ðcð21Þþ cð22Þ�ðt�uÞ2Þ�D2þmt ð3:28Þ

Lny ¼ ðcð11Þþ cð12Þ�tÞþ ðcð21Þþ cð22Þ�ðt�uÞ2Þ�D1þmt ð3:29Þ
and

Lny ¼ ðCð11ÞþCð12Þ�tÞ�D1þðCð21ÞþCð22Þ�ðt�uÞ2Þ�D2þmt ð3:30Þ
where thedependent variableLny is definedas in (3.17) andu is a selectedfixednumber.

Note that based on the model in (3.30), the following two regressions can be derived:

Lny ¼ Cð11ÞþCð12Þ�tþmt; t � t1ðD1 ¼ 1;D2 ¼ 0Þ
Lny ¼ Cð21ÞþCð22Þ�ðt�uÞ2 þmt; t > t1ðD1 ¼ 0;D2 ¼ 1Þ ð3:31Þ

Figure 3.19 Statistical results based on two-piece S-shape growth models: (a) an

LVAR(2,2)_GM and (b) its reduced model

136 Time Series Data Analysis Using EViews

www.trading-software-collection.com



Hence, the model in (3.30) represents a classical growth model in the first time

period and a quadratic growth model in the second time period with a maximum or

minimum value of Lny¼C(21) for t¼ u. This model can be generalized to the

quadratic growth models in both time periods, with the following equation:

Lny ¼ ðCð11ÞþCð12Þ�tþCð13Þ�t2Þ�D1
þðCð21ÞþCð22Þ�tþCð22Þ�t2Þ�D2þmt

ð3:32Þ

3.4.2 Two-piece third-degree bounded growth model

A specific two-piece third-degree growth model is defined as

Lny ¼ ðCð11ÞþCð12Þ�f ðtÞÞ�D1þðCð21ÞþCð22Þ�tÞD2þmt ð3:33Þ

where the dependent variable Ln(y) is defined as in (3.17) and f(t)¼ (t�b)2(t� d),
where b and d, with b< d, are fixed selected values corresponding to estimated or

predicted maximum and minimum observed values of Ln(y)¼ (Y� L1)/(U1� Y)

during thefirst defined timeperiod.Thismodel represents the following tworegressions:

Lny ¼ ðCð11ÞþCð12Þ�ðt�bÞ2ðt�dÞþmt ð3:34aÞ

Lny ¼ ðCð21ÞþCð22Þ�tþmt ð3:34bÞ

Based on the regression in (2.37), the first-order condition for the extreme values of

Lny with respect to the time t is as follows:

dLny

dt
¼ Cð12Þ 2ðt�bÞðt�dÞþ ðt�bÞ2

h i
¼ 0 ð3:35Þ

Then t�1 ¼ b and t�2 ¼ ðbþ 2dÞ=3,which can lead to aminimumormaximumvalue

of Lny depending on the sign of the parameter C(12), corresponding to the sign of the

second-order condition

d2Lny

dt2
¼ Cð12Þ 2ðt�dÞþ 4ðt�bÞ½ � ð3:36Þ

and

Lny00ðt�1Þ ¼
d2Lny

dt2
ðt�1Þ ¼ 2Cð12Þðb�dÞ

Lny00ðt�2Þ ¼
d2Lny

dt2
ðt�2Þ ¼ �2Cð12Þðb�dÞ

ð3:37Þ
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Therefore, for C(12)< 0 and selected b< d, the function has a minimum value of

Lnyðt�1Þ ¼ Cð11Þ since Lny00ðt�1Þ > 0 and a maximum value of Lnyðt�2Þ ¼ Cð11Þþ
4Cð12Þðb�dÞ3/ 7 because Lny00ðt�1Þ < 0.

3.4.3 Two-piece generalized exponential growth model

As an extension of the bounded growthmodel in (3.33),Agung (1999a, 2007) presents

a two-piece generalized exponential growth model or a third-degree polynomial

growth model as follows:

Lny ¼ ðCð11ÞþCð12Þ�F1ðtÞÞ�D1
þðCð21ÞþCð22Þ�F2ðtÞÞ�D2þmt

ð3:38Þ

where F1(t)¼ (t� a)2(t� b) and F2(t)¼ (t� c)2(t� d) with values of a, b, c and d

selected as constant numbers. These numbers should be selected by taking into

account the observed relative minimum and maximum values of the dependent

variable Lny, as well as their predicted values, in the case of forecasting. For example,

F1(t) is used for the estimation, so the values of a and b are selected based on the

observed values, and F2(t) will be used in forecasting, so alternative values of c and d

are subjectively selected.

3.5 Discontinuous translog linear AR(1) growth models

Corresponding to the two-piece growth models presented in the previous sections are

the following possible translog (i.e. translogarithmic) linear AR(1) growth models:

logðytÞ ¼ Cð1ÞþCð2Þ�logðtÞþðCð3ÞþCð4Þ�logðtÞÞ�D1þ½arð1Þ ¼ Cð5Þ� ð3:39Þ
logðytÞ¼ðCð1ÞþCð2Þ�logðtÞÞ�D1þðCð3ÞþCð4Þ�logðtÞÞ�D2þ½arð1Þ¼Cð5Þ� ð3:40Þ
logðytÞ¼Cð1ÞþCð2Þ�logðtÞþCð3Þ�ðlogðtÞ�logðt1ÞÞ�D2þ½arð1Þ¼Cð4Þ� ð3:41Þ
Furthermore, these translog growth models could easily be extended to the

piecewise S-shape growthmodels, using dependent variablesLny as defined in (3.17).

3.6 Alternative discontinuous growth models

In fact, all two-piece growth models presented in the sections above are very closely

related to the models presented in Chapter 2. Note that within each time interval, in

fact, there are continuous growth models. Hence, a two-piece growth model can be

considered as a linear combination of any two continuous growthmodels presented in

Chapter 2.

Furthermore, the general discontinuous growthmodels should be easy to develop or

derive using all of the continuous growthmodels presented inChapter 2, including the

advanced growth models having interaction factors as independent variables, the

trigonometric models in Section 2.10.5 and the multivariate growth models. Hence,

they will not be presented in detail again here. The data analysis using each of those
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discontinuous growth models are straightforward using the same process previously

presented.

The following examples present additional illustrative graphical representations of

discontinuous growthmodels without detailed results of data analysis and discussions.

Example 3.8. (Residual plots of Two-piece linear models) For a comparison,

Figure 3.20 presents the residual graphs based on two models of two-piece linear

models:

(1) The graph in Figure 3.20(a) is the residual graph of a two-piece linear model or

multiple regressions of RS on four independent variables, namely Drs1, Drs1�t,
Drs2 andDrs2�t, without an intercept. The equation specification of the model is

as follows:

RS ¼ Cð1Þ�Drs1þCð2Þ�Drs1�tþCð2Þ�Drs2þCð4Þ�Drs2�t ð3:42Þ
with a pair of simple regression functions

RS ¼ 0:4779þ 0:0724�t for t < 119

¼ 22:0023�0:1029�t for t > 119
ð3:43Þ

(2) The graph in Figure 3.20(b) is the residual graph of a two-piece AR(1) linear

model with the following equation specification:

logðrsÞDrs1Drs1�logðtÞDrsð2ÞDrs2�logðtÞ arð1Þ ð3:44Þ
with a pair of regression functions

LOGðRSÞ¼�2:4006þ0:9628�LOGðTÞþ½ARð1Þ¼ 0:8471� for t¼< 119

¼8:8839�1:4223�LOGðTÞþ½ARð1Þ¼ 0:8471� for t¼< 119
ð3:45Þ

Figure 3.20 Comparison between residual plots of two-piece regressions: (a) simple linear

model in (3.42) and (b) the AR(1) model in (3.44)

Discontinuous Growth Models 139

www.trading-software-collection.com



Note that, in Figure 3.20(b), the graphs of the two-piece regression functions

could not be clearly identified because the indicator AR(1) is used, so that the

graph of the observed and fitted values are very close, corresponding to a high

value of R-squared¼ 0.942 821. &

Example 3.9. (Residual graphs of discontinuous growth models) Figure 3.21(a)

and (b) present the residual graphs of the two-pieces classical growth models, as

presented in (2.3), of the variableM1 and its corresponding AR(1)_GM. The graph in

Figure 3.21(a) is the residual graph of the growth model of M1 with a corner or

discontinuity point at Year¼ 80, with the following equation specification:

logðm1Þ c YearDm1�ðYear�80Þ ð3:46Þ
where Dm1 is a dummy variable, generated by using

Dm1 ¼ 1�ðYear ¼< 80Þþ 0�ðYear > 80Þ ð3:47Þ

For comparison, the graph in Figure 3.21(b) is the residual graph of a two-piece

AR(1)_GM, with the following equation specification:

logðm1Þ c YearDm1�ðYear�80Þ arð1Þ ð3:48Þ
Note that both graphs of the observed and fitted values are very close, correspond-

ing to values of R-squared¼ 0.985 662 and 0.999 563 respectively. Therefore it is not

possible to identify the positions of the corner points. However, their residual graphs

are quite different. &

Example 3.10. (Step regression function having one breakpoint) Figure 3.22(a)

and (b) presents the step growth curve of a hypothetical time seriesY3 and a simpleAR

(1) model with trend respectively. The graph in Figure 3.22(b) is the residual graph

Figure 3.21 Comparison between residual plots of two-piece regressions: (a) classical

growth models in (3.46) and (b) AR(1)_GM in (3.48)
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obtained by using the following equation specification:

Y3 ¼ Cð1ÞþCð2Þ�tþ ½ARð1Þ ¼ Cð3Þ� ð3:49Þ
with R-squared¼ 0.997 07 and the DW-statistic¼ 2.022 607. Note that this model is

not a classical growth model, because it has a dependent variable Y3 instead of

log(y3). Furthermore, note that the AR(1) model in (3.49) does not have a dummy

variable to identity the existence of a breakpoint. However, the breakpoint can be

identified by a large value of the error terms at the time Year¼ 80 or by the residual

plot having a long vertical line at Year¼ 80.

For comparison, if the simple step regression model is used,

Y3 ¼ Cð1ÞþCð2Þ�tþðCð3ÞþCð4Þ�tÞ�D2 ð3:50Þ
gives the results in Figure 3.23, with its residual graph in Figure 3.24. Note that there are

problemswith a small value of theDW-statistic and the pattern of the residual graph, even

though theR-squaredvalue ismuchcloser toone.Hence it is suggested that autoregressive

or lagged variable growth models should be applied. As an illustration, Figure 3.25

presents the results of an AR(1) model, with its residual graph in Figure 3.26. &

Figure 3.22 (a) A step growth curve of a time series Y3 and (b) its AR(1) model with trend

in (3.49)

Figure 3.23 Statistical results based on the model in (3.50)
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Example 3.11. (Step growth model with one breakpoint) Suppose the statistical

results presented in Figure 3.27 are based on a growth model of Y, with its residual

graph in Figure 3.28. Then anAR(1) classical growthmodel has been used as follows:

logðyÞ ¼ b0 þb1
�tþmt

mt ¼ r1mt�1 þ «t
ð3:51Þ

Figure 3.24 Residual graph of the regression in Figure 3.23

Figure 3.25 Statistical results based on the AR(1) model of (3.50)

Figure 3.26 Residual graph of the regression in Figure 3.25
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Without having the residual graph and observing only the values of R-squared,

adjustedR-squared and theDW-statistic, it might be thought that thismodel is the best

growth model for the series Yt. Do you also think so?

However, the residual graph clearly shows that there is a breakpoint, corresponding

to a long vertical line presented in the residual graph, as well as the two levels of the

actual and fitted graphs. Therefore, a growth rate of b̂1 ¼ ĉð2Þ ¼ 0:6358 cannot be

presented for the series Ytwithin thewhole time period. Thenwhat should be explored

in order to obtain a better picture of the series Yt? Observe the following example.&

Figure 3.27 Statistical results based on an AR(1)_GM in (3.51)

Figure 3.28 Residual graph of the regression in Figure 3.27

Example 3.12. (Growth model with two breakpoints) Figure 3.29(a) presents a

scatter graph with a regression line of a hypothetical time series Y. For comparison,

Figure 3.29(b) presents the residual graph of the simple linear regression of Y at the

time t, with the regression function with the p-value of the t-statistic in [�], as follows:

Y ¼ �125: 4393
½0:00001�

þ 8:0958
½0:0000�

�t ð3:52Þ

Discontinuous Growth Models 143

www.trading-software-collection.com



Even though the time t has a highly significant effect, both graphs in Figure 3.29 (the

scatter graph with regression and the residual graph) show that the simple linear

regression is not an appropriate model to be applied. Therefore, a three-piece growth

model should be used, which will be presented in the following example. &

Example 3.13. (Three-piece classical growth model) Corresponding to the

classical growth model in (2.3), Figure 3.30 presents the statistical results of a

three-piece classical growth model as follows:

logðYÞ ¼ ðcð1Þþ cð2Þ�tÞþ ðcð3Þþ cð4Þ�tÞDy2þðcð5Þþ cð6Þ�tÞDy3 ð3:53Þ

with its residual graph in Figure 3.31. The growth model has two dummy variables

Dy2 and Dy3, out of the three possible dummies, namely Dy1, Dy2 and Dy3, which

can be defined for the three time periods observed in the previous example.Hence, this

Figure 3.29 (a) Scatter graph with regression of Yon the time t and (b) the residual graph of

the regression (3.52)

Figure 3.30 Statistical results based on the model in (3.53)
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model in fact represents three classical growth models as follows:

logðYÞ ¼ Cð1ÞþCð2Þ�t
logðYÞ ¼ Cð1ÞþCð3Þþ ðCð2ÞþCð4ÞÞ�t and

logðYÞ ¼ Cð1ÞþCð5Þþ ðCð2ÞþCð6ÞÞ�t
ð3:54Þ

within the first, second and third time intervals respectively.

Note that thismodel has a very small value of theDW-statistic and its residual graph

indicates an autoregressive problem. Hence, it is suggested that an autoregressive or

lagged-variable model be applied. For this reason and for comparison, three alterna-

tive models with their equations and statistical results are presented in Figures 3.32 to

3.34 together with their residual graphs in Figures 3.35 to 3.37 respectively. Based on

these results, the following notes and conclusions are derived:

(1) Figure 3.32 presents statistical results and its residual graphs in Figure 3.35, based

on a second-order lagged-variable three-piece growth model, namely the three-

piece LV(2)_GM. Its residual graph as well as the small value of the DW-statistic

show that the model should be modified. In other words, the model is not an

acceptable time series model, in a statistical sense.

Figure 3.31 Residual graph of the regression in Figure 3.30

Figure 3.32 Statistical results based on a three-piece LV(2)_GM
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Figure 3.33 Statistical results based on a three-piece LVAR(1,1)_GM

Figure 3.34 Statistical results based on a three-piece AR(1)_GM

Figure 3.35 Residual graph of the regression in Figure 3.32
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(2) Figure 3.33 presents statistical results based on a lagged-variable autoregressive

three-piecegrowthmodel of the order (1,1), namely a three-pieceLVAR(1,1)_GM.

Compared to the first two models, this model is the best one, as presented by its

residual graph in Figure 3.36. However, corresponding to the parameter C(7), log

(Y(�1)) is insignificant with a large p-value¼ 0.5484. On the other hand, this

figure also presents a note �Convergence not achieved after 500 iterations,� which
indicates that the statistical results are not the optimal estimates. A decision was

therefore made to produce a reduced model, as presented in Figure 3.34.

(3) The residual graphs in Figures 3.36 and 3.37 are very similar, since the reduced

model is obtained by deleting an independent variable log(Y(�1)) which has such

a large p-value. However, the results in Figure 3.34 also present the note

�Convergence not achieved after 500 iterations.�
(4) Moreover, the residual graphs in Figures 3.36 and 3.37 also present the hetero-

skedasticity of their error terms. For these reasons an attempt is made to apply the

White and the Newey–West estimation methods in the following examples.

However, other forms of the model using the three defined dummy variables will

also be presented. &

Figure 3.36 Residual graph of the regression in Figure 3.33

Figure 3.37 Residual graph of the regression in Figure 3.34
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Example 3.14. (The White and Newey–West estimation methods) As a modi-

fication of the three-piece growth model presented in the previous example, a three-

piece AR(1)_GM is considered as follows:

logðYÞ dy1 dy1�t dy2 dy2�t dy3 dy3�t arð1Þ ð3:55Þ
Figure 3.38 presents statistical results using the White estimation method with its

residual graph in Figure 3.39. This figure shows that the convergence of the estimation

process is achieved after 110 iterations, with a sufficiently large value of the DW-

statistic. Therefore, it can be concluded that themodel in (3.55) is an acceptableAR(1)

model. Its estimation equation can easily bewritten based on the output or by selecting

Views/Representations in Figure 3.38.

Figure 3.38 The White estimates of the three-piece AR(1)_GM in (3.55)

Figure 3.39 Residual graph of the regression in Figure 3.38
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Furthermore, by using the Newey–West estimationmethod, the statistical results in

Figure 3.40 are obtained, with its residual graph in Figure 3.41.

BylookingatthestatisticalresultsbasedontheAR(1)_GMbyusingtheOLS,White

andNewey–Westestimationmethods,thefollowingnotesandconclusionsareobtained:

(1) The OLS, White and Newey–West estimation methods will be exactly the same

regression functions. Therefore, they will have exactly the same residual graphs,

as well as the same values of the DW-statistic. As a result, their residual graphs

cannot be used to differentiate the quality of their statistical results.

(2) The White and Newey–West estimation methods give different estimates of the

standard error of themodel parameters. As a result, theywill give different values

of the t-statistic, even though all reject the null hypothesis H0: C(k)¼ 0 for each

k¼ 1, . . . ,7 and have such small p-values.

(3) Then a question can be asked: �Which estimation method would you think is the

best?� Since the White estimation method only takes into account the unknown

heteroskedasticity, while the Newey–West method takes into account both the

unknown autocorrelation and heteroskedasticity, then in general the Newey–West

estimation method would be applied.

Figure 3.40 The Newey–West estimates of the three-piece AR(1)_GM in (3.55)

Figure 3.41 Residual graph of the regression in Figure 3.40
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(4) Further experimentation has been done using the Newey–West estimation

method, but with the equation specification given below (see Figure 3.42):

LogðYÞ ¼ ðCð1ÞþCð2Þ�TÞ�DY1þðCð3ÞþCð4ÞTÞ�DY2
þðCð5ÞþCð6Þ�TÞ�DY3þ ½ARð1Þ ¼ Cð7Þ� ð3:56Þ

However, the statistical results in Figure 3.42 present a note �Convergence not
achieved after 500 iterations.�Note that this model and the model in (3.55) are in

fact exactly the same regression, in theoretical statistics. It is surprising

that Figure 3.43 presents the same estimates for the parameters but different

t-statistics without a statement �Newey–West . . . ,� as presented in Figure 3.43.

Based on these findings, it can be stated that:

(i) EViews should use different numerical processes in computing the estimates

for the two equation specifications, namely (3.55) and (3.56).

(ii) The equation specification in (3.55) should be used in order to obtain the

Newey–West estimates. &

Figure 3.43 Residual graph of the regression in Figure 3.42

Figure 3.42 Statistical results using the equation specification in (3.56)
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Example 3.15. (A set of four growthmodels) Based on data in the Demo-Modified

workfile, four dummy variables dq1, dq2, dq3 and dq4 are generated corresponding to

the first, second, third and fourth quarterly time series data respectively. Hence, here a

set of four growth models will be presented, one for each quarter. Two sets of

regressions will be presented, such as (i) a set of four AR(1) growth models through

the origin or without an intercept and (ii) a set of four AR(1) growth models with an

intercept.

(i) AR(1) Growth Model Through the Origin

The equation specification entered is

logðm1Þ ¼ ðCð11ÞþCð12Þ�tÞ�dq1þðCð21ÞþCð22Þ�tÞ�dq2
þðCð31ÞþCð32Þ�tÞ�dq3þðCð41ÞþCð42Þ�tÞ�dq4þ½arð1Þ¼Cð1Þ�

ð3:57Þ
This equation is a representation of a set of four growth models, as follows:

logðm1Þ ¼ ðCð11ÞþCð12Þ�tÞþ½arð1Þ¼Cð1Þ� for q¼1

logðm1Þ ¼ ðCð21ÞþCð22Þ�tÞþ½arð1Þ¼Cð1Þ� for q¼2

logðm1Þ ¼ ðCð31ÞþCð32Þ�tÞþ½arð1Þ¼Cð1Þ� for q¼3

logðm1Þ ¼ ðCð41ÞþCð42Þ�tÞþ½arð1Þ¼Cð1Þ� for q¼4

ð3:58Þ

One of themain objectives in using the equation specification in (3.57) is to present

a special table for the model parameters as presented in Table 3.3. Corresponding

to this table, the statistical results will directly present the growth rates (GRs) of the

endogenous variable within each quarter, presented by the parameters C(12), C

(22), C(32) and C(42).

Based on the statistical results in Figure 3.44, with its residual graph in

Figure 3.45, the following findings and testing hypotheses are obtained:

(1) The slopes of the regressions for the growth rates of the money supply,M1,

for the first, second, third and fourth quarters are Ĉð12Þ ¼ 16:639%;
Ĉð22Þ ¼ 16:691%; Ĉð32Þ ¼ 16:607% and Ĉð42Þ ¼ 16:652%.

(2) Each growth rate is significantly greater than zero, based on the t-statistic,

with a p-value¼ 0.0000.

Table 3.3 The parameters of the models in (3.57) and (3.58)

Quarter

Q¼ 1 Q¼ 2 Q¼ 3 Q¼ 4

Intercepts C(11) C(21) C(31) C(41)

Slopes/GR C(12) C(22) C(32) C(42)
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(3) For testing the null hypothesis of no growth rate differences between the four

quarters, namely H0: C(12)¼C(22)¼C(32)¼C(42), a chi-square-statistic

is obtained: x2
0 ¼ 6:9 29 683, with df¼ 3 and a p-value¼ 0.0742. Therefore,

at a significant level of 5%, the four growth rate parameters (or the

subpopulation growth rates) do not have significant differences.

(4) However, by doing pairwise comparisons, it is found thatH0:C(22)¼C(32) is

rejected based on the F-statistic: F0¼ 5.227 54 with df¼ (1, 170) and a

p-value¼ 0.0211, as well as the chi-square-statisticx2
0 ¼ 5:227 54 with df

1 and a p-value¼ 0.0199. In fact, based on the t-statistic with a p-value¼
0.0211/2¼ 0.010 55, it can be concluded that the growth rate in the second

quarter is significantly greater than in the third quarter.

(5) Even though the regression function in Figure 3.44 represents a set of four

regressions, note that their differences cannot be identified based on the

actual and fitted graphs in Figure 3.45.

Figure 3.44 Statistical results based on the model in (3.57)

Figure 3.45 Residual graph of the regression in Figure 3.44
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(6) Furthermore, in order to have the Newey–West estimates, the following

equation specification has to be entered or used:

logðm1Þ dq1 dq1�t dq2 dq2�t dq3 dq3�t dq4 dq4�t arð1Þ ð3:59Þ
In this case, EViews will record or save the equation of the model in the

following format, where the symbolsC(k), k¼ 1, . . ., 9 should be used for the
testing hypothesis:

logðm1Þ ¼ cð1Þ�dq1þ cð2Þ�dq1�tþ cð3Þ�dq2þ cð4Þ�dq2�t
þ cð5Þ�dq3þ cð6Þ�dq3�tþ cð7Þ�dq4þ cð8Þ�dq4�t
þ ½arð1Þ ¼ cð9Þ�

ð3:60Þ

(ii) AR(1) Growth Model With an Intercept

The equation specification of the model is

logðm1Þ ¼ ðCð11ÞþCð12Þ�tÞþðCð21ÞþCð22Þ�tÞ�dq2
þðCð31ÞþCð32Þ�tÞ�dq3þðCð41ÞþCð42Þ�tÞ�dq4þ½arð1Þ¼Cð1Þ�

ð3:61Þ
This model presents the following four growth models:

logðm1Þ ¼ ðCð11ÞþCð12Þ�tÞþ½arð1Þ¼Cð1Þ� for q¼1

logðm1Þ ¼ ðCð11ÞþCð21ÞþfC12ÞþCð22Þg�tÞþ½arð1Þ¼Cð1Þ� for q¼2

logðm1Þ ¼ ðCð11ÞþCð31ÞþfCð12ÞþCð32Þg�tÞþ½arð1Þ¼Cð1Þ� for q¼3

logðm1Þ ¼ ðCð11ÞþCð41ÞþfCð12ÞþCð42Þg�tÞþ½arð1Þ¼Cð1Þ� for q¼4

ð3:62Þ
The parameters of these models and the growth rate differences can be

summarized as shown in Table 3.4. Compare this table with Figure 3.44 based

on the AR(1) growth model in (3.57).

The statistical results are presented in Figure 3.46, with its residual graph in

Figure 3.47. Based on these results and the results in Table 3.4, the following

notes and conclusions are obtained:

(1) Figure 3.46 shows that the growthmodel for the first quarter, namelyQ¼ 1, is

selected as the reference group. Q¼ 2, 3 or 4 could also be used as the

reference group for alternative models.

Table 3.4 The parameters of the models in (3.61) and (3.62)

Differences

Q¼ 1 Q¼ 2 Q¼ 3 Q¼ 4 Q2-Q1 Q3-Q1 Q4-Q1

Intercept C(11) C(11) þ C(21) C(11) þ C(31) C(11) þ C(41) C(21) C(31) C(41)

Slopes/GR C(12) C(12) þ C(22) C(12) þ C(32) C(12) þ C(42) C(22) C(32) C(42)
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(2) C(22),C(32) andC(42) provide the differences in the growth rates of the first

quarter with the second, third and fourth quarters respectively.

(3) At a significant level of 10%, the null hypothesis H0: C(22)¼ 0 is accepted,

based on the t-test, with a p-value¼ 0.1489, and similarly for H0: C(32)¼ 0

and H0: C(42)¼ 0 with p-values of 0.4509 and 0.7240 respectively.

(4) However, for testing the right-hand side hypothesisH0:C(22)� 0 versusH1:

C(22)> 0, at a significant level of 10%, the null hypothesis is rejected based

on the t-test with a p-value¼ 0.1489/2¼ 0.074 45< 0.10. Hence, the growth

rate ofM1 in the second quarter is significantly greater than in the first quarter.

(5) Note that the four growth functions will present four heterogeneous regres-

sion lines in a two-dimensional coordinate system with log(m1) and t axes.

(6) The values of R-squared, adjusted R-squared, the DW-statistic and other

statistics should be exactly the same as those based on the firstmodel, because

both models in (3.59) and (3.61) present the same sets of four AR(1) growth

models.

Figure 3.46 Statistical results based on the model in (3.61)

Figure 3.47 Residual histogram of the regression in Figure 3.46

154 Time Series Data Analysis Using EViews

www.trading-software-collection.com



(7) Finally, even though most of the independent variables are insignificant,

either one of the variables cannot be deleted in order to have a reducedmodel,

since each parameter has a specific characteristic or position. As an exercise,

delete one of the independent variables and then construct a table of its model

parameters.

(8) The residual histogram in Figure 3.47 presents an indication of outlier(s) with

a very large positive value of skewness. The outlier(s) can also be identified by

using the residual box plot, as presented in Section 1.4.2, and the outlier(s)

should be treated by using the process suggested in Example 2.4. Do this as an

exercise. &

3.7 Stability test

3.7.1 Chow�s breakpoint test

Note that a breakpoint of any macroeconomic indicator or growth curve over time

could be identified by an analyst or a researcher even before having or collecting the

corresponding time series data. For example, it should already be known that any

macroeconomic indicator in Indonesia had several breakpoints over the last five or ten

years because of the first and second Bali bombings and other environmental factors.

Hence, it is possible to apply the discontinuous growth models directly.

Considering that any growth curve might have a breakpoint, Chow presents a

statistic that can be used to test the hypothesis that there is a break at a predetermined

time point(s). As an illustration look at the growth curves of GDP,M1, PR and RS in

Figure 3.48. Based on the graphs ofGDP,M1 and PR, it is very difficult to identify or

estimate whether they have a breakpoint or not and, if it does exist, where that

breakpoint is. Hence, some critical events should be used in the corresponding region

of observation (population) that can be identified as the cause of the breakpoint.On the

other hand, based on the graph of RS, several breakpoints can easily be identified.

Example 3.16. (Identifying a breakpoint) The classical AR(1) growth model of

M1can be seen by entering

logðm1Þ c t arð1Þ ð3:63Þ

in the �Equation specification� window, with the residual graph presented in

Figure 3.49. Based on this graph, a guess can at least be made that there is a

breakpoint, because the residual graph presents several high or long vertical lines.

In the first trial, two time points 1970 : 3 and 1987 : 1 are chosen corresponding to

the two highest observed absolute values of the error term. Then, the Chow breakpoint

test should be done as follows:

(1) Having the result on the screen, click View . . . and then select Stability Tests/

Chow Breakpoint Test . . . . click. This will give the window of the Chow tests on

the screen, as presented in Figure 3.50, together with its statistics.
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(2) Byentering �1970 : 31987 : 1� in thewindowshownon the screen and then clicking

OK, the Chow Breakpoint Test will appear on the right-hand side in Figure 3.50.

(3) Hence, based on a p-value¼ 0.0000, the null hypothesis of no two breakpoints at

time 1970 : 3 and 1987 : 1 is rejected.

(4) Note that the observed values at the two breakpoints could be outliers. If this is the

case then a second data analysis may be done by using the alternative methods

suggested in Example 2.4. &

Figure 3.48 Growth curves of the variables GDP, M1, PR and RS

Figure 3.49 Residual graph of the model in (3.63)
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Example 3.17. (Effects of breakpoints or outliers) Corresponding to the two

breakpoints or outliers of the observed values of log(m1), an attempt will now be

made to present a method of how to explore the effects of those points on the growth

model. In order to study the effect of the two breakpoints, two dummy variables should

be defined, namely Dbp1¼ 1 if t¼ 1970 : 3¼ 79 and Dbp1¼ 0 if otherwise; and

Dbp2¼ 1 if t¼ 1980 : 1¼ 105 and Dbp2¼ 0 if otherwise. Then the analysis can be

done by using two alternative equation specifications as follows:

logðm1Þ ¼ cð1Þþ cð2Þ�tþ cð3Þ�Dbp1þ cð4Þ�Dbp2
þ cð5Þ�t�Dbp1þ cð6Þ�t�Dbp2þ ½arð1Þ ¼ cð7Þ� ð3:64Þ

logðm1Þ ¼ cð1Þþ cð2Þ�tþ cð3Þ�Dbp1þ cð4Þ�Dbp2þ ½arð1Þ ¼ cð7Þ� ð3:65Þ

Table 3.5presents the classical growthmodels in (3.64) and (3.65) by the twodefined

dummy variables. Based on this table, the following specific characteristics of each

model can be seen:

(i) The model in (3.64) represents a set of four heterogeneous regressions (a set of

regressions having different slopes), as presented in column (3), where the

Table 3.5 The classical growth models in (3.64) and (3.65) by the dummy variables Dbp1

and Dbp2

Dbp1 Dbp2 Growth models in (3.64) Growth models in (3.65)

(1) (2) (3) (4)

0 0 c(1) þ c(2)�t c(1) þ c(2)�t
1 0 c(1) þ c(2)�t þ {c(3) þ c(5)�t} c(1) þ c(2)�t þ c(3)

0 1 c(1) þ c(2)�t þ {c(4) þ c(6)�t} c(1) þ c(2)�t þ c(4)

1 1 c(1) þ c(2)�t þ {c(3) þ c(4)}

þ {c(5) þ c(6)}�t
c(1) þ c(2)�t þ {c(3) þ c(4)}

Figure 3.50 The Chow breakpoint tests for the variable M1
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regression for Dbp1¼Dbp2¼ 0 is taken as the reference. Hence, this model will

study or test the effects of the breakpoints or outliers on the growth rate of the

variable M1, indicated by the parameters c(5), c(6) as well as {c(5) þ c(6)}. Do

this as an exercise.

(ii) The model in (3.65) should be considered as a reduced model of (3.64) under

the assumption that c(5)¼ c(6)¼ 0. Therefore, this model represents a set of four

homogeneous regressions (a set of regressions having equal slopes), as presented

in column (4). This model can be considered as a covariance analysis model,

which is used to study the intercept differences between the four homogeneous

regressions. Those intercept differences are known as the adjusted effect

differences of the time t on log(m1). &

Example 3.18. (Testing the breakpoints Y in Example 3.13) Example 3.13

presents a three-piece growth model of a hypothetical time series Y having two

breakpoints at 1972Q1 and 1993Q4. The existence of these breakpoints will be tested

using the Chow test. Figure 3.51 presents the statistical results of the test by entering

the equation specification as follows:

Y c t arð1Þ ð3:66Þ
&

3.7.2 Chow�s forecast test

The processes of the Chow forecast test is first to estimate the model based on a

subsample comprised of the first T1 observations. Then this estimated model will be

used to predict the values of the dependent variable in the remaining T2 data points.

This test will be used to test the hypothesis on the stability of the estimated relation

over the two subsamples. The Chow forecast test can be used with least squares and

two-stage least squares regressions.

EViews presents two statistics, the F-statistic and the log likelihood ratio (LR)

statistic. The F-statistic follows an exact finite sample F-distribution if the errors are

independent and, identically, normally distributed. The LR test statistic has an

asymptotic chi-square distribution with df¼ T2 under the null hypothesis of no

structural change.

Figure 3.51 The Chow breakpoint test for the variable Y, based on the model in (3.66)
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Example 3.19. (Chow�s forecast test for log(m1)) Considering the AR(1) growth

model of the variable M1 in (3.63) for the whole data set from 1952 : 1 to 1996 : 4,

Chow�s forecast test will now be applied. Having the statistical results on the screen,

click or select View/Stability Tests/Chow Forecast Test . . . .

Then by entering 1987 : 1 as the first observation in the forecast period, the

results in Figure 3.52(a) are obtained. This figure shows that, at a significant level

of 0.10, the null hypothesis of no structural change of log(m1) before and after

1987 : 1 is accepted based on the F-statistic with a p-value¼ 0.1401, but it is

rejected based on the LR-statistic with a p-value¼ 0.0343. This example illustrates

the possibility that two tests may yield conflicting conclusions, but in a particular

case, which one is more appropriate or suitable? By observing the growth curve of

the time series M1, it could be said that there is a structural change of log(m1)

before and after 1987 : 1, showing that there is a significant structural change of log

(m1) before and after 1987 : 1 based on the LR test. Hence, in the statistical sense,

the model based on the subsample 1952 : 1 to 1987 : 1 is not an acceptable model to

be used in forecasting.

On the other hand, by entering 1990 : 1 as the first observation in the forecast period

the result in Figure 3.52(b) is obtained, which shows that both statistics could not

reject the null hypothesis. Therefore, the AR(1)_GM based on the subsample 1952 : 1

to 1990 : 1 can be considered as an appropriate model to be used in forecasting.&

3.8 Generalized discontinuous models with trend

Based on the previous examples in this chapter and all of the continuous growthmodels

in Chapter 2, it is easy to derive many discontinuous growth models or generalized

discontinuous models with trend, by using one or several dummy variables as an

additional independent variable(s). For illustration purposes, the following sections

Figure 3.52 The Chow forecast tests using the growth model in (3.63): (a) for the period

1987 : 1 to 1996 : 4 and (b) for the period 1990 : 1 to 1996 : 4
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will present two-piece growth models that are derived from the selected continuous

growth models in Chapter 2.

3.8.1 General two-piece univariate models with trend

Corresponding to the general growth model (2.37) or (2.45), there is a general two-

piece model with trend and multivariate exogenous variables, as follows:

gðytÞ ¼ ðcð11Þþ cð12Þ�tþ f1ðx1; x2; . . . ; xKÞÞ�D1
þðcð21Þþ cð22Þ�tþ f2ðx1; x2; . . . ; xKÞÞ�D2þmt

ð3:67aÞ

where xk, k¼ 1,2, . . . , xK, are exogenous variables, which could be the main factors,

together with their interaction factors, of pure exogenous variables. The lagged

variables of the endogenous or exogenous variables, f1(
�) and f2(

�) are functions

having a finite number of unknown parameters and g(yt) is a defined function without

parameters.

The dummyvariablesD1 andD2 are defined for the two time periods considered, as

presented in the previous examples. An alternative of the model in (3.67a) is

gðytÞ ¼ ðcð11Þþ cð12Þ�tþ f1ðx1; x2; . . . ; xKÞÞ�D1
þðcð21Þþ cð22Þ�tþ f2ðx1; x2; . . . ; xKÞÞþmt

ð3:67bÞ

Table 3.6 presents a summary of the models in (3.67a) and (3.67b), using the

defined time periods or dummy variables in modified forms. Please note that x1 and x2
aremultivariate exogenous variables, which could be equal, and u1 and u2 are unequal
vectors of themodel parameters. This table clearly shows the differential meanings of

the parameters between the two models.

Example 3.20. (Two-piece models with trend) In this example two alternative

models will be presented, an additive model with trend and an interaction model with

trend, as follows:

(1) Two-Piece Additive Model with Trend

Corresponding to the LVAR(1,1) growth model in Example 2.17, this is a two-

piece lagged-variable autoregressive model with trend forM1. In order to obtain

Table 3.6 A summary of the models in (3.67a) and (3.67b) by time periods

D1 D2 Model (3.67a) Model (3.67b)

1 0 c(11) þ c(12)t þ f1(x1,u1) {c(11) þ c(12)t þ f1(x1,u1)} þ {c(21)

þ c(22)t þ f2(x2,u2)}
0 1 c(21) þ c(22)t þ f2(x2,u2) c(21) þ c(22)t þ f2(x2,u2)
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the statistical results in Figure 3.53, the following equation specification should

be used:

logðm1Þ ¼ ðcð11Þþ cð12Þ�tþ cð13Þ�logðgdpÞþ cð14Þ�logðm1ð�1ÞÞÞ�D1
þðcð21Þþ cð22Þ�tþ cð23Þ�logðgdpÞþ cð24Þ�logðm1ð�1ÞÞÞ�D2
þ ½arð1Þ ¼ cð1Þ�

ð3:68Þ

In fact, this equation represents the two following regressions in the first and

second time periods defined by the dummy variables (D1¼ 1, D2¼ 0) and

(D¼ 0, D2¼ 1) respectively:

logðm1Þ¼ ðcð11Þþ cð12Þ�tþ cð13Þ�logðgdpÞþ cð14Þ�logðm1ð�1ÞÞÞ
logðm1Þ¼ ðcð21Þþ cð22Þ�tþ cð23Þ�logðgdpÞþ cð24Þ�logðm1ð�1ÞÞ

mt ¼ cð1Þ�mt�1 þ «t

ð3:69Þ

Figure 3.53 Statistical results based on the two-piece model in (3.68)
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Since the null hypothesis of no first-order autocorrelation, namely H0: C(1)¼ 0,

is acceptedwith a p-value¼ 0.2394, as presented in Figure 3.53, a reducedmodel

is produced, as presented in Figure 3.54(a) without an indicator AR(1). By using

the trial-and-error methods an unexpected model is obtained in Figure 3.54(b),

with its residual histogram in Figure 3.55, since themodel has an indicator AR(2)

without the indicator AR(1). Readers may find other acceptable or unexpected

models by using the higher-order lagged endogenous variable or indicator AR(p).

Based on the statistics in Figure 3.54(b), the following notes and conclusions

can be obtained:

(a) Table 3.7 presents the model parameters by the time periods and exogenous

variables,whichcanbeused towritehypothesesondifferencesbetweenthefirst

and second time periods. Then the tests can be conducted using the Wald test.

(b) Since each of the exogenous variables t and log(gdp) is insignificant, a

reduced model may result. Hence, a model will be produced where the

Figure 3.54 Statistical results based on (a) a reduced model and (b) an unexpected modified

model of the model in (3.68)

Figure 3.55 Residual histogram of the regression in Figure 3.54(b)
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regressions in the first and second time periods have a different set of

exogenous variables.

(c) Finally, the residual histogram in Figure 3.55, including the statistics of the

residual, can be used to evaluate the limitation of themodel. For example, in a

theoretical sense, the mean should be equal to zero and the kurtosis should be

equal to 3.0, based on the assumptions of the basic regression.

(2) Two-Piece Interaction Model with Trend

Corresponding to the interaction growth model in (2.59), a two-piece interaction

model is now considered with the following equation specification:

logðm1Þ ¼ ðcð11Þþ cð12Þ�tþ cð13Þ�logðgdpÞþ cð14Þ�logðprÞ
þ cð15Þ�logðgdpÞ�logðprÞÞ�D1
þðcð21Þþ cð22Þ�tþ cð23Þ�logðgdpÞþ cð24Þ�logðprÞ
þ cð25Þ�logðgdpÞ�logðprÞÞ�D2
þ ½arð1Þ ¼ cð1Þ; arð2Þ ¼ cð2Þ�

ð3:70Þ

However, EViews presents the �Near singular matrix� error message. An

experimentation should now be performed. At the first stage, by deleting the

indicator AR(2), the errormessagewill still be received and at the second stage an

attempt is made to delete the indicator AR(1). This produces the statistical results

given in Figure 3.56 based on a two-piece growth model with exogenous

Figure 3.56 Statistical results based on a two-piece interaction growth model

Table 3.7 The parameters of themodel in Figure 3.54(b) by time periods and exogenous

variables

D1 D2 Constant t log(gdp) log(M1(�1)) AR(2)

1 0 C(11) C(12) C(13) C(14) C(2)

0 1 C(21) C(22) C(23) C(24) C(2)
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variables. Since this model does not take into account the autocorrelation of the

error terms, the regression presents a very small value of the DW-statistic.

Hence, the lagged endogenous variables should be used in order to take into

account the autocorrelation of the error terms. Then we obtain the LV(2)_GM is

obtained with interaction exogenous variable(s), as presented in Figure 3.57.

Based on this model the following notes and conclusions are given:

(a) Compared with the lagged endogenous variables, each of the other exogenous

variables is insignificant. Even though this model can be considered as an

acceptable time seriesmodel, in a statistical sense, since it hasDW¼ 1.951 058,

it is sufficient to declare that the data and the model used support the basic

assumptions of the error terms.

(b) Then this model can be used as a base or full model to construct a reduced

model by deleting one or two exogenous variables. However, the trial-and-

errormethods should be used to delete an exogenous variable, but themodel is

not mainly based on a variable with a large or the largest p-value. Refer to

Section 2.14 and do this as an exercise. &

Example 3.21. (Unexpected models) In the previous examples, three variables,

M1,GDP and PR, were used having the same pattern of growth curves over time. In

this example, the relationship will be considered between variables M1 and RS

having different patterns of growth curves, as presented in Figure 3.48, while

Figure 3.58 presents the scatter graph with a regression line of log(M1) on RS. This

figure clearly shows that the simple linear regression of log(M1) on RS is not an

appropriate model.

The data show that RS and log(M1) have a positive correlation based on the

subsample from t¼ 1952 : 1 up to t¼ 1981 : 3 and they have a negative correlation

based on the other subsample from t¼ 1981 : 4 up to t¼ 1996 : 4. In fact, RS has a

Figure 3.57 Statistical results based on a two-piece LV(2)_GM
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maximum observed value of 15.087 33 at t¼ 1981 : 4. Corresponding to these

subsamples, two dummy variables have been generated, namely Drs1 and Drs2,

which should be used to present any two-piece models having RS as one of the

independent, exogenous or source variables. Figure 3.59 presents two scatter graphs

with regressions of log(M1) on RS with the first and second time periods.

The simplest two-piece model with trend considered is

logðm1Þ ¼ ðcð11Þþ cð12Þ�tþ cð13Þ�logðm1ð�1ÞÞþ cð14Þ�rsÞ�Drs1
þðcð21Þþ cð22Þ�tþ cð23Þ�logðm1ð�1ÞÞþ cð24Þ�rsÞ�Drs2 ð3:71Þ

Note that the first lag log(m1(�1)) should be used in both time periods in order to

take into account the differential autocorrelation in the two time periods. Figure 3.60

presents its statistical results with a large value of DW¼ 2.713 615. Using an

additional indicator AR(1) in the model gives the statistical results in Figure 3.61

with a value of DW¼ 2.074 438.

Figure 3.58 Scatter graph with regression line of log(M1) on RS

Figure 3.59 Scatter graphs with regression lines of log(M1) on RS, based on (a) subsample

1952 : 1 to 1981.3 and (b) subsample 1984 : 4 to 1996 : 4
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By using further trial-and-errormethods, statistical results based on twomodels are

obtained, which are statistically good models, namely an LVAR(1,3)_GM (i.e. a

first lagged-variable–third-order autoregressive two-piece growth model) and an LV

(2)_GM, as presented in Figure 3.62. Note that both models have sufficient values of

the DW-statistics and each of the independent variables are significant.

Finally, an attempt is made to develop an AR(p)_GM without using the lagged

endogenousvariable. In this case, thefirst laggedvariable ofRS, namelyRS(�1), is tried

Figure 3.61 Statistical results based on the AR(1) of the model in (3.71)

Figure 3.60 Statistical results based on the model in (3.71)
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as an independent variable in both time periods, giving the results in Figure 3.63(a),

which presents a note �Convergence not achieved after 500 iterations.� This indicates
that the estimates are not optimal estimates. For this reason the model needs to be

modified.

By using the trial-and-error methods when selecting RS, RS(�1), as well as

RS(�2), as the possible independent variable(s) of a model, a statistically optimal

estimate was found in Figure 3.63(b), where the �Convergence achieved after 132

Figure 3.63 Statistical results based on two alternative AR(1)_GMs: (a) convergence not

achieved after 500 iterations and (b) convergence achieved after 132 iterations

Figure 3.62 Statistical results based on two-piece growthmodels: (a) an LVAR(1,3)_GM and

(b) an LV(2)_GM
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iterations� and the regression in the first time period show RS as an independent

variable and the regression in the second time period showsRS(�1) as an independent

variable. It is really an unexpected model. Readers may find other alternativemodels;

do this as an exercise.

By observing all models presented above, their differences were easy to identify.

However, to select the best one is not an easy task. The author considers that the two

models in Figure 3.62 are the best compared to the others, since these models present

or indicate unequal autocorrelations in the two time periods by having lagged

endogenous variables. Then, based on the values of AIC and SC, the model in

Figure 3.62(a) will be chosen, namely LVAR(1,3)_GM, as the best model, since it has

smaller values of AIC as well as SC. &

3.8.2 Special notes and comments

It is recognized that many students and young researchers have been applying time

series models without taking into account the time t as an independent variable of their

models. The special case in the previous examples, as well as in Chapter 2, shows that

the time t has to be used, at least the dummy variables of time periods, as an

independent variable of a time series model.

By referring to both scatter graphs with regressions in Figure 3.59, the following

notes and conclusions have been derived:

(1) The observed values ofRS arewithin the interval [0,16] in the first time period and

within the interval [2,14] in the second time period, which is a subset or

subinterval of [0,16]. As a result, the scatter plots of (RS, log(M1)), based on

the time periods, will be mixed and overlaid in a region between the line RS¼ 0

and RS¼ 16. Hence, in general, it was not possible to differentiate between the

two subsamples.

(2) Note again that log(M1) and RS have a positive correlation within the first

interval, but they have a negative correlation in the second interval, as presented in

Figure 3.59.

(3) Based on points (1) and (2), if at least one of the two dummyvariables in themodel

is not being used, namely Drs1 andDrs2, to present the relationship between the

two variables RS and log(M1), the conclusion is most likely to be misleading. As

an illustration, refer to the following example, which presents a simple linear

regression of log(M1) on RS, without taking into account the time t and the

dummy variables.

Example 3.22. (A simple linear regression of log(M1) on RS) Figure 3.64

presents statistical results based on a simple linear regression (SLR) of

log(M1) on RS, which shows that RS has a significant positive effect on log(M1),

based on the t-statistic of 7.199 409. It has been recognized, in some or many cases,

that students would be happy with this finding, since they can prove that RS has a
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significant positive linear effect on log(M1). Figure 3.58 clearly shows that the linear

regression of log(M1) on RS is not an appropriate model.

For illustration purposes, Figure 3.65 presents the statistical results based on the

SLR of RS on log(M1), which also gives the t-statistic of 7.199 409, and Figure 3.66

presents the moment product correlation of RS and log(M1) of 0.474 889 with the

same value of the t-statistic of 7.199 409.

Based on these findings, the following general conclusions can be derived:

(1) The causal relationship between a pair of numerical variables cannot be proven

using the simple linear regression (SLR)aswell as themomentproduct correlation,

but it should be defined when supported on a relevant and strong theoretical basis.

(2) Either the SLR or the moment product correlation only provide a quantitative

measure of their relationship, which is highly dependent on the data set that

happens to be available for a researcher.

(3) The testing hypothesis on the linear causal relationship between numerical

variables X and Y can be done by using either the SLR or the moment product

Figure 3.65 Simple linear regression of RS on log(M1)

Figure 3.64 Simple linear regression of log(M1) on RS
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correlation, under a precondition that the variables have a causal relationship, in a

theoretical sense. However, it should always be remembered that the conclusion

is also highly dependent on the data set used and cannot be used to prove or

disprove the causal relationship.

(4) The moment product correlation r(X,Y) also can be used to present or test the

linear effect of X on Y, as well as the effect of Y on X.

(5) Furthermore, in order to develop an empirical associationmodel based on a set of

variables, it is suggested that the following points should be considered, under the

assumption that the data set is valid and reliable:
. Even before collecting the data, the best possible judgment should have been

used to evaluate whether there are at least two time periods where the growth

curves of any variable would be different over time (refer to Figures 3.48, 3.58

and 3.59).
. Scatter plot(s) need to be used between each independent variable and the

corresponding dependent variable with their regression or kernel density as a

guide, in order to develop or define an empirical model (refer to Section 1.4).
. Use the corresponding correlation matrix of all numerical variables as basic

information to evaluate the limitation of a defined model having multivariate

independent variables (refer to Section 1.4.5, as well as Section 2.14.2). For

example, the correlation matrices have been presented in the dissertation of the

author�s students, as well as in international journals, such as those of Hamsal

(2006), Hamzal and Agung (2007), Billett, King and Maucer (2007) and

Chapers, Koh and Stapledon (2006).
. Note that by having a statistical result based on a time series model, it does not

directly mean that the result is a good and acceptable result, in a statistical

sense. Refer to the alternative statistical results or models presented in Chapter

2, the previous examples, as well as the following examples. Furthermore, refer

to the discussions on the true population model presented in Section 2.14.1.
. Since the effect of an exogenous variable on an endogenous variable is most

likely to be dependent on other variables, it is suggested that an interaction

Figure 3.66 Correlation between the variables RS and log(M1)
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model should be defined or proposed, such as the model with a time-related

effect and other interaction factors, as presented in Chapter 2. Moreover, the

interaction is between the dummy and the numerical variables (Agung, 2006;

Neter and Wasserman, 1974). On the other hand, there may be a set of

heterogeneous linear regressions, which is known as the Johnson–Neyman

technique (1936, quoted by Huitema, 1980, p. 270). Note that the effect of an

interaction factor, namely X1
�X2, on a dependent variable Ywill indicate that

the effect of X1 on Y is dependent on X2, or the effect of X2 on Y is dependent

on X1. This type of association or hypothesis should be easy to define, even

before the data collection, by relevant theoretical and substantive bases.

Then the statistical result will show whether the data supports the hypothesis

or not.
. Furthermore, the statistical results of this experimentation, based on the Demo

workfile, as well as the hypothetical data set, support the use of two-way or

three-way interactions as independent variable(s) of the time series models.

Many papers in international journals and the scientific papers of the author�s
students have used interaction models (i.e. models with two-way or three-way

interactions as independent variables). For example, the three-way interaction

models have been presented in Agung (2006), Bertrand, Schoar and Thesmar

(2007), Hamzal and Agung (2007) and Harford and Li (2007).
. Finally, if a good model or a set of regressions has been obtained, it is wise to

learn the limitation of each regression, by doing a residual analysis. &

3.8.3 General two-piece multivariate models with trend

The models presented in this subsection will refer to the multivariate continuous

models in Section 2.15. Corresponding to the univariate model with trend in (3.67)

and the symbols presented in Table 3.6, the following general multivariate model or

system of univariate model is found:

ghðyh;tÞ ¼ ðcðh11Þþ cðh12Þ�tþ fh;1ðxh;1; uh;1ÞÞ�D1
þðcðh21Þþ cðh22Þ�tþ fh;2ðxh;2; uh;2ÞÞ�D2þmh;t

ð3:72Þ

where xh,1 and xh,2 are multivariate exogenous variables, which can be equal for

each or all h¼ 1, 2, . . . ,H, and uh,1 and uh,2 are unequal vectors of model parameters

for all h¼ 1, 2, . . . , H.

Example 3.23. (A model in (3.72) with endogenous variables M1 and GDP)
Figure 3.67 presents statistical results based on a translog (translogarithmic) model

with endogenous variables M1 and GDP by taking into account the first-order

autocorrelation of their error terms. Note that both regressions have sufficient

values of the DW-statistics, and their error terms have significant first-order

autocorrelations. Since some of the independent variables have insignificant

adjusted effects, the model can be reduced. Do this as an exercise.
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For both time periods, the bivariate model can easily bewritten based on the output,

whichcanbeobtainedbyclickingView/Representations. Furthermore, each regression

in the first and second time periods can be presented in the form of the path diagram in

Figure 3.68. Note that this figure clearly shows thatM1t andGDPt are the downstream

(endogenous or dependent) variables and the variables t,M1t�1, GDPt�1 and PRt are

the source (exogenous or independent) variables. Furthermore, note that the relation-

ships between the exogenous variables,M1t�1,GDPt�1 and PRt, as well as the time t,

are not identified or presented, and likewise between the error terms «1t and «2t.
In addition to testing an hypothesis by using the t-statistics presented in Figure 3.67,

other univariate and multivariate hypotheses can be tested by using the Wald test, as

presented in the previous examples. On the other hand, the residual analysis can also

be done in order to study the limitation of the model. &

Example 3.24. (A simultaneous piecewise causal effect model) As an extension

of the model in Figure 3.67 and its path diagram in Figure 3.68, in this example an

t

GDPt

M1t-1

PRt

GDPt-1

M1t ρ1µt-1+ ε1t

ρ2νt-1+ ε2t

Figure 3.68 The path diagram of the model in Figure 3.67

Figure 3.67 Statistical results based on a translog linear model with trend
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hypothesis is proposed that the endogenousM1t and GDt have a simultaneous causal

effect. In this case, in fact, the path diagram presented in Figure 3.69 is considered.

The equation of the regressions and their parameter estimates are presented in

Figure 3.70. Based on these results, the following notes and conclusions are obtained:

(1) Based on the first regression, log(GDPt) has a significant adjusted effect on

log(M1t) in the first time period with a p-value¼ 0.0382, but in the second time

period it is insignificant with a p-value¼ 0.4311.

(2) Similarly, based on the second regression, log(M1t) has a significant positive

adjusted effect on log(GDPt) in the first time period, but not in the second time

period.

(3) As a final conclusion, it can be said that the data supports the hypothesis that the

variables log(M1t) and log(GDPt) have simultaneous causal effects.

Figure 3.70 Statistical results of a two-piece simultaneous causal model, with the path

diagram presented in Figure 3.69

M1t

T

GDPt

M1t-1

PRt

GDPt-1

ρ1µt-1+ ε1t

ρ2νt-1+ ε2 t

Figure 3.69 A path diagram of a simultaneous causal effects model, as a modification of the

path diagram in Figure 3.68
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(4) Note that it is common to have one or two independent variables having

insignificant adjusted effect(s), if the model has multivariate independent vari-

ables. Refer to the special notes and comments in Section 2.14. &

3.9 General two-piece models with time-related effects

Based on the general two-piece multivariate model with trend in (3.72), the equation

of a general two-piece model with time-related effects can easily be derived as

follows:

ghðyht;Þ ¼ ðcðh11Þþ cðh12Þ�tþ fh;1ðxh;1; uh;1Þþ t�fh;1ðxh;1; u1h;1ÞÞ�D1
þðcðh21Þþ cðh22Þ�tþ fh;2ðxh;2; uh;2Þþ t�fh;2ðxh;2; u2h;2ÞÞ�D2þmh;t

¼ Fh;1ðt; xh;1; uh;1Þ�D1þFh;2ðt; xh;2; uh:2Þ�D2þmh;t

ð3:73Þ
Note that for h¼ 1 there is a univariate two-piecemodelwith time-related effects; if

u1h;1 ¼ u2h;2 ¼ 0 then there is a multivariate model with trend, as in (3.73). For

example, the univariate time-related effect models have been applied by Delong

and Deyoung (2007) and Bansal (2005).

Furthermore, note that in order to have a specific or explicit model of this type the

functions Fh,i(t,
�,�) can be substituted by the right-hand side of any models presented

in Chapter 2. Refer to the following example as an illustration. Other types of models

can easily be applied, since the process of data analysis is a straightforward process

using EViews.

Example 3.25. (An extension of Example 3.21) As an extension of the additive

regressions presented in the Example 3.21, here a simple two-piece AR(1) interaction

model is considered as follows:

logðm1Þ ¼ ðcð11Þþ cð12Þ�tþ cð13Þ�rsþ cð14Þ�t�rsÞ�Drs1
þðcð21Þþ cð22Þ�tþ cð23Þ�rsþ cð24Þ�t�rsÞ�Drs2þ ½arð1Þ ¼ cð1Þ�

ð3:74Þ
Note that thismodel, in fact, has two three-way interactions as exogenous variables,

namely t�rs�Drs1 and t�rs�Drs2, and it represents two first-order autoregressive

regressions having two-way interaction, namely t�rs, as follows:

logðm1Þ ¼ ðcð11Þþ cð12Þ�tþ cð13Þ�rs
þ cð14Þ�t�rsÞþ ½arð1Þ ¼ cð1Þ�; and

logðm1Þ ¼ ðcð21Þþ cð22Þ�tþ cð23Þ�rs
þ cð24Þ�t�rsÞþ ½arð1Þ ¼ cð1Þ�

ð3:75Þ

However, for this model the �Near singular matrix� error message is obtained.

Corresponding to this interaction model, an experimentation should be performed
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using the trial-and-errormethods, similar to the process of obtaining themodels based

on the three variables M1, RS and t in Example 3.21. For illustration purposes, the

following alternative statistical results are presented:

(1) Corresponding to the model in Figure 3.63(b), a model with additional indepen-

dent variables is considered whose interactions are t�RS and t�RS(�1) in the first

and second time periods respectively. The equation of themodel and its statistical

results are presented in Figure 3.71, but with a note that the convergence is not

achieved after 500 iterations.

(2) Corresponding to the two-way interaction models in Figures 3.71 and 3.72,

statistical results are presented based on a reduced model, where the

�Convergence achieved after 34 iterations� is given but with a note or an error

message �Estimated AR process is nonstationary.� Therefore, other interaction
models have to be found.

(3) Figure 3.73(a) and (b) presents two interaction models that should be considered

as acceptable models in a statistical sense, by using the Newey–West estimation

method. However, only the first statistical results in (a) present the statement

�Newey–West HAC . . .�while the second statistical results do not, even though the
same option has been used. Furthermore, note that these models are three-way

interaction models, since they have t�RS(�1)�Drs1 and t�RS(�1)�Drs2 as

independent variables. It is a certainty that other two-piece acceptable models

could be constructed based on the three variablesM1, RS and the time t, such as

the models presented in the following examples.

The AR(1) model with time-related effects in Figure 3.51(b), within each time

period, can be presented as the path diagram in Figure 3.74. This graph shows that an

Figure 3.71 Statistical results with a note �convergence not achieved after 500 iterations�
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Figure 3.72 Statistical results with a note �estimated AR process is nonstationary�

Figure 3.73 Statistical results of two-piece three-way interactionmodels: (a) an LV(1)model

and (b) an LVAR(1,1) model

   t 

M1t-1

RSt-1

M1t ρ1µt-1 + εt

Figure 3.74 The path diagram of the AR(1) model in Figure 3.73(b)
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arrow from the time t to the first lagged variable RSt�1 represents the interaction

t�RSt�1, as already mentioned in Chapter 2, which also indicates that the effect of

RSt�1 depends on the time t. &

Example 3.26. (Modified interaction models) Corresponding to the models in

Figure 3.62(a) and (b), Figure 3.75(a) and (b) presents statistical results based on

three-way interactionmodels,which should be considered as the extension of the two-

way interaction models in Figure 3.62. Based on the results in this table,the following

notes and conclusions are made:

(1) Even though both models in Figure 3.75 are acceptable, in a statistical sense, the

LVAR(1,3) in Figure 3.75(a) should be considered as a goodmodel, in a statistical

sense, since almost all independent variables of the LV(2)model are insignificant.

(2) The LVAR(1,3) model, as well as its regression function, can easily be written

based on the output or obtained by selecting View/Representations. Therefore, a

pair of regressions exists in the first and second time periods, namely for (t� 119)

and (t> 119), respectively, as follows:

logðm1Þ1 ¼ cð11Þþ cð12Þ�tþ cð13Þ�logðm1ð�1ÞÞþ cð14Þ�rs
þ cð15Þ�t�logðm1ð�1ÞÞþ cð16Þ�t�rsÞ
þ ½arð1Þ ¼ cð1Þ; arð2Þ ¼ cð2Þ; arð3Þ ¼ cð3Þ�

ð3:76aÞ

logðm1Þ2 ¼ cð21Þþ cð22Þ�tþ cð23Þ�logðm1ð�1ÞÞþ cð24Þ�rs
þ cð25Þ�t�logðm1ð�1ÞÞþ cð26Þ�t�rsÞ
þ ½arð1Þ ¼ cð1Þ; arð2Þ ¼ cð2Þ; arð3Þ ¼ cð3Þ�

ð3:76bÞ

Figure 3.75 Statistical results based on two-piece interaction models, as the extension of the

models in Figure 3.62, namely (a) the LVAR(1,3) and (b) the LV(2) interaction models
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(3) Based on the model in (3.76), it is easy to write hypotheses on the differences

between the regressions in the two defined time periods and use the Wald test to

conduct the testing. Do this as an exercise.

(4) The LVAR(1,3) model, within each time period, can be presented as the path

diagram in Figure 3.76. This path diagram shows that the effects ofM1t�1 andRSt
onM1t are dependent on the time t. On the other hand, this model does not take

into account the possible causal effect ofM1t�1 onRSt. Refer to the path diagrams

in Figures 2.66 and 2.85 to modify this path diagram, and then write or define

possible univariate as well as multivariate models with interaction exogenous

variables.

(5) For further illustration, the regression in (3.76a) can be written as follows:

logðm1Þ1 ¼ fcð11Þþ cð13Þ�logðm1ð�1ÞÞþ cð14Þ�rsg
þfcð12Þþ cð15Þ�logðm1ð�1ÞÞþ cð16Þ�rsg�t
þ ½arð1Þ ¼ cð1Þ; arð2Þ ¼ cð2Þ; arð3Þ ¼ cð3Þ�

ð3:77Þ

This model shows that the effect of the time t on log(m1)1 is dependent on the

function {c(12) þ c(15)�log(m1(�1)) þ c(16)�rs}, which is significant based

on the chi-square-statistic of 15.579 48 with df¼ 3 and a p-value¼ 0.0014. It can

also be said that the joint effect of log(m1(�1)) and RS depends on the time t.

Corresponding to this statement, it might be considered useful to present the path

diagram in Figure 3.77 for the model in Figure 3.76(a). What do you think?

(6) On the other hand, the model in Figure 3.76(b) has so many insignificant

independent variables that an attempt should be made to try to obtain a reduced

model, which has a better estimate. Do this as an exercise. However, note that

   t 

M1t-1

RSt

M1t
µt=ρ1µt-1+
ρ2µt-2+ ρ3µt-3+

Figure 3.76 The path diagram of the AR(1) model in Figure 3.75(a)

   t 

M1t-1

RSt

M1t
µt=ρ1µt-1+
ρ2µt-2+ ρ3µt-3+

Figure 3.77 The path diagram of the AR(1) model in Figure 3.75(a)
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these insignificant effects do not directly indicate that the model is a bad model,

since good estimatesmay be based on other data sets. Refer to the special notes on

unpredictable effects or impacts of multicollinearity presented in Section

2.14.2. &

Example 3.27. (An advanced Two-piece interaction model) Corresponding to

the model with time-related effects in Example 2.45, a two-piece AR(p) model

time-related effects model may be considered as follows:

logðm1Þ ¼ ðcð11Þþcð12ÞlogðgdpÞþcð13ÞlogðprÞþcð14ÞlogðgdpÞ�logðprÞþcð15Þt
þcð16Þt�logðgdpÞþcð17Þt�logðprÞþcð18Þt�logðgdpÞ�logðprÞÞ�D1
þðcð21Þþcð22ÞlogðgdpÞþcð23ÞlogðprÞþcð24ÞlogðgdpÞ�logðprÞþcð25Þt
þcð26Þt�logðgdpÞþcð27Þt�logðprÞþcð28Þt�logðgdpÞ�logðprÞÞ�D2
þ½arð1Þ¼cð1Þ;arð2Þ¼cð2Þ;...;arðpÞ¼cðpÞ�þ2t

ð3:78Þ
For p¼ 2, the statistical results in Figure 3.78 can be obtained by using the

procedure or estimation method �System.� However, the estimates present so many

independent variables that they have an insignificant adjusted effect on log(m1).

Hence, an attempt should be made to try to obtain a reduced or modified model. Do

this as an exercise.

However, based on these estimates, at a significant level of a¼ 0,10, the four-way

interaction t�log(gdp)�log(pr)�D1 is insignificant, but t�log(gdp)�log(pr)�D2 is

significant with a p-value¼ 0.0070.

Furthermore, note that the DW-statistic of 1.974 179 is sufficient to conclude that

the model is a good model in controlling the autocorrelation of the error terms. By

Figure 3.78 Statistical results based on the AR(2) model in (3.78), using theWLS estimation

method
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using the WLS estimation method, the heteroskedasticity of the error terms has also

been taken into account. &

3.10 Multivariate models by states and time periods

For illustration purposes, here only two states and two time periods are considered. As

a result, there will be four pieces of growth models or four regressions with trend and

time-related effects. The general equation of the model can easily be derived from the

two-piece model in (3.73) as follows:

ghðyh;tÞ ¼ Fh;1ðt;xh;1; uh;1Þ�D1þFh;2ðt; xh;2; uh:2Þ�D2
þFh;3ðt; xh;3; uh;3Þ�D3þFh;4ðt; xh;4; uh:4Þ�D4þmh;t

ð3:79Þ

whereD1,D2,D3 andD4 are the four dummy variables of the four cells by �States and
Time-Periods� and the functions Fh,k(t,xh,k,uh,k), k¼ 1, 2, 3 and 4, are defined

functions having a finite number of parameters for all h.

If there is a relevant data set, then all models presented in Chapter 2 can be used to

represent the four functions Fh,k(t,xh,k,uh,k) in order to develop an explicit model by

states and time periods. Then the data analysis can be done by using a similar process,

as presented in the previous examples.

Example 3.28. (Univariate model by states and times) The following equation

presents a simple AR(p) interaction model by state and time:

yt ¼ ðcð11Þþ cð12Þ�tþ cð13Þ�xþ cð14Þ�t�xÞ�D1
þðcð21Þþ cð22Þ�tþ cð23Þ�xþ cð24Þ�t�xÞ�D2
þðcð31Þþ cð32Þ�tþ cð33Þ�xþ cð34Þ�t�xÞ�D3
þðcð41Þþ cð42Þ�tþ cð43Þ�xþ cð44Þ�t�xÞ�D4þmt

mt ¼ r1mt�1 þ � � � þ rpmt�p þ «t

ð3:80Þ

Note that this model is a three-way interaction model, since it has the independent

variables t�x�Di, i¼ 1, 2, 3 and 4. This model represents four interaction regressions

or models having exactly the same set of independent or exogenous variables, namely

t, x and t�x. In general, however, there could be different sets of variables, such as in
the previous examples.

Any statistical hypothesis based on this model can easily be defined by using the

summary of the model parameters presented in Table 3.8. For illustrative purposes,

refer to the following specific hypotheses:

(1) Conditional hypotheses:
. Specific for State¼ 1, the adjusted effects differences of t�x on the endogenous
variable y between the two time periods can be tested by entering c(14)¼ c(24)

for the Wald test.
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. Specific for Time¼ 1, the adjusted effects differences of t�x on the endogenous
variable y between the two states can be tested by entering c(14)¼ c(34) for the

Wald test.
. Note that the statistical results for testing these hypotheses can also be used to

test a one-sided hypothesis, such as H1: c(14)> c(24), and H2: c(14)< c(34).

(2) Unconditional hypothesis:
. The effects differences of t�x on the endogenous variable y between the four

cells (by states and time periods) can be tested by entering c(14)¼ c(24)¼
c(34)¼ c(44). &

Example 3.29. (Alternative model of the model in Example 3.28) Note that the

model in (3.80) has a single error term for both states. This could be considered a

limitation of the model, since in practice the two states are most likely to have

different associationmodels, aswell as different error terms. As a result, an alternative

model should be considered.

In order to have two error terms, one for each state, a different type of datafile

should be developed. For an illustration, suppose there are two states with three

variables, namely t, X and Y; then the datafile should be developed to have six

variables, namely t1,X1 andY1 for the first state and t2,X2 andY2 for the second state.

Then, corresponding to the model in (3.80), the following AR(p) bivariate model is

given:

y1t ¼ ðcð111Þþ cð112Þ�t1þ cð113Þ�x1þ cð114Þ�t1�x1Þ�Dt1
þðcð121Þþ cð122Þ�t1þ cð123Þ�x1þ cð124Þ�t1�x1Þ�Dt2þmt

mt ¼ r1mt�1 þ � � � þ rpmt�p þ «1t
y2t ¼ ðcð211Þþ cð212Þ�t2þ cð213Þ�x2þ cð214Þ�t2�x2Þ�Dt1

þðcð221Þþ cð222Þ�t2þ cð223Þ�x2þ cð224Þ�t2�x2Þ�Dt2þ nt
nt ¼ r1nt�1 þ � � � þ rpnt�p þ «2t

ð3:81Þ

where Dt1 and Dt2 are the two dummies of the two defined time periods. In general,

theremay be anAR(p)model for the endogenous variable y1t, and anAR(q)model for

the endogenous variable y2t.

Table 3.8 Parameters of the model in (3.80), for p¼ 2, by states and time periods

Cells Dummy of the cells Exogenous variables

State Time D1 D2 D3 D4 Constant T x t�x AR(1) AR(2)

1 1 1 0 0 0 C(11) C(12) C(13) C(14) c(1) c(2)

1 2 0 1 0 0 C(21) C(22) C(23) C(24) c(1) c(2)

2 1 0 0 1 0 C(31) C(32) C(33) C(34) c(1) c(2)

2 2 0 0 0 1 C(41) C(42) C(43) C(44) c(1) c(2)
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Compared to the model in (3.80), for this model there is the model parameter

summary presented in Table 3.9. Note that the symbol C(ijk) is used as the model

parameter for the ith endogenous variable, the jth time period and the kth parameter of

the intercept or exogenous variables, compared to C(ij) for the model in (3.80).

Based on this model, the univariate and multivariate hypotheses are as follows:

(1) Univariate hypotheses:
. The adjusted effects differences of t�x (or t1�x1) on y1 between the two time

periods can be tested by entering C(114)¼C(124) for the Wald test. Refer to

the first conditional hypothesis based on the model in (2.80).
. Specific for the Time-period¼ 1 or (Dt1¼ 1,Dt2¼ 0), the difference between

the effect of t�x (or t1�x1) on y1 and the effect of t�x (or t2�x2) on y2 can be

tested by entering C(114)¼C(214). Compare this with the second conditional

hypothesis based on the model in (2.80). Furthermore, note that t1¼ t2 and x1

and x2 are the same variables, as well as the variables y1 and y2.
. Specific for the Time-period¼ 1, the joint effects of all exogenous variables on

y2 can be tested by entering the equation C(212)¼C(213)¼C(214)¼ 0.

(2) Multivariate hypotheses:
. Specific for the Time-period¼ 1, the adjusted effects of t�x on the bivariate

exogenous variables (y1, y2) can be tested by entering C(114)¼C(214)¼ 0.

Note that t1�x1 and t2�x2 are the same variables, that is t�x.
. The adjusted effects of t�x on the bivariate exogenous variables (y1, y2) in both

time periods can be tested by enteringC(114)¼C(124)¼C(214)¼C(224)¼ 0.
. Specific for the Time-period¼ 1, the joint effects of all exogenous variables t, x

and t�x on (y1, y2) can be tested by entering C(112)¼C(113)¼C(114)¼ 0,

C(212)¼C(213)¼C(214)¼ 0.
. To test the first-order partial autocorrelations differences, the equation c(11)¼
c(21) should be used, aswell as the pair of equations c(11)¼ c(21), c(12)¼ c(22)

in order to test both partial autocorrelation differences. &

3.10.1 Alternative models

Note that themodel in (3.79) uses four dummy variables of the four cells or categories

by states and time periods. However, only three out of the four dummy variables may

Table 3.9 Parameters of the bivariate model in (3.81) by time periods

Dependent

Exogenous variables

variable Time periods Dt1 Dt2 Constant T x t�x AR(1) AR(2)

y1 1 1 0 C(111) C(112) C(113) C(114) c(11) c(12)

2 0 1 C(121) C(122) C(123) C(124) c(11) c(12)

y2 1 1 0 C(211) C(212) C(213) C(214) c(21) c(22)

2 0 1 C(221) C(222) C(223) C(224) c(21) c(22)
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be used, such as:

ghðyh;Þ ¼ Fh;1ðt; xh;1; uh;1Þ�D1þFh;2ðt; xh;2; uh:2Þ�D2
þFh;3ðt; xh;3; uh;3Þ�D3þFh;4ðt; xh;4; uh:4Þþmh;t

ð3:82Þ

Corresponding to the model in (3.80), the following univariate AR(p) model is given.

For a comparison, construct its model parameters, which will show their differences

with the parameters in Table 3.8:

yt ¼ ðcð11Þþ cð12Þ�tþ cð13Þ�xþ cð14Þ�t�xÞ�D1
þðcð21Þþ cð22Þ�tþ cð23Þ�xþ cð24Þ�t�xÞ�D2
þðcð31Þþ cð32Þ�tþ cð33Þ�xþ cð34Þ�t�xÞ�D3
þðcð41Þþ cð42Þ�tþ cð43Þ�xþ cð44Þ�t�xÞþmt

mt ¼ r1mt�1 þ � � � þ rpmt�p þ «t

ð3:83Þ

Then corresponding to the bivariate model in (3.81), the following AR(p) model in

the first state and AR(q) model in the second state are given:

y1t ¼ ðcð111Þþ cð112Þ�t1þ cð113Þ�x1þ cð114Þ�t1�x1Þ�Dt1
þðcð121Þþ cð122Þ�t1þ cð123Þ�x1þ cð124Þ�t1�x1Þþmt

mt ¼ r1mt�1 þ � � � þ rpmt�p þ «1t
y2t ¼ ðcð211Þþ cð212Þ�t2þ cð213Þ�x2þ cð214Þ�t2�x2Þ�Dt1

þðcð221Þþ cð222Þ�t2þ cð223Þ�x2þ cð224Þ�t2�x2Þþ nt
nt ¼ r1nt�1 þ � � � þ rqnt�q þ «2t

ð3:84Þ

3.10.2 Not recommended models

It is recognized that most students and some researchers have been applying the

following multivariate model, instead of the model in (3.79):

ghðyh;tÞ ¼ Fhðt; xh; uhÞþ cð1hÞ�Dt1þ cð2hÞ�Ds1þmh;t ð3:85Þ

whereDt1 is a dummy variable of the dichotomous time variable andDs1 is a dummy

variable of the two states, and Fh(th,xh,uh) are additive functions having a finite

number of parameters, for all h. For h¼ 1, this gives a univariate additive model. To

study this model in detail, the four regressions of the model in (3.85) need to be

investigated by states (Ds1) and time periods (Dt1), as presented in Table 3.10.

Table 3.10 The regressions in the model (3.85) by states and time periods

Dt1¼ 1 Dt1¼ 0 Difference

Ds1¼ 1 Fh(th,xh,uh) þ c(1h) þ c(2h) Fh(th,xh,uh) þ c(1h) c(2h)
Ds1¼ 0 Fh(th,xh,uh) þ c(2h) Fh(th,xh,uh) c(2h)
Difference of the

intercept

c(1h) c(1h)
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This table clearly shows:

(1) The differences of the regressions, specifically their intercepts, between the two

states is equal to c(1h) for both time periods, while c(2h) indicates the differences

of the regressions between the two time periods in both states, for each h.

(2) The effects of all exogenous variables on the corresponding endogenous variables

will be exactly the same within the four cells, which is presented by the function

Fh(th,xh,uh). For illustration purposes, construct a similar table based on the

following univariate additive model:

yt ¼ cð1Þþ cð2Þ�tþ cð3Þ�xt þ cð4Þ�zt�1

cð11Þ�Dt1þ�cð21ÞDs1þmt

ð3:86Þ

(3) Based on these limitations of themodels in (3.85), aswell as themodel in (3.86), it

can be said that these types of models are unacceptable models. In other words,

thesemodels are not recommendedmodels.Moreover, for the generalmodelwith

dummy variables,

yt ¼ Fðt; xt; uÞþ
X
i

cð1iÞ�Dt; iþ
X
j

cð2 jÞ�Ds; jþmt ð3:87Þ

whereDt,i is a zero–one indicator of the ith time period andDs, j is an indicator of

the jth state, and F(t, xt,u) is a function of the time t, a multidimensional

exogenous variable xt with the vector parameters u.
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4

Seemingly causal models

4.1 Introduction

Chapters 2 and 3 presented time series models having the time t as an exogenous

variable. However, it is recognized that many time series models have been presented

or applied without using the time t as an independent or exogenous variable. In this

chapter, selected illustrative time series models will be presented without using the

time t as an exogenous variable. As a result, the models will look like causal models

between the exogenous variables and the corresponding endogenous variable(s).

Note that it has been well known that the causal relationship between variables

should be defined on a theoretical and substantive basis. However, in some cases, it

was found that each independent variable of a model had been incorrectly stated as a

pure cause factor of the corresponding dependent variable. This problem arises

because the statement �the effect of the X-variable on the Y-variable� had been used.
Considering the growthmodels, the time t should not be stated as a pure cause factor of

the corresponding dependent variables. This is also the case for the effects of some Xt-

variables on the Yt-variables in time series data. In such cases, the Xt-variables should be

considered as predictor, explanatory or source variables. For this reason, the term

�seemingly causal model (SCM)� or �explanatorymodel (EM)� is used instead of �growth
model� if and only if the model does not have the time t as an independent variable.

Furthermore, note that a pair of dated variables (Xt, Yt) could have a significant

correlation coefficient, either positive or negative, but they do not have any causal

relationships. For example, even though RSt (reason sale) andMt (money supply) have a

significant positive correlation with a p-value¼ 0.0002, it is known that RS cannot be a

cause factor ofM1. The main reason is that they do not have the same pattern of growth

curves over time (refer to Figure 1.24). In addition, Xt�p, p> 0, does not directly imply

that it is a cause factor of Yt, even though they are observed or measured in sequence.

Based on any growth model, either continuous or discontinuous, that has been

presented in Chapters 2 and 3, it is easy to derive seemingly causal models or

explanatory models just by replacing the t-variable with a relevant X-variable, or by

deleting the t-variable from the models. For this reason, this chapter will only present
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some selected SCMs or EMs, starting with the simplest model based on a single time

series, namely {Yt}, for t¼ 1, 2, . . ., T, and then a bivariate time series (Xt, Yt).

Without using the time t as an independent variable of a time series model, there

could be some problems in developing an empirical model. The following section will

present illustrative case problems that have been found in developing or defining a

seemingly causal model.

4.2 Statistical analysis based on a single time series

In this section, alternativemodels based on a single time series are considered, namely {Yt},

for t¼ 1, 2, . . .,T, without using the discrete time t as an exogenous (independent) variable.

4.2.1 The means model

The means model can be considered as the simplest model for the time series {Yt},

t¼ 1,2,. . ., T, which is presented (in EViews) as

Yt ¼ cð1Þþmt ð4:1Þ
For this model the estimated mean Ŷ ¼ ĉð1Þ ¼ �Y ¼ PT

t¼1 Yt=T and R2¼ 0. Refer to

Example 2.1 for the computational formula of R2. Since R2 is always equal to zero,

then, based on a time series, a good fit model could never be achieved.

For illustration purposes, Figures 4.1 and 4.2 present the residual graphs of the

log(M1) and RSmeans models respectively. These graphs clearly show the autocorrela-

tions of the error terms of themodels,which are related to lowvalues of theDW-statistics.

The residual graph of the log(M1) means model shows that the time t has a positive

correlation with log(m1), which can also be proven by using correlation or regression

analysis. Therefore, in order to have a better model, the time t should be used as an

independent variable, or another variable that has a high positive correlation with the

time t. However, in this chapter, considerationwill only be taken using other variables.

4.2.2 The cell-means models

Even though the means model is considered as the worst fit model, in many cases the

means differences between defined time intervals should be studied. For example, if there

Figure 4.1 Residual graph of the log(M1) mean model
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is amonthly or weekly time series {Yt}, for t¼ 1, 2, . . .,T, its means differencesmight be

studied between seasons, namely Summer, Fall, Winter and Spring, or between quarters,

Q1,Q2,Q3andQ4.Moreover, if a time series is in daysor even in15-minute intervals, the

means differences between smaller time intervals could be studied.

For illustration purposes, Table 4.1 presents the means of the time series {Yt} by

years and quarters. Corresponding to this table is a cell-means model as follows:

Yt¼ cð11Þ*D11þ cð12Þ*D12þ cð13Þ*D13þ cð14Þ*D14
þ cð21Þ*D21þ cð22Þþ cð23Þ*D23þ cð24Þ*D24þmt

ð4:2Þ

whereDij is the zero–one indicator or dummy variable of the cell (i, j), i.e. the ith year

and the jth quarter. In this case, i¼ 1, 2 and j¼ 1, 2, 3 and 4.

The main objectives of this model are:

(1) To estimate and test the hypothesis on the means differences of the time series {Yt}

between theYears for allQuarters,whichcaneasily be testedbyentering the equations

c(11)¼ c(21), c(12)¼ c(22), c(13)¼ c(23) and c(14)¼ c(24) for the Wald test.

(2) To estimate and test a one-sided hypothesis on the means differences of the time

series {Yt} between the Year�s levels, for eachQuarter. For example, for the first

quarter, a right-hand hypothesis H0: c(11)–c(21)� 0 versus H1: c(11)–c(21)> 0

could be found. The statistical result can be obtained by entering the equation

c(11)¼ c(21) for the Wald test.

(3) Similarly, the hypothesis can be estimated or tested on the means differences of

the time series {Yt} between quarters, for all years or each year�s level.

This model can be presented in several other forms by using the dummy variables of

the year�s levels and the quarter�s levels. By defining or generating dy1 and dy2 as the

Figure 4.2 Residual graph of the RS mean model

Table 4.1 The means of the variable Yt by years and quarters

Quarters

1 2 3 4

Year¼ 1 C(11) C(12) C(13) C(14)

Year¼ 2 C(21) C(22) C(23) C(24)
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dummy variables of the two year�s levels and dq1, dq2, dq3 and dq4 as the dummy

variables of the quarter�s levels, the following alternative models can be found:

(1) Cell-Means Model I

Yt ¼ ðcð11Þ*dq1þ cð12Þ*dq2þ cð13Þ*dq3þ cð14Þ*dq4Þ*dy1
þðcð21Þ*dq1þ cð22Þ*dq2þ cð23Þ*dq3þ cð24Þ*dq4Þþ dy2þmt

ð4:3Þ

Note that the cell-means table of this model is exactly the same as Table 4.1.

Example 4.1. (A 2� 4 cell-means model) In order to apply the model in (4.3), the

time seriesPOLI_1 in theBASICSworkfile is selected for the first two years, 1959 and

1960. The stages of analysis are as follows:

(1) By using Excel, it is easy to generate or develop the dummy variables or zero–one

indicators of the year�s levels, namely dy1 and dy2, and the quarter�s levels,

namely dq1, dq2, dq3 and dq4.

(2) The dummy variables data in Excel can be inserted in the original BASICS

workfile by using the process presented in Chapter 1. If EViews 5 or 6 is used, the

Excel datafile can be directly opened as a workfile. Refer to Sections 1.2 and 1.3.

(3) Then the statistical results in Figure 4.3 can easily be obtained, with the residual

graph presented in Figure 4.4. Based on these results, the following notes and

comments can be made:

(i) TheDW-statistic of 2.0275, as well as the followingBG serial correlation LM

test, indicates that the null hypothesis of no first-order autocorrelation of the

error terms is accepted (Table 4.2).

Figure 4.3 Statistical results based on the cell-means model in (4.3)
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(ii) This example demonstrates a special case of a basic regression based on a

time series, which does not have a first-order autoregressive problem. On the

other hand, the basic regression based on a cross-sectional data set could

have autoregressive problems.

(iii) Based on the t-statistic presented in Figure 4.3, it can be concluded that each

of the cell-means is significantly greater than zero. Other hypotheses can

easily be tested by using the Wald tests.

(2) Cell-Means Model II

Yt ¼ ðcð11Þ*dq1þ cð12Þ*dq2þ cð13Þ*dq3þ cð14Þ*dq4Þ*dy1
þðcð21Þ*dq1þ cð22Þ*dq2þ cð23Þ*dq3þ cð24Þ*dq4Þþmt

ð4:4aÞ

with the cell-means as presented in Table 4.3. This table clearly shows that the

parameters C(11),C(12),C(13) andC(14) are the means differences between the

Figure 4.4 Residual graph of the regression in Figure 4.3

Table 4.2 BG serial correlation test of the regression in Figure 4.3

Breusch–Godfrey serial correlation LM test

F-statistic 0.042 642 Prob. F(1,12) 0.8399

Obs�R-squared 0.074 359 Prob. chi-squared (1) 0.7851

Table 4.3 The cell-means based on the model in (4.4a)

Quarters

1 2 3 4

Year¼ 1 C(11) þ C(21) C(12) þ C(22) C(13) þ C(23) C(14) þ C(22)

Year¼ 2 C(21) C(22) C(23) C(24)

Differences C(11) C(12) C(13) C(14)
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levelsYear¼ 1 andYear¼ 2, for each of the four quarters. Hence by applying this

model, the t-statistic presented in the printout can directly be used to test two-

sided and one-sided hypotheses on each of these parameters.

(3) Cell-Means Model III

Yt ¼ ðcð11Þ*dy1þ cð21Þ*dy2Þ*dq1þðcð12Þ*dy1þ cð22Þ*dy2Þ*dy2
þðcð13Þ*dy1þ cð23Þ*dy2Þ*dq3þðcð14Þ*dy1þ cð24Þ*dy2Þþmt

ð4:4bÞ

where C(ij) indicates the model parameter in the ith row and jth column or cell

(i, j). For this model, the cell-means is as presented in Table 4.4. This table shows

that the fourth quarter is taken as a reference group. The model can easily be

modified in order to have a different reference group if it is needed.

Note that these models can easily be extended to I� 4 cell-means models with

I> 2. Furthermore, if there is a weekly time series, then the cell-means may be

considered by Years, Quarters and Months, namely the I� 4� 12 cell-means

models (see Agung, 2006), which can be considered as a �multilevel cell-means

model� or �multifactorial cell-means models.�Moreover, if a daily or a 15-minute

time series exists, they could easily be developed into multilevel cell-means

models. One of the author�s students, Ekaputra (2003), has been considering the
15-minute time intervals in order to study the mean differences of the intra-day

stocks by days and 15-minute time intervals.

(4) Not Recommended Cell-Means Model

In many cases, corresponding to the 2� 4 cell-means table above, it has been

recognized that an analyst presents an additivemodel having dummy variables as

independent variables, besides several selected numerical exogenous or source

variables, as follows:

Yt ¼ cð1Þþ cð2Þdy1þ cð3Þdq1þ cð4Þdq2þ cð5Þdq3þ
XK
k¼1

bkXkt þmt ð4:5Þ

where all Xk�s are numerical exogenous variables.

Note that this model only has five parameters, c(1) to c(5), which indicate the

intercepts of the corresponding set of homogeneous regressions or surfaces

within the eight (¼2� 4) cells by years and quarters. Therefore, these intercepts

are not sufficient to represent the eight homogeneous regressions. The parameters

c(1) to c(5) represent the intercepts of the eight homogeneous regressions with

endogenous variables Yt and numerical independent variables Xk. The eight

intercepts can be summarized as in Table 4.5.

Table 4.4 The cell-means based on the model in (4.4b)

Quarters Differences

Years 1 2 3 4 1–4 2–4 3–4

1 C(11) þ C(14) C(12) þ C(14) C(13) þ C(14) C(14) C(11) C(12) C(13)

2 C(21) þ C(24) C(22) þ C(24) C(23) þ C(24) C(24) C(12) C(22) C(23)
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Table 4.5 The intercepts of the homogenous regressions in (4.5)

Quarters Differences

Years 1 2 3 4 1–4 2–4 3–4

1 C(1) þ C(2) þ
C(3)

C(1) þ C(2) þ
C(4)

C(1) þ C(2) þ
C(5)

C(1) þ
C(2)

C(3) C(4) C(5)

2 C(1) þ C(3) C(1) þ C(4) C(1) þ C(5) C(1) C(3) C(4) C(5)

Diff. C(2) C(2) C(2) C(2)

This table shows a specific pattern of the intercept differences, which are

considered to be an unrealistic pattern. Hence, these types of models are

considered to be poor or worst models, which will be stated as not recommended

models. If all b0
k s ¼ 0, then the worst cell-means model is obtained.

Other additive models with dummy variables, which are also considered as

poor models, are as follows:
(a) A Model Through the Origin

Yt ¼ cð1Þdy1þ cð2Þdy2þ cð3Þdq1þ cð4Þdq2þ cð5Þdq3þ
XK
k¼1

bkXkt þmt

ð4:6Þ(b) Another Model Through the Origin

Yt ¼ cð1Þdy1þ cð2Þdq1þ cð3Þdq2þ cð4Þdq3þ cð5Þdq4þ
XK
k¼1

bkXkt þmt

ð4:7Þ
Note that these last twomodels also havefive intercept parameters c(1) to c(5),

which are considered as the models through the origin, since they only have

one set of independent variables (i.e. the dummy variables and the numerical

exogenous variables). The model (4.6) uses both dummies of the years and

three out of the four dummy variables of the quarters, while the model (4.7)

uses one out of the two dummies of the years and all dummies of the quarters.

In fact, these models represent the same set of regressions as the model

in (4.5), but they have different forms of intercepts. Construct those tables as

an exercise and for comparison.

On the other hand, if the followingmodel having six intercept parameters is used, a

singular design matrix is formed, since c(1)¼ c(2) þ c(3), and the �Near Singular
Matrix� error message would be obtained:

Yt ¼ cð1Þþ cð2Þdy1þ cð3Þdy2þ cð4Þdq1þ cð5Þdq2þ cð6Þdq3þ
XK
k¼1

bkXkt þmt

ð4:8Þ
Likewise, if the followingmodel is used, a singular designmatrix is also formed, since

c(1)¼ c(3)þ c(4)þ c(4)þ c(5):

Yt ¼ cð1Þþ cð2Þdy1þ cð3Þdq1þ cð4Þdq2þ cð5Þdq3þ cð6Þdq4þ
XK
k¼1

bkXkt þmt

ð4:9Þ
&
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4.2.3 The lagged-variable models

The general lagged (endogenous)-variable model, namely LV(p), is defined as

Yt ¼ cð1Þþ
Xp
i¼1

cð1þ iÞ*Yt�i þmt ð4:10Þ

For specific time series, at the first stage of data analysis, the following simple models

may be considered:

(1) For a yearly time series, the first lagged-variable model, LV(1), is as follows:

Yt ¼ cð1Þþ cð2Þ*Yt�1 þmt ð4:11Þ
(2) For a quarterly time series, in order to match the quarters between a recent year

with the previous year, the fourth lagged-variable simple model is as follows:

Yt ¼ cð1Þþ cð2Þ*Yt�4 þmt ð4:12Þ

(3) For a monthly time series, in order to match the months in a recent year with the

previous year, the twelfth lagged-variable simple model is as follows:

Yt ¼ cð1Þþ cð2Þ*Yt�12 þmt ð4:13Þ

Note that these models are in fact a simple linear regression of Yt on each of the

independent variables Yt�1, Yt�4 and Yt�12 respectively. Hence each of these models

can be presented in the form of a scatter plot/graph with a simple linear regression, as

presented in the following example. Furthermore, each model can be considered as a

model based on the bivariate (Xi,Yi), with Xi�Xiþ 1�max(Yt�p) for all i, p¼ 1, 4

or 12.

Example 4.2. (LV( p) Models based on the variable RS) Figure 4.5 presents

the growth curve of the variable RS and Figure 4.6 presents the scatter graph of

(RSt�1, RSt) with the regression line in (4.10). Since max(RSt)¼ 15.087 33 for

t¼ 119, then based on the scatter graph of RSt on RSt�1, the following notes and

Figure 4.5 Growth curve of the variable RSt

192 Time Series Data Analysis Using EViews

www.trading-software-collection.com



comments can be made:

(1) The scatter graph of (RSt�1,RSt) is an overlay of two scatter graphs of (RSt�1,RSt)

for t� 119 and t> 119. This scatter graph could be considered as a scatter graph of

cross-section data, namely (Xi,RSi) withXi�Xiþ 1�max(RSt), for all i¼ 2,. . .,N.
(2) The scatter graph with the regression of RSt on RSt�1 shows the heterogeneity of

the error terms, since the absolute values of the error term increasewith increasing

values of RSt.

(3) The graph also shows thatRSt andRSt�1 have positive correlation, andRSt�1 has a

significant �effect� on RSt, based on the t-test: t0¼ 48.07 336, with df¼ and

p-value¼ 0.000. Considering the use of the word �effect,� would you declare that
RSt�1 is a (pure) cause factor ofRSt? It would be better to say or conclude thatRSt
and RSt�1 have a significant positive correlation, rather than RSt�1 has a

significant positive effect on RSt, since there might be other variables that are

the real cause factors of RSt.

(4) The LV(1) model of RS has R2¼ 0.926 and DW¼ 1.564.

(5) For a comparison, since there is a quarterly time series, it is suggested that an

LV(4) model should be used, in order tomatch the quarters between two consecutive

years, giving the statistical results presented in Figure 4.7, with its residual graph in

Figure 4.6 Scatter graph and regression line of RSt on RSt�1

Figure 4.7 Statistical results based on a simple model in (4.12) for RSt
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Figure 4.8. As this model has a very small DW-statistic, it is a worst or poor model

compared to the LV(1) model, with respect to the autocorrelation problem.

(6) After conducting further experimentation, the statistical results based on anLV(5)

model are obtained, which are presented in Figure 4.9. However, since RS(�5)

has an insignificant effect with a p-value¼ 0.4805, then the LV(4)model, given in

Figure 4.10, was found to be an acceptable model, in a statistical sense, with

R2¼ 0.939 720 and DW¼ 1.971 842. Do you think this LV(4) model is the best

model for RS? The limitation of this model can be explored by doing residual

tests. The results of these residual tests are presented in Figure 4.11, which shows

that the null hypothesis of no serial correlation, as well as its homogeneity and

normal distribution, for the error terms is rejected. This model could therefore be

thought to be theworstmodelwith relation to its error terms. Corresponding to the

residual tests, refer to the special notes presented in Section 2.14.3 with the topic

�To Test or Not� the Assumptions of the Error Terms. However, for illustration

Figure 4.8 Residual graph of the regression in Figure 4.7

Figure 4.9 Statistical results based on an LV(5) model for RSt
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purposes, Figures 4.12 to 4.14 present three alternative residual graphs to evaluate

visually the characteristics of the error terms of the model.

The correlogram of residuals shows that the autocorrelation is significant at level

k¼ 7, as well as its PAC (i.e. partial correlation). On the other hand, the correlogram

of residuals squared shows that the partial correlations are significant at the levels

k¼ 2 and k¼ 9. Based on these findings, it could be said that there is always a final

problem or question: �What should we do in order to obtain a better model, and

Figure 4.10 Statistical results based on an LV(4) model for RSt

Figure 4.11 BG serial correlation LM test for the model in Figure 4.10

Figure 4.12 Residual histogram of the regression in Figure 4.10.
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moreover the best possible model?�The answer to this question could be derived from
the special notes on the true population model in Section 2.14.1. &

Example 4.3. (Specialmodels based on the variablePOLI_1) Figure 4.15 presents

the growth curve of the variablePOLI_1, in theBASICSworkfile, and the scatter graph

of (POLI_1t, POLI_1t�1) with their simple linear regression is presented in

Figure 4.16. This graphical presentation is considered as a special case,

corresponding to the growth curve of POLI_1t, which is quite different from RSt in

the previous example, but the scatter graph also shows that POLI_1t and POLI_1t�1

have a positive correlation.

After doing additional data analysis, the statistical results in Figure 4.17 are obtained

based on an LV(4) model, with DW¼ 1.927 228. However, the independent variables

POLI_1(�2) andPOLI_1(�3) are insignificant.Hence, the followingmodifiedmodels

and notes are presented:

(1) The residual graph in Figure 4.18 clearly shows that the data do not support the

error terms, which are homogeneous. For this reason, it is suggested that other

estimationmethods should be tried, such as theWhite or Newey–West estimation

methods. Do this as an exercise.

Figure 4.13 Residual correlogram of the regression in Figure 4.10.

Figure 4.14 Residual squared correlogram of the regression in Figure 4.10.
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Figure 4.16 Scatter graph with the regression line of POLI_1t on POLI_1t�1

Figure 4.17 Statistical results based on an LV(4) model of the variable POLI_1

Figure 4.15 Growth curve of the variable POLI_1t
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(2) For illustration purposes, since the variable POLI_1(�4) is significant, two

alternative reduced models are presented in Figure 4.19, which are considered

as unexpected models, since they have unordered lagged dependent variables.

(3) Compared to the models in Figure 4.19, Figure 4.20 presents statistical results

using the White and the Newey–West estimation methods based on an LV(2)

model of POLI_1, which is a common model and an acceptable one, since

DW¼ 1.961 506 and each of the independent variables is significant. In order to

know the limitation of this model, Figure 4.21(a) presents the residual histogram

together with its descriptive statistics and Figure 4.21(b) presents the residual box

plot. Both graphs clearly show several outliers. Refer to Example 2.4 for

descriptions of howoutliers are treated. &

Example 4.4. (An application of the model in (4.13)) Since the BASIC work file

contains monthly time series, the model in (4.13) may be applied as an alternative

model of all models presented in Example 4.3. The equation of the model is

POLI 1t ¼ cð1Þþ cð2Þ*POLI 1t�12 þmt ð4:14Þ

Figure 4.18 Residual graph of the regression in Figure 4.17

Figure 4.19 Unexpected reduced models of the LV(4) model in Figure 4.17
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Figure 4.22 presents its statistical results using the LS estimation method and

Figure 4.23 presents its residual graph.

Compared to the models in the previous example, this model is a nonnested model;

hence theAIC and SC statistics could be applied in selecting a better model. Since this

model has larger values of AIC and SC statistics, it will be considered as a worst

model, compared to the previous models.

Considering the very small value of the DW-statistic, an autoregressive model

should be used, which will be presented in the following subsection. &

4.2.3.1 Special notes and comments

(1) The regression functionof Ŷ t ¼ ĉð1Þþ ĉð2ÞYt�k fora selectedkwill presenta straight

line in a two-dimensional coordinate system, with the intercept ĉð1Þ and slope ĉð2Þ.
(2) The regression function of Ŷ t ¼ ĉð1Þþ ĉð2ÞYt�m þ ĉð3ÞYt�k for a selected

(m,k), such as the regression POLI_1t¼ 0.006 434 þ 1.634 01POLI_1t�1 –

0.118 37POLI_1t�4 presented in Example 4.3, will present a plane in a

Figure 4.20 Statistical results using (a) the White and (b) the Newey–West estimation

methods, based on an LV(2) model of the variable POLI_1t

Figure 4.21 (a) The residual histogram and (b) the residual box plot of the regression in

Figure 4.20
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three-dimensional coordinate system, with the intercept ĉð1Þ and partial deri-

vatives qŶ t=qYt�m ¼ ĉð2Þ and qŶ t=qYt�k ¼ ĉð3Þ, which indicate that each of the
lagged variables Yt�m and Yt�k has a constant partial (adjusted) effect on Yt.

In general, the regression function of the LV(p) model in (4.10) will present an

hyperplane in a (p þ 1)-dimensional coordinate system, with each of the lagged

variables having a constant adjusted effect on the recent time series Yt.

(3) Corresponding to the use of two-way and three-way interactions in a time series

model, as presented in Chapter 2, a lagged endogenous variables regression may

be appliedwith interaction exogenous variables, such as follows as an illustration:

Ŷ t ¼ ĉð1Þþ ĉð2ÞYt�m þ ĉð3ÞYt�k þ ĉð4ÞYt�mYt�k ð4:15Þ

Figure 4.22 Statistical results based on the model in (4.14)

Figure 4.23 Residual graph of the regression in Figure 4.22
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with m< k. This regression shows that the effect of Yt�m on Yt is dependent on

Yt�k, which can be presented as the partial derivative.

qŶ t

qYt�m

¼ ĉð2Þþ ĉð4ÞYt�k ð4:16Þ

4.2.4 Autoregressive models

A general autoregressive model, namely the AR(q) model, will be presented as

Yt ¼ cð1Þþ
Xq
i¼1

cð1þ iÞ*mt�i þ «t ð4:17Þ

As presented in the previous chapter, in order to apply this model, the following

alternative �equation specification� should be used or entered:

Y ¼ cð1Þþ ½arð1Þ ¼ cð2Þ; arð2Þ ¼ cð3Þ; . . . ; arðpÞ ¼ cðpþ 1Þ� ð4:18Þ

or

y c arð1Þ arð2Þ � � � arðpÞ ð4:19Þ

4.2.5 Lagged-variable autoregressive models

The general lagged (endogenous)-variable autoregressive model, namely LVR(p, q),

is presented as

Yt ¼ cð1Þþ
Xp
i¼1

cð1þ iÞ*Yt�i þmt

mt ¼
Xq
j¼1

rjmt�j þ «t

ð4:20Þ

The process of data analysis based on this model, for all possible values of p and q, can

be done easily. However, by using the trial-and-error methods, unexpected models

may be obtained, as presented in the following example.

In order to apply thismodel, it is suggested that the following equation specification

should be used:

y c yð�1Þ yð�2Þ � � � yðpÞ arð1Þ arð2Þ � � � arðqÞ ð4:21Þ

so that the printoutwill directly show thevariables in themodel. Then the equation can

be saved in theworkfile by clicking the option �Names,� to be recalled later if there is a
need to modify the model.
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Example 4.5. (AR(q) Models of the model in (4.14)) Corresponding to a very low

value ofDW¼ 0.073291 of themodel in (4.14), as presented in Figure 4.22, themodel

should be improved by using autoregressive models in order to find a sufficient value

of the DW-statistic. By using the trial-and-error methods, the statistical results in

Figures 4.24 and 4.25 are obtained with sufficient values of the DW-statistics, based

on the following models:

Poli 1t ¼ cð1Þþ cð2Þ*Poli 1t�12 þ ½arð1Þ ¼ cð3Þ; arð2Þ ¼ cð4Þ� ð4:22Þ

Poli 1t ¼ cð1Þþ cð2Þ*Poli 1t�12 þ ½arð1Þ ¼ cð3Þ; arð3Þ ¼ cð4Þ� ð4:23Þ

Figure 4.25 Statistical results based on the model in (4.23)

Figure 4.24 Statistical results based on the model in (4.22)
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However, the model in (4.23) should be considered as an unexpected or uncommon

model, since it has two indicators AR(1) and AR(3), without the indicator AR(2).

Compared to themodel in (4.14), thesemodels aremuch better and are based on the

values of the DW-statistic, as well as their residual, actual and fitted value graphs, as

presented in Figures 4.26 and 4.27. However, both residual graphs are very similar,

which show the heterogeneity of the error terms. Therefore, it is suggested that the

White or Newey–West estimation methods should be used. Do this as an exercise.&

4.3 Bivariate seemingly causal models

Based on a bivariate time series, namely (Xt, Yt), t¼ 1, 2, . . . , T, the following

alternative SCMs (seemingly causal models) may be obtained.

Figure 4.26 Residual graph of the regression in Figure 4.24

Figure 4.27 Residual graph of the regression in Figure 4.25
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4.3.1 The simplest seemingly causal models

Based on a bivariate (Xt, Yt), the two simplest SCMs are as follows:

Yt ¼ cð1Þþ cð2ÞXt þmt ð4:24Þ

Yt ¼ cð1Þþ cð2ÞXt�k þmt ð4:25Þ

Note that the model (4.24) shows that Xt looks like a cause factor of the endogenous

variable Yt, but it could only be a predictor, an explanatory or a source variable, since

both variables Xt and Yt are observed or measured at the same time point. On the other

hand, Xt�k, for a specific value of k� 1, could be a cause factor of Yt, since they are

observed or measured in a sequence. However, note that this condition is not a

sufficient condition for Xt�k to be declared or named as a cause factor of Yt, but is a

necessary condition.

Based on a sample survey, the causal effect of Xt (or Xt�k), either direct or indirect,

on Yt is very highly dependent on expert judgment, which can be very subjective, and

is similar for the simultaneous effects between both variables. Refer to alternative

models, with their path diagrams, presented in Chapters 2 and 3. In this subsection,

however, only some of the problems in applying the models in (4.24) or (4.25) are

considered, as presented in the following examples.

Example 4.6. (The relationship between log(M1) andRS) By looking at the scatter

plot with the regression line of log(M1) on RS in the previous examples, as presented

again in Figure 4.28, it can be concluded that RSt is not an appropriate variable to be

used as an explanatory variable for the endogenous variable M1t or log(M1t), even

thoughRSt has a significant linear effect on log(M1t) with a p-value¼ 0.0000, based on

the standard t-test.

Figure 4.28 Scatter graph with a regression line of log(M1) on RS
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For further discussion, overlay growth curves of the time series RSt and log(M1t)

are also presented in Figure 4.29. By comparing both graphs, the following notes

and conclusions can be derived:

(1) The scatter plot or graph of (log(M1t), RSt), t¼ 1, 2, . . ., T, is, in fact, exactly the
same as the scatter plot of (log(M1i), RSi), with RSi�RSiþ 1 for all i¼ 1, 2, . . .,
n¼ T, as presented in Figure 4.28. Hence, the time series data analysis or a model

based on only the dated variables log(M1t) and RSt, without using the time t, can

be considered as a cross-sectional data analysis, based on the variables log(M1i)

and RSi. As a result, for further analysis, the subscript i can be used instead of t.

(2) Note that the maximum observed values of RSi¼ 15.08 733 occur in both graphs.

Corresponding to the graph in Figure 4.29, the maximum value of RSi is achieved

for t¼ 119. For t� 119, log(M1t) and RSt have a positive correlation, but they

have a negative correlation for t> 119. As a result, the model based on log(M1i)

and RSi should have at least two branches, with the following alternative

equations:

logðM1iÞ ¼ ðcð11Þþ cð12Þ*RSiÞ*Drs1þðcð21ÞþCð22Þ*RSiÞ*Drs2þmt

ð4:26Þ

logðM1iÞ ¼ ðcð11Þþ cð12Þ*RSiÞþ ðcð21ÞþCð22Þ*RSiÞ*Drs2þmt ð4:27Þ
whereDrs1 andDrs2 are the previously defined dummy variables of the two time

periods. Based on the model in (4.26), the following results are obtained:

LOGðM1Þ ¼ ð4:780þ 0:117*RSÞ*DRS1þð7:422� 0:106*RSÞ*DRS2
withR2 ¼ 0:934 147 and DW ¼ 0:215 959

ð4:28Þ
Compare this with all models with additional independent variables, including

the time t, as presented in Examples 3.21 and 3.22. This result clearly shows that

Figure 4.29 Overlay growth curves of the variables RS and log(M1)
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there are two lines with different intercepts and slopes in a two-dimensional

coordinate system with axes log(M1) and RS, with the following equations:

LOGðM1Þ¼ 4:780þ 0:117*RS
LOGðM1Þ¼ 7:422 � 0:106*RS

ð4:29Þ

Since the value of DW is very small, the standard t-test cannot be applied and

therefore further analysis should be done by taking into account the autocorrela-

tion of the error terms. However, here, no further analysis will take place, since

this has been demonstrated in previous examples. Do it as an exercise by using the

lagged dependent variables log(m1(�1)) and log(m1(�2)) or the AR indicators

ar(1) and ar(2), or a combination of both.

(3) Similar statistical results will be obtained by using the first lagged RSt�1 as an

independent variable, instead of RSt. Figure 4.30 presents an illustrative scatter

graph with linear regression of log(m1t) on RS(�1)¼RSt�1 and Figure 4.31

presents the scatter graph with a nearest neighbor fit as a nonparametric estima-

tion method, which will be discussed in Chapter 11. These graphical representa-

tions also show that RSt�1 should not be used as a linear predictor of M1t or

log(M1t).

Figure 4.31 Scatter graph with a nearest neighbor fit of log(M1) on RS(�1)

Figure 4.30 Scatter graph with a regression line of log(M1) on RS(�1)
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(4) These illustrations show that by not using the time t as an independent variable of a

model, there could be anunexpected association or correlation, aswell as amultiple

correlation, between a set of dated variables. Hence, without using the time t as an

independent variable, it may be concluded that bivariate scatter plots or graphs

betweeneachof the independent variables and thedependent variable are important

to be used as a guide to decide or select whether or not a variable is a good or an

appropriate independent variable. Compare this with the following examples. &

Example 4.7. (Not recommended model) Considering the relationship between

log(m1) with RS and the dummy variables Drs1 and Drs2, the following

alternative additive models may be presented:

logðm1tÞ ¼ cð1Þþ cð2Þ*Drs1þ cð3Þ*RSt þmt ð4:30Þ

which can be presented as a pair of homogeneous simple regressions or a set of

regressions having equal slopes, c(3), as follows:

logðm1tÞ ¼ cð1Þþ cð2Þþ cð3Þ*RSt þmt

logðm1tÞ ¼ cð2Þþ cð3Þ*RSt þmt

ð4:31Þ

Based on thismodel, the following regression functions are obtained, with the p-value

of the t-statistics in [�]:

logðm1Þ head ¼ 6�305�1�270 Drs1
½0�0000�

þ 0�063 970* RS
½0�0000�

ð4:32Þ

This equation in fact represents two parallel lines (homogeneous regressions) with a

slope¼ 0.063 970, which can be presented as in Figure 4.32. This graph presents

overly scatter graphswith regression lines of observed values of log(M1) and the fitted

values of the model in (4.30), namely log(m1)_head in (4.32), on RS, which clearly

shows that the model, i.e. the set of homogeneous regressions, is not an appropriate

empirical model.

Furthermore, even though RS has a significant effect on log(m1) with a p-value

0.0000 based on the standard t-test, it is suggested that these results, namely the

model in (4.30) as well as the conclusion of the t-test, should not be used as research

findings. In other words, this model is not a recommended model. &

Example 4.8. (The relationshipbetween log(M1) and log(GDP) orPR) Compared

to the two-piece model of log(M1) on RS in (4.26) and (4.30), Figures 4.33 and

4.34 present scatter graphs of log(M1) on each of the variables log(GDP) and

PR respectively. Compared to the variable RS, the data show that both variables,

log(GDP) and PR, are better linear predictors than RS.

Note that the graphs presented in Figures 4.33 and 4.34 are in fact based on the

variables log(M1i), log(GDPi) with log(GDPi)� log(GDPiþ 1) and PRi with PRi�
PRi�1, for all i¼ 1, 2,. . . , n¼ T, as mentioned in the previous examples.
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Figure 4.34 Scatter graph with a regression line of log(M1) on PR

Figure 4.32 Overlay scatter graphs with regressions lines of log(M1) on RS and the fitted

values of the model in (4.32)

Figure 4.33 Scatter graph with a regression line of log(M1) on log(GDP)
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The simple linear regressions (SLR) of log(M1) on each of log(GDP) and PR have

R-squared of 0.984 292 and 0.972 889 respectively. However, these SLRs have very

small values of DW-statistics of 0.027 162 and 0.017 985, so are not acceptable time

seriesmodels. &

Example 4.9. (An extreme case based on data in the BASICSworkfile) Referring

back to the illustrative graphs presented in Section 1.4 based on a set of variables in

BASICS.wf1, Figure 4.35 presents scatter plots of a bivariate time series (Xt,Yt), with

(d) its simple linear regression and (e) its nearest neighbor fit.

Based on these graphs, it could be said that Yt cannot be predicted by using Xt. In

otherwords,Xt cannot be a good predictor ofYt, since its simple linear regression has a

very small R2¼ 0.000 213 and Xt has an insignificant effect with a p-value¼ 0.7885,

as presented in Figure 4.36.

Even though itsDW¼ 1.956 719 is sufficient to indicate that the null hypothesis of

no first-order autocorrelation is accepted, themodel cannot be considered as a good fit

model. By observing the scatter graphs, as presented in Figure 4.37, it may be

Figure 4.35 Scatter graphs (Xt, Yt) in BASICS.wf1 with (a) a simple linear regression and (b)

a nearest neighbor fit

Figure 4.36 Statistical results based on a simple regression of Yt on Xt
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concluded that any definedmodels will have very small values ofR2. In other words, it

is impossible to find a regression that can have a sufficiently large value of R2.

Therefore, in this case, a model having a small value ofR2 should be accepted. &

Example 4.10. (A special case based on data in BASICS.wf1) Referring to the

growth patterns of Yt and POLI_1t over time, as presented in Figure 4.38(a), it could

be said that POLI_1t looks as though it has an insignificant linear effect on Yt.

However, a regression function has been obtained as follows:

Ŷ ¼ �0�097 031þ 1�704 116* POLI 1
ð3�860437Þ

ð4:33Þ

with a small value of R2¼ 0.042 230 and a sufficient value of DW¼ 2.034; POLI_1

has a significant effect on Y with a p-value¼ 0.0001. Figure 4.38(b) presents the

scatter graph with a regression line of Y on POLI_1.

It is surprising that based on the Breusch–Godfrey serial correlation LM test, the

null hypothesis of no first-order autocorrelation is accepted with a p-value¼

Figure 4.37 Residual graph of the regression in Figure 4.36

Figure 4.38 Graphs of the bivariate (POLI_1, Y): (a) overlay growth curves and (b) a scatter

graph with a regression line
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0.413 401. This result also shows that the time series (POLI_1t, Yt), t¼ 1, 2, . . .T; can
be analyzed as cross-sectional data (POLI_1i, Yi), i¼ 1, 2, . . ., n¼ T.

Even though the R-squared value is very small, these findings show that the simple

linear model is an acceptable model in a statistical sense, since it is certain that there

can never be amodelwith a largevalue ofR-squared. Furthermore, evenPOLI_1 has a

significant effect on Y, which means that POLI_1 is not a good linear predictor for Y,

since the R-squared value is very small. For a comparison, do the analysis using the

variable POLI_3. &

Example 4.11. (Another special case based on data in BASICS.wf1) First refer to

the overlay growth patterns ofYt andURATEt over time, as presented in Figure 4.39(a),

which are quite different from the growth patterns of Yt andPOLI_1t in Figure 4.38(a).

Figure 4.39(b) presents the scatter graph with a regression line of Yt on URATEt with

the following regression function with the t-statistic in [.]:

Ŷ ¼ 0�128 493�0�003 263* URATE
½�0�106796�

ð4:34Þ

with R2¼ 0.000 034,DW¼ 1.964 872, andURATE has insignificant effect on Ywith a

p-value¼ 0.9150. This value of the DW-statistic also indicates that the series

(URATEt, Yt), t¼ 1, 2, . . .T, can be analyzed as cross-sectional data (URATEi, Yi),

i¼ 1, 2, . . ., n¼ T. However, the simple linear regression may not be an appropriate

model. Corresponding to this type of scatter graph it is suggested that a nonparametric

regression should be applied, which will be presented in Chapter 11. &

4.3.2 Simplest models in three-dimensional space

Two simple (additive) models in a three-dimensional space or a coordinate system,

based on the bivariate (Xt, Yt), can have the following alternative models:

Yt ¼ cð1Þþ cð2Þ*Xt þ cð3Þ*Xt�m þmt ð4:35aÞ
Yt ¼ cð1Þþ cð2Þ*Yt�k þ cð3Þ*Xt�m þmt ð4:35bÞ

for selected values of (k, m). However, in general,k¼m¼ 1 may be used.

Figure 4.39 Graphs of the bivariate (URATE, Y): (a) overlay growth curves and (b) a scatter

graph with a regression line
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In a special case, for k¼ 1 and m¼ 0, there is a simple model as follows:

Yt ¼ cð1Þþ cð2Þ*Yt�1 þ cð3Þ*Xt þmt ð4:36Þ

whereXt can be an environmental or instrumental (exogenous) variable (Gourierroux

and Manfort, 1997).

Note that the corresponding regression function of this additive model can be

presented as a plane in a three-dimensional coordinate system. For example, the

regression function of (2.35) will represent a plane in the three-dimensional rectan-

gular coordinate with Yt, Yt�k and Xt�m axes. Hence, this type of model is considered

as the simplest model in a three-dimensional space.

Furthermore, note that the X and Y variables used in the model can be the original

variables or their transformation, such as log(Y), log(Y� L)/(U� Y), log(X) or Xa,

which have been presented in Chapter 2. If 0< Yt< 1 for all t, then there will be a

logistic model with log(Yt/(1� Yt)) as the dependent variable, and if 0< Yt< 100 for

all t, then there will be a modified logistic model with log(Yt/(100� Yt)) as the

dependent variable.

4.3.3 General univariate LVAR(p,q) seemingly causal model

Besides the simple models presented in the previous subsections, based on a bivariate

time series (Xt, Yt), the following general univariate LVAR(p, q) seemingly causal

model, namely LVAR(p, q)_SCM, may be considered:

Yt ¼ cð10Þþ cð11ÞYt�1 þ � � � þ cð1pÞYt�p þ cð20ÞXt þ � � � þ cð2kÞXt�k þmt

mt ¼ cð31Þmt�1 þ � � � þ cð3qÞmt�q þ «t

ð4:37Þ

Note that different symbols of parameters are used, such as c(10), c(1p), c(2k) and

c(3q), to indicate their positions corresponding to the intercept, lagged dependent

variables, the exogenous variable and its lags, and the autoregressive indicators. By

using these specific symbols, an independent variable can easily be added or deleted

while performing data analysis based on a series of alternative models.

Furthermore, note that this general model is a modification or derivation of a multi-

variate macroeconomic model, presented in Gourierroux and Manfort (1997, p. 356).

Corresponding to the model in (4.37), Enders (2004, p.7) presents another form of

the lagged-variable model, as follows:

Yt ¼ a0 þ
Xp
i¼1

aiYt�i þXt ð4:38Þ

where the various parameters ai are functions of economic variables, but do not

depend on any of the values Yt or Xt. The term Xt is called the forcing process, and can

be any function of time, current and lagged values of other variables and/or stochastic

disturbance.
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Example 4.12. (An additive seemingly causal model) Corresponding to the LVAR

(1,1) growth model in Example 2.17, after doing some exercises, an additive SCM is

obtained, namely a LVAR(2,1) with exogenous variables log(GDPt) and log(GDPt�1),

without the time t, as follows:

logðm1Þ ¼ cð10Þþ cð11Þ*logðm1ð�1ÞÞþ cð12Þ*logðm1ð�2ÞÞ
þ cð20Þ*logðgdpÞþ cð21Þ*logðgdpð�1ÞÞþ ½arð1Þ ¼ cð1Þ� ð4:39Þ

Figure 4.40 presents the statistical results based on the model in (4.39) with R2¼
0.999 646 and DW¼ 1.978 124, and its residual graph presented in Figure 4.41.

Figure 4.40 Statistical results based on the LVAR(2,1) model in (4.39)

Figure 4.41 Residual graph of the regression in Figure 4.40
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Therefore, it can be concluded that this model is an acceptable model, in a statistical

sense. Note that this model is an LVAR(2,1) model with two exogenous variables,

namely log(gdp) and log(gdp(�1)). &

Example 4.13. (LVAR(2,1) model with three exogenous variables) Figure 4.42

presents the statistical result based on an LVAR(2,1) model with three exogenous

variables, which has a �forcing process� Xt (Enders, 2004) that is a linear combination

of log(gdp), log(gdp(�1)), rs and ar(1), using the following model:

logðm1tÞ ¼ cð1Þþ cð2Þlogðm1t�1Þþ cð3Þlogðm1t�2Þþ cð4ÞlogðgdptÞ
þ cð5Þlogðgdpt�1Þþ cð6ÞRSþ cð7Þmt�1 þ «t

ð4:40Þ

However, the statistical results in Figure 4.42 are obtained by entering the following

equation specification:

logðm1Þ ¼ c logðm1ð�1ÞÞlogðm1ð�2ÞÞlogðgdpÞlogðgdpð�1ÞÞrs arð1Þ ð4:41Þ

and by clicking View/Actual/Fitted/Residual Table, the residual plot in Figure 4.43 is
obtained. This plot shows two of the error terms out of the confident interval, namely

at 1953Q1 (t¼ 5) and 1954Q3 (t¼ 11).

Based on this model, the hypotheses could easily be tested using the Wald test,

besides using the t-statistic and F-statistic presented in the printout. Note that

log(gdp) has a significant effect on log(m1), but log(gdp(�1)) has an insignificant

effect on log(m1), based on the t-statistic with a p-value ¼ 0.1975.

Figure 4.42 Statistical results based on the LV(2,1) model in (4.40)
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For illustration purposes, the joint effects of log(gdp) and log(gdp(�1)) are tested

using a null hypothesis H0: C(4)¼C(5)¼ 0. Based on the Wald test, the null

hypothesis is rejected either based on the F-statistic¼ 18.546 21, df¼ (2, 170) or

on the chi-squared-statistic¼ 327.092 42, df¼ 2, with a p-value¼ 0.000.

Then, based on this conclusion, if a reduced model is required, either one of these

independent variables can be deleted. For a further discussion, see the following

example. However, both variables may be kept in the model, since at a significant

level 0.10, log(gdp(�1)) has a significant negative effect on log(m1) with a

p-value¼ 0.1975/2¼ 0.098 75< 0.10. &

Example 4.14. (Possible reducedmodels of themodel in (4.40)) Figure 4.44 presents

the statistical results based on a reduced model of (4.40) by deleting log(gdp(�1)) as an

independent variable and using the OLS and the Newey–West estimation methods

respectively.

On the other hand, Figure 4.45 presents the statistical results based on another

reduced model by deleting log(gdp) as an independent variable, even though it has a

significant adjusted effect on log(m1), by using the OLS and the Newey–West

estimation methods respectively.

Based on these results, the following notes and conclusions are presented:

(1) It has been found that log(gdp) and log(gdp(�1)) have ahighor significant coefficient

of correlation. This can be easily tested by using a simple linear regression.

(2) There is a general conclusion or rule that if a pair of independent variables has a

high or significant coefficient of correlation, then either one of those variables

could be used to develop a reducedmodel.However,which one should be used is a

matter of judgment.

Figure 4.43 Residual plot of the regression in Figure 4.42
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(3) A researcher could have difficulty in selecting one out of the four statistical results

that might be considered as the best fit model, as well as choosing the best

estimation method to use. Note also that there are several or many other possible

lagged-variable autoregressive models having the endogenous variable log(m1).

See the following examples.

(4) However, if a reduced model needs to be presented, then the model with

log(gdp(�1)) can be selected as an independent variable by using the Newey–

West estimation method, because log(gdp(�1))¼ log(gdpt�1) is more appropri-

ate to use than log(gdpt) as a cause or an explanatory factor of log(m1t).

The Newey–West estimation method takes into account the unknown autocorrela-

tion, as well as the heteroskedasticity, of the error terms. On the other hand, the WLS

or the White estimation methods may be used, since the model has been using the

AR(1) indicator. &

Figure 4.45 Statistical results based on a reduced model of the model in (4.40), by deleting

log(GDP) using (a) the LS and (b) the Newey–West estimation methods

Figure 4.44 Statistical results based on a reduced model of the model in (4.40), by deleting

log(GDP(�1)) using (a) the LS and (b) the Newey–West estimation methods
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Figure 4.46 A correlation matrix of selected variables with their probabilities

4.3.3.1 A specific residual analysis

Figure 4.46 presents a correlation matrix of the error term, namely Resid01, of the

model in Figure 4.45with selected variables either in or out of themodel. The steps for

obtaining a correlation matrix have been presented in Section 1.3.5.

Based on this correlation matrix the following notes are produced:

(1) The correlation matrix should be used to study the correlations between each of

the independent variables with the error term. Since they are insignificant it can

be concluded that the model is an appropriate model, in a statistical sense,

specifically the linear forms of the independent variables. If at least one of them

has a significant correlation, it is suggested that an instrumentalmodel should be

applied, which will be presented in Chapter 7.

(2) The correlation can be used to study whether a variable outside the model

should be used to improve the quality of the model or to modify it. In this

case, since the variables log(pr) and the time t have insignificant correlations

with the error terms, it can be concluded that the model does not have to use

these variables in order to improve or modify the model.

(3) Note that each of the independent variables log(m1(�1)), log(m1(�2),

log(gdp(�1)) and RS has a significant effect on log(m1), even though they have

significant bivariate correlations. These statistical results show the unpredictable

impact(s) of the multicollinearity or correlations between the independent

variables, which have been presented in Section 2.14, since in general there

would be insignificant adjusted effect(s) whenever the independent variables are

significantly or highly correlated.

(4) Furthermore, it is suggested that the scatter graphs between the Resid01 and each

independent variable should be observed in order to explore the possibility of a

nonlinear relationship. Do this as an exercise.
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Example 4.15. (Advanced additive models for log(m1)) By experimentation or

using the �trial and error methods,� other lagged-variable autoregressive models have

been found for log(m1) that can be considered as acceptable models, in a statistical

sense. The statistical results presented inFigure 4.47 are based on the followingmodel:

logðmtÞ ¼cð1Þþ cð2Þ*logðgdptÞþ cð3Þ*logðgdpt�1Þþ cð4Þ*logðrstÞ
þ cð5Þ*logðrst�1Þþmt

mt ¼ r1mt�1 þ r2�1mt«t
ð4:42Þ

The statistical results show that the model is an acceptable model.

For illustration purposes, Figure 4.48 presents a correlation matrix of the error

terms, namely Resid02, and three variables out of the model, namely log(m1(�1)),

Figure 4.47 Statistical results based on the model in (4.42)

Figure 4.48 Correlation matrix of the error terms with variables outside the regression in

Figure 4.47
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log(pr) and the time t. At a significant level of 0.10, the Resid02 and the time t have a

significant correlation with a p-value¼ 0.0649. On the other hand, log(pr) also a has

positive correlationwithResid02with a p-value¼ 0.1869/2¼ 0.093 45< 0.10. These

indicate that the model can be improved or modified by using an additional variable,

either t or log(pr), or both.

Another limitation of thismodel can be identified by observing the residual graphs in

Figure 4.49(a) and (b). Figure 4.49(a) clearly presents two points that are a very long

way from theothers,which shouldbe consideredasoutliers, andFigure 4.49(b) presents

several points that are outside the confidence interval. These findings indicate that the

analysis is being donebased ondata that does not include the outliers or by transforming

the outliers to themeans of their neighbors, as has been suggested in previous examples.

As this process is not being presented here, there is no need to do it as an exercise.&

4.3.3.2 Special comments

(1) The last two examples present models having RSt or log(RSt) and log(RSt�1) as

exogenous variables and can exert significant adjusted effects on log(M1t).

(2) On the other hand, Examples 4.6 and 4.7 show that RSt is not an appropriate

linear predictor or explanatory variable for log(M1t). This example also shows

problems with its error terms.

(3) Based on these contradictory conclusions, the acceptability of any continuous

regression of log(M1t) on RSt or log(RSt) may be argued. From the present point

of view, it could be said that RSt and log(RSt) are not appropriate linear

explanatory variables for M1 or log(M1). Hence, it is recommended not to use

RSt or log(RSt) as predictors of M1 or log(M1), based on any models without

dummy variable(s) of theRSt. However, note that this recommendation cannot be

generalized to all pairs of variables Xt and Yt, but needs to be observed and

evaluated case by case.

(4) Instead of having a conclusion that RSt has a significant adjusted effect on

log(M1), it is wise or recommended to explore external information in order to be

able to present an explanation of why the values of RSt decrease after t¼ 119.

Figure 4.49 (a) Residual graph and (b) residual plot of the regression in Figure 4.47
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4.4 Trivariate seemingly causal models

4.4.1 Simple models in three-dimensional space

Based on a trivariate time series, namely (Xt, Yt, Zt), t¼ 1, 2, . . ., T, there may be

additive and interaction seemingly causal models (SCMs) or explanatory models

(EMs), as follows.

4.4.1.1 Simple additive models

An additive model is considered as the simplest model in three-dimensional space,

with the following general form:

Yt ¼ cð1Þþ cð2ÞXt�k þ cð3ÞZt�m þmt ð4:43Þ
for selected values of (k,m), which are highly dependent on the time intervals. Larger

values of k andmwill correspond to smaller time intervals, such as days and intra-day

intervals. However, in general, k¼m¼ 0, k¼m¼ 1 or k¼ 1 and m¼ 0 are used,

especially for yearly time series. For a special case, where m¼ 0, a model with the

environmental or instrumental variable Zt is found.

Note that the corresponding regression of thismodel can be presented as a plane in a

three-dimensional coordinate system, with Yt, Xt�k and Zt�k as the axes.

4.4.1.2 Two-way interaction models

Referring to the two-way analysis of variance models based on two treatments,

experimental or classification factors A andB, Agung (2006) presents four alternative

two-way interactionANOVAmodels, which are presented as designsABA�B,AA�B,
BA�B and A�B. Corresponding to these ANOVAmodels, Agung also presents similar

models based on numerical variables. Now, based on the trivariate time series (Xt, Yt,

Zt), the following two-way interaction models may be considered:

Yt ¼ cð1Þþ cð2ÞXt�k þ cð3ÞZt�m þ cð4ÞXt�kZt�m þmt ð4:44Þ

for fixed values k and m, which should be selected based on expert judgment. This

model is considered as an hierarchicalmodel if c(2) 6¼ 0, c(3) 6¼ 0 and c(4) 6¼ 0. On the

other hand, there will be three possible nonhierarchical models as follows:

(i) If c(2)¼ 0, c(3) 6¼ 0 and c(4) 6¼ 0, the nonhierarchical model is

Yt ¼ cð1Þþ cð3ÞZt�m þ cð4ÞXt�kZt�m þmt ð4:45Þ
(ii) If c(2) 6¼ 0, c(3)¼ 0 and c(4) 6¼ 0, the nonhierarchical model is

Yt ¼ cð1Þþ cð2ÞXt�k þ cð4ÞXt�kZt�m þmt ð4:46Þ
(iii) If c(2)¼ c(3)¼ 0 and c(4) 6¼ 0, the nonhierarchical model is

Yt ¼ cð1Þþ cð4ÞXt�kZt�m þmt ð4:47Þ
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Example 4.16. (An additive model, compared to Example 2.16) Corresponding

to the additive model with trend or the growth model in the Example 2.16, after doing

experimentation based on the time series M1t, GDPt and PRt, the following

acceptable additive LVAR(2,1) model is obtained:

logðm1Þ¼cð10Þþcð11Þ*logðgdpÞþcð12Þlogðgdpð�1ÞÞþcð21Þ*logðm1ð�1ÞÞ
þcð22Þ*logðm1ð�2ÞÞþcð31Þ*logðprÞþcð32Þ*logðprð�1ÞÞ
þ½arð1Þ ¼ cð41Þ�

ð4:48Þ
with the following regression function, with the t-statistic in (�):

logðm1Þ¼0:118
ð0:397Þ

þ0:267*
ð2:258Þ

logðgdpÞ�0:207*
ð�1:677Þ

logðgdpð�1ÞÞþ0:552*
ð4:512Þ

logðm1ð�1ÞÞ
þ0:370*

ð3:338Þ
logðm1ð�2ÞÞ�0:508*

ð�1:723Þ
logðprÞþ0:515*

ð1:768Þ
logðprð�1ÞÞþ½arð1Þ¼

ð2:194Þ
0:282�

ð4:49Þ

with R2¼ 0.999 653 and DW¼ 1.977 283. &

Example 4.17. (Two-way interaction models with endogenous variable log(m1))

After experimentation, the following acceptable AR(3) two-way interaction SCM

was found:

logðm1tÞ¼cð1Þþcð2Þlogðgdpt�1Þþcð3Þlogðrst�1Þ
þcð4Þlogðgdpt�1Þ*logðrst�1Þþmt

mt ¼r1mt�1þr2mt�2þr3mt�3þ«t

ð4:50Þ

The results in Figure 4.50 are obtained by using the following equation specification:

logðm1Þ c logðgdpð�1ÞÞ logðrsð�1ÞÞ logðgdpð�1ÞÞ*logðrsð�1ÞÞ
arð1Þ arð2Þ arð3Þ

ð4:51Þ

However, by using the equation specification

logðm1tÞ ¼ cð1Þþcð2Þlogðgdpt�1Þþcð3Þlogðrst�1Þþcð4Þlogðgdpt�1Þ*logðrst�1Þ
þ½arð1Þ¼cð11Þ;arð2Þ¼cð12Þ;arð3Þ¼cð13Þ�

ð4:52Þ

the results in Figure 4.51 are obtained. Note that the symbols c(i) and c(1j) are used to

identify the differential status ormeaning of themodel parameters. The background to

using the first lagged exogenous variables lies in the fact that recent observations or

events should be explained by the events in the previous time period(s). This model

could easily be extended by using lagged endogenous variables, as well as higher

lagged variables.

Seemingly Causal Models 221

www.trading-software-collection.com



Note that by using the equation specification in (4.51) EViews saves or records the

model as follows:

logðm1tÞ ¼ cð1Þþ cð2Þlogðgdpt�1Þþ cð3Þlogðrst�1Þþ cð4Þlogðgdpt�1Þ*logðrst�1Þ
½arð1Þ ¼ cð5Þ; arð2Þ ¼ cð6Þ; arð3Þ ¼ cð8Þ�:

ð4:53Þ

Figure 4.51 Statistical results using the equation specification in (4.52)

Figure 4.50 Statistical results using the equation specification in (4.51)
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where the parameters c(5), c(6) and c(7) represent the autocorrelation parameters r1,
r2 and r3 respectively. &

Example 4.18. (Another interaction model, compared to Example 2.18)

Corresponding to the interaction growth model in Example 2.18, an interaction

model will be considered, without the time t, as follows:

logðm1Þ ¼ cð1Þþ cð2Þ*logðgdpÞþ cð3Þ*logðprÞ
þ cð4Þ*logðgdpÞ*logðprÞþ ½arð1Þ ¼ cð5Þ� ð4:54Þ

The following regression is obtained, with the t-statistic in (�):

logðm1Þ¼ 2:237
ð2:630Þ

þ 0:632*
ð5:441Þ

logðgdpÞ�0:465*
ð�1:109Þ

logðprÞ

þ 0:136 *
ð2:442Þ

logðgdpÞ*logðprÞþ ½arð1Þ¼
ð41:779Þ

0:958� ð4:55Þ

with R2¼ 0.999 603 and DW¼ 2.013 201.

Note that this model can easily be extended using the lagged variables, as presented

in the previous example. &

4.4.2 General LVAR(p,q) with exogenous variables

Based on a trivariate time series, namely (Xt, Yt, Zt), t¼ 1, 2, . . ., T, we may have the

following general additive SCMs or EMs, namely the LVAR(p,q) with exogenous

variables Xt and Zt, as follows:

Yt ¼ cð10Þþ cð11ÞYt�1 þ � � � þ cð1pÞYt�p þ cð20ÞXt þ � � � þ cð2kÞXt�k

þ cð30ÞZt þ � � � þ cð3mÞZt�m þmt

mt ¼ cð41Þmt�1 þ � � � þ cð4qÞmt�q þ «t

ð4:56Þ

This is an additive model, which can be extended to present two-way or three-way

interaction models, but only specific selected two-way or three-way interaction

factors are used from such a large number of possible interactions. Refer to the

additive and interaction models presented in the previous chapters.

On the other hand, judgment should also be used to select appropriate values of k,

m, p and q. However, in most cases, trial-and-error methods will be used or

experimentation as demonstrated in the previous examples will be performed.

For illustration purposes, some simple models, such as additive and interaction

models, will be presented as follows.

4.4.2.1 Additive models

For illustration purposes, the following three additive seemingly causal or explana-

tory models will be presented:

Yt ¼ cð1Þþ cð2ÞYt�1 þ cð3ÞXt þ cð4ÞZt þmt ð4:57aÞ
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Yt ¼ cð1Þþ cð2ÞYt�1 þ cð3ÞXt þ cð4ÞXt�1 þ cð5ÞZt þmt ð4:57bÞ

Yt ¼ cð1Þþ cð2ÞYt�1 þ cð3ÞYt�2 þ cð4ÞXt þ cð5ÞXt�1 þ cð6ÞZt þmt ð4:57cÞ

Note that the corresponding regressions of these models represent hyperplanes in

four-, five- and six-dimensional coordinate systems respectively, where Zt is consid-

ered as an environmental or instrumental variable (Gourierroux and Manfort, 1997).

Thesemodels show that the partial effect or adjusted effect ofZt onYt are c(4), c(5) and

c(6) respectively, which are the partial derivatives qYt/qZt. Compare these to the

following interaction models.

4.4.2.2 Two-way interaction models

For example, corresponding to the additive SCMs (4.57a), there is a complete two-

way interaction SCM, which is an hierarchical model, as follows:

Yt ¼ cð1Þþ cð2ÞYt�1 þ cð3ÞXt þ cð4ÞZt þ cð23ÞXtYt�1 þ cð24ÞYt�1Zt
þ cð34ÞXtZt þmt

ð4:58Þ

This model can be presented as

Yt ¼ fcð1Þþ cð2ÞYt�1 þ cð3ÞXt þ cð23ÞXtYt�1gþfcð4Þþ cð24ÞYt�1

þ cð34ÞXtgZt þmt

with
qYt
qZt

¼ cð4Þþ cð24ÞYt�1 þ cð34ÞXt

ð4:59Þ

which shows that the effect of the environmental variable Zt is dependent on the

exogenous variables Xt and Yt�1.

However, if a model with environmental variables and environment-related effects

is considered, then the following two-way interaction model is needed:

Yt ¼ cð1Þþ cð2ÞYt�1 þ cð3ÞXt þ cð4ÞZt þ cð24ÞYt�1Zt þ cð34ÞXtZt þmt ð4:60Þ
which has been found by deleting the two-way interaction XtYt�1 from the model

in (4.58). Compare this model with the model with trend and the time-related effects

presented in Chapter 2.

Thismodel is also considered as an hierarchicalmodel. On the other hand, if at least

one of the parameters c(2), c(3) and c(4) is equal to zero, then it is a nonhierarchical

SCM.

Note a two-way interaction should be used as an independent variable, since the

effect of a factor on the corresponding dependent variable is dependent on the second

factor. Other two-way interaction models, including the model with environmental

variables and environment-related effects, can easily be derived from the models

in (4.57b) and (4.57c).
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4.4.2.3 Three-way interaction models

As an extension of themodel in (4.58), a complete three-way interactionmodel, which

is a full hierarchical model, is presented as follows:

Yt ¼ cð1Þþ cð2ÞYt�1 þ cð3ÞXt þ cð4ÞZt þ cð23ÞXtYt�1 þ cð24ÞYt�1Zt þ cð34ÞXtZt
þ cð234ÞXtYt�1Zt þmt

ð4:61Þ
This gives the partial derivative

qYt
qZt

¼ cð4Þþ cð24ÞYt�1 þ cð34ÞXt þ cð234ÞXtYt�1 ð4:62Þ

which shows that the effect ofZt onYt is dependent on a nonlinear function ofYt�1 andXt.

If at least one of the parameters c(2), c(3), c(4), c(23), c(24) and c(34) is equal to

zero, but c(234) 6¼ 0, then a nonhierarchical model is produced. As usual, the

exogenous variables Yt�1, Xt and Zt are called the main factors, XtYt�1, Yt�1Zt and

XtZt are the two-way interaction factors and XtYt�1Zt is the three-way interaction

factor. Therefore, a three-way interaction factor is used as an independent variable,

under the assumption that their main factors have a complete association. Refer to the

three-way interactions presented in Chapter 2.

4.4.2.4 Higher-interaction models

In the case of a model having more than three main factors, such as the models

in (4.57b) and (4.57c), a four-way or higher interaction of numerical variables or

factors will never be used as an independent variable, since it is very difficult to judge

whether a set of four variables or factors has a complete association. In fact, even for

the three-way interactions, only one or two three-way interactions should be selected

out of all possible three-way interactions of the numerical variables.

For comparison, however, in a multifactorial analysis of variance (ANOVA or

MANOVA), an analysis of covariance (ANCOVAorMANCOVA) and heterogeneous

regressions, four-way or higher-interaction factors may be used between the cate-

gorical independent variables or between the categorical and numerical variables. For

example, based on three treatment or classification factors, namely A, B and C, and a

numerical exogenous variable,Xt, the following four-way interaction nonhierarchical

model could be produced (see Agung, 2006, pp. 301–307), as follows:

Yt ¼ ðABCÞijk þXt þðABCÞijkXt þmt;

with
X

ijk
ðABCÞijk ¼ 0

ð4:63Þ

This model represents a set of heterogeneous regressions or a model with the three

factors A, B and C. Corresponding to the weekly or monthly time series data, A is a

factor of time periods, such as before and after the monetary crises in Indonesia

(before and after 1997), B is a factor of the years andC is a factor of the semesters or a

semi-annual factor. The main objective of this model is to study the differences in the

linear effects of Xt on Yt between all time intervals by semesters, years and time

periods.
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In order to do the data analysis using EViews, a regression should be used with

dummy variables of all cells defined by the three factorsA,B andC. Then therewill be

a regression with eight (¼2� 2� 2) possible dummies, namelyD1 up toD8, with the

following equation:

Yt ¼
X8
k¼1

cð1kÞ*Dkþ
X8
k¼1

cð2kÞ*Dk*Xt þmt ð4:64aÞ
or

Yt ¼
X8
k¼1

cð1kÞ*Dkþ cð20Þ*Xt þ
X7
k¼1

cð2kÞ*Dk*Xt þmt ð4:64bÞ

Furthermore, a more advanced model with a five-way interaction as an independent

variable will follow if there is an additional quarterly factor Q. In this case, a

nonhierarchical model will be presented, as follows:

Yt ¼ ðABCQÞijkl þXt þðABCÞijkXt þðABCQÞijklXt þmt;

with
X

ijk
ðABCÞijk ¼ 0; 8l and

X
ijkl

ðABCQÞijkl ¼ 0
ð4:65Þ

Themain objective of thismodel is to study the differences of the linear effects ofXton

Yt between the four quarters, for all and for each time interval, by semesters, years and

time periods. For the data analysis using EViews, a regression with 32 (¼2� 2�
2� 4) dummy variables should be used, giving an equation similar to either model

in (4.64a) or (4.64b).

Then the hypotheses on the slope differences can easily be tested by using theWald tests.

Furthermore, refer to the notes and comments on the true population model,

multicollinearity problem and the �near singular matrix� error message, presented in

Section 2.14, corresponding to the application of an SCM having many exogenous

variables, particularly numerical variables.

4.5 System equations based on trivariate time series

Based on a trivariate time series, namely (Xt, Yt, Zt), t¼ 1, 2, . . ., T, a general system
equation or multivariate additive LVAR(p,q) with exogenous variables may be

produced as follows:

Yt ¼ cð10Þþ cð11ÞYt�1 þ � � � þ cð1pÞYt�p þ cð20ÞXt þ � � � þ cð2mÞXt�m

þ cð30ÞZt þ � � � þ cð3kÞZt�k þmt

mt ¼ cð41Þmt�1 þ � � � þ cð4pÞmt�p þ «1t
Xt ¼ cð50Þþ cð51ÞYt�1 þ � � � þ cð5pÞYt�k þ cð60ÞXt þ � � � þ cð6mÞXt�m

þ cð70ÞZt þ � � � þ cð7kÞZt�k þ nt
nt ¼ cð81Þnt�1 þ � � � þ cð8qÞnt�q þ «2t

ð4:66Þ

In time series data analysis, the multivariate autoregressive model, namely the MAR

model, is known as a vector autoregressive model (VAR model). However, since

EViews uses the VAR function to present a special case of the multivariate auto-

regressive models, then there is a preference to use the acronyms MAR model.

226 Time Series Data Analysis Using EViews

www.trading-software-collection.com



For example, a special case of this model is an additive model as follows:

Yt ¼ cð11Þþ cð12ÞYt�1 þ cð13ÞXt þ cð14ÞXt�1 þ cð15ÞZt þmt

Xt ¼ cð21Þþ cð22ÞYt�1 þ cð23ÞXt�1 þ cð24ÞZt þ nt
ð4:67Þ

The seemingly causal effects between the variables in thismodel can be presented as a

path diagram in Figure 4.52. Compare this to the path diagrams presented in the

previous chapters.

This path diagram shows that the three exogenous variables Xt�1, Yt�1 and Zt have

direct effects on both Xt and Yt, as well as indirect effects on Yt through Xt.

Example 4.19. (Extension of the model in (4.48)) Corresponding to the univariate

model in (4.48), the following additive bivariate model can be produced:

logðm1Þ ¼ cð1Þþ cð11Þ*logðgdpÞþ cð12Þ*logðgdpð�1ÞÞ
þ cð21Þ*logðm1ð�1ÞÞþ cð22Þ*logðm1ð�2ÞÞ
þ cð31Þ*logðprÞþ cð32Þ*logðprð�1ÞÞþ ½arð1Þ ¼ cð41Þ�

logðgdpÞ ¼ cð2Þþ cð51Þ*logðgdpð�1ÞÞ
þ cð61Þ*logðm1ð�1ÞÞþ cð62Þ*logðm1ð�2ÞÞ
þ cð71Þ*logðprÞþ cð72Þ*logðprð�1ÞÞþ ½arð1Þ ¼ cð81Þ�

ð4:68Þ

The statistical results are obtained by using the �system equation,� as presented in the
previous chapters. Regressions having DW-statistics of both 1.977 and 1.963 will be

obtained, making it sufficient to conclude that the null hypothesis of no first-order

autocorrelation is accepted. As a result, it can be declared that this bivariate model is

an acceptable model, in a statistical sense.

The associations between the variables in this LV(2,1) additive bivariate model can

be presented as path diagrams in Figure 4.53. Compare thesewith the path diagram of

a simultaneous causal model as presented in Figure 2.82.

Zt

Xt

Xt-1

Yt-1

Yt µt

νt

Figure 4.52 Path diagram of the model in (4.66)

m1t-2 prt-1

gdpt-1

prt

m1t

gdpt ρ2*µ2t

ρ1*µ1tm1t-1

Figure 4.53 Path diagram of the endogenous and exogenous variables of the model in (4.68)
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Corresponding to all multivariate growth models, as well as the path diagrams

presented in Chapter 2, this bivariate SCM could easily be extended to multivariate

seeminglycausalmodelswith two-wayandthree-wayinteractionfactorsas independent

variables, such as the model in (2.82) and the simultaneous causal models in (2.81).&

4.6 General system of equations

Based on a multivariate time series, namely (X1, X2, X3, Y1, Y2), a path diagrammay

be produced as presented in Figure 4.54. This path diagram is derived from the path

diagram in Figure 2.89, by deleting the time t-variable.

Corresponding to this path diagram, multivariate additive, two-way interaction and

three-way interaction models may be produced, which can easily be written based on

the models presented in Section 2.13, specifically on the models in (2.83) to (2.85) by

deleting the time t from the models.

Furthermore, in addition to thosemodelsmanyothermultivariatemodels can easily

be developed, by using the five recent time series considered, namelyX1t,X2t,X3t,Y1t
and Y2t, their possible lagged variables and some of the autoregressive indicators,

which could be unexpected or unpredictable empirical models. For illustration

purposes, by assuming that Y1t and Y2t have simultaneous causal effects, the

following examples present selected bivariate SCMs.

Example 4.20. (Simultaneous seemingly causal models) In this example two

alternative simultaneous seemingly causal models will be presented, namely an

additive and an interaction model as follows:

(1) Simultaneous Additive SCM

Among a lot of possible alternative models, suppose the following multivariate

additive simultaneous SCMs are given:

Y1t ¼ cð11Þþ cð12ÞY2t þ cð13ÞY1t�1 þ cð14ÞY2t�1 þ cð15ÞX1t þmt

Y2t ¼ cð21Þþ cð22ÞY1t þ cð23ÞY1t�1 þ cð24ÞY2t�1 þ cð25ÞX1t þ nt
X1t ¼ cð31Þþ ð32ÞY1t�1 þ cð33ÞY2t�1 þ cð34ÞX2t þ cð35ÞX3t þ ut

ð4:69Þ

X2

X3

X1

Y2

Y1

Figure 4.54 Path diagram based on Figure 2.89
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Y1(t-1)

Y1(t)

Y2(t)

Y2(t-1)

X1(t)

X2(t) 

X3(t)

µ(t)

ν(t)

θ(t)

Figure 4.55 Path diagram of the model in (4.69)

Note that this seemingly causal model can be presented as a path diagram in

Figure 4.55. The double arrows betweenY1(t) andY2(t) indicate the simultaneous

causal effects of these endogenous variables.

(2) Interaction Simultaneous Seemingly Causal Model

The path diagram in Figure 4.55 shows that Y1(t�1) and Y2(t�1) have indirect

effects on the endogenous variables Y1(t) and Y2(t) through X1(t). Then a two-

way interaction model could be obtained as follows:

Y1t ¼ cð11Þþ cð12ÞY2t þ cð13ÞY1t�1 þ cð14ÞY2t�1 þ cð15ÞX1t
þ cð16ÞX1tY1t�1 þ cð17ÞX1tY2t�1 þmt

Y2t ¼ cð21Þþ cð22ÞY1t þ cð23ÞY1t�1 þ cð24ÞY2t�1 þ cð25ÞX1t
þ cð26ÞX1tY1t�1 þ cð27ÞX1tY2t�1 þ nt

X1t ¼ cð31Þþ ð32ÞY1t�1 þ cð33ÞY2t�1 þ cð34ÞX2t þ cð35ÞX3t þ ut

ð4:70Þ

Furthermore, by considering that the X2(t) and X3(t) also have indirect effects on

Y1(t) and Y2(t), a more advanced two-way interaction model could be produced

as follows:

Y1t ¼ cð11Þþ cð12ÞY2t þ cð13ÞY1t�1 þ cð14ÞY2t�1 þ cð15ÞX1t
þ cð16ÞX1tY1t�1 þ cð17ÞX1tY2t�1 þ cð18ÞX1tX2t þ cð19ÞX1tX3t þmt

Y2t ¼ cð21Þþ cð22ÞY1t þ cð23ÞY1t�1 þ cð24ÞY2t�1 þ cð25ÞX1t
þ cð26ÞX1tY1t�1 þ cð27ÞX1tY2t�1 þ cð28ÞX1tX2t þ cð29ÞX1tX3t þ nt

X1t ¼ cð31Þþ ð32ÞY1t�1 þ cð33ÞY2t�1 þ cð34ÞX2t þ cð35ÞX3t þ ut

ð4:71Þ
Based on this model the partial derivatives are as follows:

qY1t
qX1t

¼ cð15Þþ cð16ÞY1t�1 þ cð17ÞY2t�1 þ cð18ÞX2t þ cð19ÞX3t
qY2t
qX1t

¼ cð25Þþ cð26ÞY1t�1 þ cð27ÞY2t�1 þ cð28ÞX2t þ cð29ÞX3t
ð4:72Þ
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which indicates that the effect ofX1t on the bivariate (Y1, Y2)t is dependent on the

first lagged variables (Y1, Y2)t�1, as well as the exogenous variables X2t and X3t
(Figure 4.56).

Finally, note that there is a possibility that the three variables X1(t), Y1(t) and

Y1(t – 1) have a complete association. If this is the case, then the three-way interaction

X1(t)�Y1(t)�Y1(t – 1) can be a source or cause factor of Y2(t). Similarly, for the three-

way interaction X1(t)�Y2(t)�Y2(t� 1) is a source or cause factor of Y1(t). For this

reason, there may be a three-way interaction SCM as follows:

Y1t¼ cð11Þþ cð12ÞY2t þ cð13ÞY1t�1 þ cð14ÞY2t�1 þ cð15ÞX1t þ cð16ÞX1tY1t�1

þ cð17ÞX1tY2t�1 þ cð18ÞX1tX2t þ cð19ÞX1tX3t þ cð110ÞX1tY2tY2t�1 þmt

Y2t¼ cð21Þþ cð22ÞY1t þ cð23ÞY1t�1 þ cð24ÞY2t�1 þ cð25ÞX1t þ cð26ÞX1tY1t�1

þ cð27ÞX1tY2t�1 þ cð28ÞX1tX2t þ cð29ÞX1tX3t þ cð210ÞX1tY1tY1t�1 þ nt
X1t¼ cð31Þþ ð32ÞY1t�1 þ cð33ÞY2t�1 þ cð34ÞX2t þ cð35ÞX3t þ ut

ð4:73Þ
For illustration purposes, Figure 4.57 presents a modified path diagram of the path

diagram in Figure 4.55. This path diagram shows that there should be four dependent

or downstream variables, namely Y1(t), Y2(t), X1(t) and X2(t). Similar to the models

in (4.70), (4.71) and (4.73), as well as the models presented in the previous chapters,

based on this path diagram, it should be easy to define or write additive, two-way and

three-way interaction models.

Y1(t-1)

Y1(t)

Y2(t)

Y2(t-1)

X1(t)

X2(t) 

X3(t)

µ(t)

ν(t)

θ(t)

Figure 4.56 Path diagram of the model in (4.71)

Y1(t-1)

Y1(t)

Y2(t)

Y2(t-1)

X1(t) 
X2(t) 
X3(t) 

X1(t-1) 
X2(t-1) 
X3(t-1) 

µ(t)

ν(t)

ζ1(t),ζ2(t),ζ3(t) 

Figure 4.57 Simple path diagram of the model in (4.73)
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Additional alternative models can be developed by using higher-order lagged

endogenous variable autoregressive models, as well as lagged exogenous variables,

and by introducing an environmental or instrumental variable, namely Z(t). &

Example 4.21. (Higher-dimensional multivariate models) Based on the multiva-

riate time series (X1, X2, X3, Y1, Y2), there might be a higher- dimensional or level

additive SCM, as follows:

Y1t ¼ cð11Þþ cð12ÞY2t þ cð13ÞY1t�1 þ cð14ÞY2t�1 þ cð15ÞX1t
þ cð16ÞX2t þ cð17ÞX3t þmt

Y2t ¼ cð21Þþ cð22ÞY1t þ cð23ÞY1t�1 þ cð24ÞY2t�1 þ cð25ÞX1t
þ cð26ÞX2t þ cð27ÞX3t þ nt

X1t ¼ cð31Þþ ð32ÞY1t�1 þ cð33ÞY2t�1 þ cð34ÞX1t�1 þ cð35ÞX2t�1 þ cð36ÞX3t�1 þ ut
X2t ¼ cð41Þþ ð42ÞY1t�1 þ cð43ÞY2t�1 þ cð44ÞX1t�1 þ cð45ÞX2t�1 þ cð46ÞX3t�1 þqt

X3t ¼ cð51Þþ ð52ÞY1t�1 þ cð53ÞY2t�1 þ cð54ÞX1t�1 þ cð55ÞX2t�1 þ cð56ÞX3t�1 þ §t

Note that this model is derived from the model in (2.98) by deleting the time t.

Therefore, the path diagram of this model can also be presented as the path diagram in

Figure 2.108 by deleting the time t-variable. However, here a simpler path diagram is

presented, as in Figure 4.57.

Similar to the models in the previous example, this model can easily be modified in

order to develop many other alternative models, such as the higher-order lagged-

variable autoregressive SCMs, either additive or interaction models. On the other

hand, use may not be made of the three exogenous variables X1(t), X2(t) and X3(t), or

the first lagged endogenous variables, to define alternative models.

Byhavingan environmental variableZ(t), the path diagrampresented inFigure 4.58

may be obtained. Corresponding to this path diagram, several alternative interaction

models could be presented, including a model with environmental-related effects, by

using the main factor Z(t) and the two-way interactions X1(t)�Z(t), X2(t)�Z(t) and
X3(t)�Z(t) as additional independent variables of the first two regressions in (4.74).

Even though the data analysis is a straightforward method, the trial-and-error

methods should be used, since the good fit model(s) could be unexpected model(s),

which is(are) highly dependent on the data set that happens to be selected or available.

Y1(t-1)

Y1(t)

Y2(t)

Y2(t-1)

X1(t) 
X2(t) 
X3(t) 

X1(t-1) 
X2(t-1) 
X3(t-1) 

µ(t)

ν(t)

ζ1(t),ζ2(t),ζ3(t) 

Z(t)

Figure 4.58 Path diagram of the model in (4.74) with an additional environment indepen-

dent variable Z(t)

(4.74)
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Refer to the special notes and comments in Section 2.14. So far, several unexpected

models have been presented that are acceptable in a statistical sense. For a compari-

son, the following example presents an unexpectedmodel from another source. &

Example 4.22. (An unexpectedmodel of Yaffee andMcGee (2000, p. 45)) Yaffee

and McGee present the following autoregressive growth model:

Yt ¼ 9:844þ 0:505timeþ et
et ¼ 0:295et�1 � 0:21et�5 þ 0:237et�6 þ vt

ð4:75Þ

This model could be considered as an unexpected model, corresponding to the model

of the error term et. The question could be asked: �Why are et�1, et�5 and et�6 used

instead of the other lags of the error term?� It is certain that this result is highly

dependent on the data, which cannot be generalized. &

4.7 Seemingly causal models with dummy variables

In the previous sections, as well as in Chapter 3, models with dummy variables have

been presented, which could be defined or constructed based on the time t-variable,

both exogenous as well as endogenous variables. Based on the same reasons, there

could also be various lagged-variable autoregressive seemingly causal or explanatory

models (SCMs or EMs) with dummy variables. Find the following time series models

with dummy variables.

4.7.1 Homogeneous time series models

Based on a bivariate time series {Xt�m, Yt}, t¼ 1, 2, . . ., T and a selected m� 1, the

following general additive model with dummy variables may be considered:

Yt ¼
XK�1

k¼1

cðkÞDkþ cðKÞþ cð11ÞXt�m þmt ð4:76aÞ

whereDk¼D(k) is a zero–one indicator of the k-th category of a defined categorical

variable having K categories, and is either constructed based on the time variable,

one or more endogenous or exogenous variables, or other external variables (such as

regional or environmental variables). This model should be considered as an

analysis of covariance (ANCOVA) time series model, with a covariate Xt�m, for

a selected value ofm� 1. Note that this regression model is a model with intercept,

c(K), or a model not through the origin, since the other terms on the right-hand side

are independent variables, i.e. dummy variables and a numerical variable.

In fact, thismodel represents a set of homogeneous regressions (Agung, 2006),with

a covariateXt�m or a set of parallel lines in a two-dimensional coordinate systemwith
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Xt�m and Yt axes. This model can be presented or written as a set of simple

homogeneous linear regressions having the same slopes, namely c(11), as follows:

Yt ¼ cð1Þþ cðKÞþ cð11ÞXt�m þmt

Yt ¼ cð2Þþ cðKÞþ cð11ÞXt�m þmt

. . . . . . . . .
Yt ¼ cðK�1Þþ cðKÞþ cð11ÞXt�m þmt

Yt ¼ cðKÞþ cð11ÞXt�m þmt

ð4:76bÞ

Note that the selected value of m� 1 is highly dependent on the researchers�
judgment, which can be very subjective. The main objective of this model is to

study and to test the hypotheses on the adjusted mean differences of Yt between the

Kth defined categories, under the assumption that Xt�m has equal effects on Ytwithin

all categories considered. However, note that this condition is almost never ovserved

in reality with a large value of K. Refer to the not recommended model presented in

Figure 4.32.

For this reason, a more general model should be considered, i.e. a set of

heterogeneous regressions, which is known as the Johnson–Neyman technique or

approach (1936, in Huitema, 1980, p.270), presented in the following subsection.

4.7.2 Heterogeneous time series models

Corresponding to the homogeneous regressions in (4.76), the equation of a set of

heterogeneous regressions will be presented as follows:

Yt ¼
XK�1

k¼1

cðkÞDkþ cðKÞþ
XK
k¼1

cð1kÞ*Dk*Xt�m þmt ð4:77Þ

This regression can be considered as a model with an intercept c(K). An alternative

general model is a regression through the origin, as follows:

Yt ¼
XK
k¼1

cðkÞDkþ
XK
k¼1

cð1kÞ*Dk*Xt�m þmt ð4:78Þ

This model represents a set of K regression lines, as follows:

Yt ¼ cðkÞþ cð1kÞ*Xt�m þmt

for k ¼ 1; 2; . . . ;K
ð4:79Þ

The main objectives of these last two models in (4.77) and (4.78) are to study and to

test the hypotheses on (i) the linear effect of Xt�m on Yt within each category and (ii)

the differences of the linear effects of Xt�m on Yt between pairs of the Kth defined

categories, which can easily be done by using the Wald tests.

Furthermore, this model can easily be extended to lagged (endogenous)-variable

autoregressive SCMs, either with a single exogenous variable, Xt�m, or multivariate
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exogenous variables. For multivariate numerical exogenous variables, the following

general equation is presented:

Yt ¼
XK
k¼1

XG
g¼0

ðcðgkÞ*Xg;tÞ*Dkþmt ð4:80Þ

whereXg, for g¼ 0, 1, 2, . . .,G, andX0¼ 1 are numerical exogenous variables, as well

as other endogenous variables, their lags and interactions between selected main

factors. The following example presents illustrative statistical results. &

Example 4.23. (SCM with a dichotomous independent variable) By using the

two dummy variables,D1 andD2, based on the model in (4.80), an LVAR(2,1) model

may be applied as follows:

logðm1tÞ ¼ ½cð11Þþ cð12Þ*logðm1t�1Þþ cð13Þ*logðm1t�2Þþ cð14Þ*logðgdptÞ
þ cð15Þ*logðprt�1Þ�*D1þ ½cð21Þþ cð22Þ*logðm1t�1Þ
þ cð23Þ*logðm1t�2Þþ cð24Þ*logðgdptÞ
þ cð25Þ*logðprt�1ÞÞ�*D2þ ½arð1Þ ¼ cð1Þ� þ «t

ð4:81Þ
with the statistical results presented in Figure 4.59.

In order to test hypotheses further using the Wald tests, based on the model

in (4.81), it is suggested that the model parameters presented in Table 4.6 should be

used or referred to. For example, since each of the variables log(m1(�2), log(gdp) and

log(pr(�1) is insignificant, their joint effect on log(m1) needs to be tested. The test can

be done by entering the equation c(13)¼ c(14)¼ c(15)¼ 0. Do this as an exercise.&

Figure 4.59 Statistical results based on the model in (4.81) and a reduced model
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Example 4.24. (Unexpectedmodels) This examplewill demonstrate that there can

be statistically acceptable causal models based on a pair of variables that are not

related at all. For this illustration, the hypothetical variable Y presented in Example

3.12 is considered as an endogenous variable. Corresponding to the three-pieceAR(1)

growth model presented in Example 3.13, a three-piece AR(1) SCM is proposed, as

follows:

logðYÞ ¼ ðCð11ÞþCð12Þ*logðyð�1Þþ cð13Þ*logðgdpÞÞ*Dy1
þðCð21Þþ cð22Þ*logðyð�1ÞÞþCð23Þ*logðgdpÞÞ*Dy2
þðCð31ÞþCð32Þ*logðyð�1ÞÞþCð33Þ*logðgdpÞÞ*Dy3
þ ½ARð1Þ ¼ Cð1Þ�

ð4:82Þ

Note that, even though the endogenous variable is an hypothetical data, any original

observed variables in Demo.wf1 can be used as independent variables of a model for

illustration purposes.

The statistical results in Figure 4.60 and its reducedmodel in Figure 4.61 are based on

the model in (4.82). Then based on this reduced model the following notes and

conclusions are presented:

(1) This model represents the following three models within the first, second and

third time periods respectively:

logðyÞ ¼ cð11Þþ cð13Þ*logðgdpÞþ ½arð1Þ ¼ cð1Þ�
logðyÞ ¼ ðcð21Þþ cð22Þ*logðyð�1ÞÞþ cð23Þ*logðgdpÞþ ½arð1Þ ¼ cð1Þ�
logðyÞ ¼ cð31Þþ cð33Þ*logðgdpÞþ ½að1Þ ¼ cð1Þ�

ð4:83Þ

Note that each of the independent variables has a significant adjusted effect on

ln(y), but the first and third regressions only has log(gdp) as an independent variable.

(2) Even though thevariableGDP does not have any relationshipwith the endogenous

variables Y, this statistical result shows that log(gdp) has a significant effect on

log(y). This example shows that a regression analysis can be used to show a

significant causal relationship between a pair of unrelated variables. Note the

following additional illustrations.

(3) For another illustration, Figure 4.62 presents statistical results based on the

following AR(3) three-piece model of log(y) on log(pr):

logðYÞ ¼ ðCð11Þþ 12Þ*logðprÞÞ*Dy1þðCð21Þþ cð22Þ*logðprÞ*Dy2
þðCð31ÞþCð32Þ*logðprÞÞ*Dy3
þ ½ARð1Þ ¼ Cð1Þ; ARð2Þ ¼ Cð2Þ; ARð3Þ ¼ Cð3Þ�

ð4:84Þ

Table 4.6 Parameters of the model in (4.81) by the dummy and exogenous variables

CV D1 D2 Constant log(m1t�1) log(m1t�2) log(gdpt) log(prt�1)

1 1 0 C(11) C(12) C(13) C(14) C(15)

2 0 1 C(21) C(22) C(23) C(24) C(25)
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For the final illustration, Figure 4.63 presents statistical results based on a model

as follows:

logðytÞ ¼ cð1Þþ cð2Þ*logðyt�1Þþ cð3Þ*logðgdptÞþ «t ð4:85Þ
This figure shows that log(gdp) has an insignificant effect on log(y). In fact,

log(gdp) and log(y) have a significant negative correlation of �0.514 190, based

Figure 4.60 Statistical results based on the model in (4.82)

Figure 4.61 Statistical results based on a modified model in (4.82)

236 Time Series Data Analysis Using EViews

www.trading-software-collection.com



on the t-statistic of�7.998 523 and a p-value¼ 0.0000. Therefore, thismodel and

the correlation analysis gives contradictory conclusions.

(4) These illustrations have demonstrated that statistically acceptable models can be

constructed based on an unrelated pair of variables. It is certain that statistically

acceptablemultivariatemodels can also be constructed based on a set of unrelated

variables. For this reason, based on any empirical data sets, best judgment has to

be used to select relevant endogenous and exogenous variables before a model is

defined or proposed.

(5) In order to obtain a better picture of the relationship between log(y) and log(gp),

Figure 4.64 presents the growth curve of log(y) and Figure 4.65 presents the

scatter graph with the regression line of log(y) on log(gdp). This scatter graph

clearly shows that the simple model in (4.85) should be considered as an

Figure 4.63 Statistical results based on the model in (4.85)

Figure 4.62 Statistical results based on the model in (4.84)
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Figure 4.64 Growth curve of log(y) based on hypothetical data

Figure 4.65 Scatter graph with regression of log(y) on log(gdp)

unacceptable model, in a theoretical as well as a statistical sense. As noted in the

previous chapters, this illustration again proves or shows the importance of a

scatter graph in statistical model development. &

4.8 General discontinuous seemingly causal models

Note that based on the three-piece univariate linear model presented in the previous

example, a general equation of a three-piece autoregressive seemingly causal model,

namely an AR(p)_SCM, can easily be obtained as follows:

Yt ¼
XI

i¼0

cð1iÞ*X1i*D1þ
XJ
j¼0

cð2jÞ*X2j*D2þ
XK
k¼0

cð3kÞ*X3k*D3

þ ½arð1Þ ¼ cð1Þ; . . . ; arðpÞ ¼ cðpÞ� þ «t

ð4:86Þ
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where Yt can be any type of endogenous variable and {X1i}, {X2j} and {X3k} are sets

of exogenous variables that can be equal or unequal sets of variables, with X10¼
X20¼X30¼ 1. Note that the exogenous variables could be other endogenous

variable(s), pure exogenous variables, lagged endogenous and exogenous variables,

dummy variables and interaction between selected exogenous variables.

Hence, there could be many alternative linear models, including the lagged

(endogenous)-variables autoregressive models. Those models could easily be ex-

tended to multivariate or vector autoregressive models with dummy variables. Refer

to all models presented in the previous subsection and Chapter 3.

Furthermore, note that by using many exogenous variables, there is a great

possibility of producing an error message such as �Near Singular Matrix� or

�Overflow� for the estimation methods using the iterative process. Refer to the notes

and comments presented in Section 2.14.

Example 4.25. (A three-piece AR(2) additive model) The following equation pre-

sents a three-pieceAR(2) additivemodelwith three exogenous variables,X1,X2 andX3:

Yt ¼ ðCð11ÞþCð12Þ*XlþCð13Þ*X2þCð14Þ*X3Þ*D1
þðCð21ÞþCð22Þ*X1þCð23Þ*X2þCð24Þ*X3Þ*D2
þðCð31ÞþCð32Þ*X1þCð32Þ*X2þCð34Þ*X3Þ*D3
þ ½ARð1Þ ¼ Cð1Þ;ARð2Þ ¼ Cð2Þ� þ «t

ð4:87Þ

Note that the three dummyvariables,D1,D2 andD3, could be definedbasedon a selected

numerical variable, either the exogenous, endogenous, the time variables or the variables

out of themodel, calledCV (i.e. categorical variable). Then for testingvarious hypotheses

based on this model, the model parameters in Table 4.7 should be considered.

For examples, the following hypothesis can be considered:

(1) The adjusted effect of X1 on Y, within CV¼ 1, could be tested using the t-test

presented in the printout, by looking at the parameterC(12) or the coefficient ofX1.

(2) The joint effects of the three independent variables on Y, within CV¼ 1, can be

tested by entering the equation C(12)¼C(13)¼C(14)¼ 0.

(3) The differential adjusted effects ofX1 on Y, betweenCV¼ 1,CV¼ 2 andCV¼ 3,

can be tested by entering the equation C(12)¼C(22)¼C(32).

(4) The differential joint effects of X1, X2 and X3 on Y, between CV¼ 1 and CV¼ 3,

can be tested by entering the equation C(12)¼C(32), C(13)¼C(33) and

C(14)¼C(34). &

Table 4.7 Parameters of the model in (4.87) by the dummy and exogenous variables

C V D1 D2 D3 Constant X1 X2 X3

1 1 0 0 C(11) C(12) C(13) C(14)

2 0 1 0 C(21) C(22) C(23) C(24)

3 0 0 1 C(31) C(32) C(33) C(34)
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Example 4.26. (A two-piece translog LVAR(2,2)_SCM) Figure 4.66 presents

statistical results of a two-pieces LVAR(2,2)_SCM, with dummy variables D1 and

D2 corresponding to a defined dichotomous time variable in Demo.wf1. Since

Figure 4.66 Statistical results based on an AR(2) three-piece model

Figure 4.67 Statistical results based on an AR(3) three-piece model
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log(m1(�2)) has an insignificant adjusted effect within the first time period

(p-value¼ 0.5673), then a reduced model might be obtained.

However, the reduced model is not presented here, but the result of a two-piece

LVAR(2,3)_SCM is presented in Figure 4.67 as an illustration. Based on these results, the

following notes and conclusions are presented:

(1) By adding the indicator AR(3) to the model, a model is produced where

log(m1(�2)) has a significant adjusted effect in both time periods. Hence, it

can be said that unexpected resultsmay be produced by inserting an additionalAR

(3) indicator in the model.

(2) In fact, in general there might also be unexpected statistical result(s) by adding or

deleting an exogenous variable. Refer to the following example.

(3) By observing the residual graphs of both models, as well as their DW-statistics, it

can be concluded that bothmodels are acceptable models, in a statistical sense.&

Example 4.27. (Another two-piece translog LVAR(2,3)_SCM) Since Drs1 and

Drs2 are zero–one indicators of the variable RS with a breakpoint RS¼max

(RSt)¼ 15.078 33 at t¼ 119, then by using RS as an additional variable in the

model in the previous example, a piecewise LVAR(2,3)_SCM would be obtained.

By using the trial-and-error methods, a good model is obtained, as presented in

Figure 4.68. Since the model has RS(�1) as an additional independent variable, then

this model can be considered as a mixed translog model.

Figure 4.68 Statistical results based on a piecewise LVAR(2,3) model
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Note that both log(m1(�1)) and log(m1(�2)) have a significant adjusted effect on

log(m1) in both intervals of the values ofRS (i.e.RS� 15.078 33 andRS> 15.078 33),

as well as other explanatory variables and the three AR indicators. Since, based on the

model in the previous example, log(m1(�1)) has an insignificant effect in the first

interval, then this model can be considered as an unexpected model.

Furthermore, the residual histogram in Figure 4.69 and the correlation matrix in

Figure 4.70 are presented to study the limitations of the model considered. &

Example 4.28. (Three-piece AR(3) interaction model) The following equation

presents a three-piece AR(2) interaction model with two exogenous variables, X1 and

X2. For illustration purposes, an interaction translog linear SCM is considered as

follows:

logðYÞ¼ðCð11ÞþCð12Þ*logðX1ÞþCð13Þ*logðX2ÞþCð14Þ*logðX1Þ*logðX2ÞÞ*D1
þðCð21ÞþCð22Þ*logðX1ÞþCð23Þ*logðX2ÞþCð24Þ*logðX1Þ*logðX2ÞÞ*D2
þðCð31ÞþCð32Þ*logðX1ÞþCð32Þ*logðX2ÞþCð34Þ*logðX1Þ*logðX2ÞÞ*D3
þ½ARð1Þ¼Cð1Þ;ARð2Þ¼Cð2Þ�þ«t

ð4:88Þ
Note that the interaction log(X1)

�log(X2) should be used as an independent variable,

since it is defined or well known that the effect of X1 on Y depends on X2 or that the

Figure 4.69 Residual histogram of the regression in Figure 4.70

Figure 4.70 Correlation matrix of Resid06, time t and log(PR)
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effect of X2 on Y depends on X1. Its statistical results are presented in Figure 4.71.

Based on these results, the following notes and conclusions are presented:

(1) Since it is defined that the effect of X1 on Y is dependent on X2, then in order to

construct an acceptable reduced model, no attempt should be made to delete or

omit an interaction factor from the regression. By using the trial-and-error

methods, a reduced model is obtained, as shown in Figure 4.72, p. 244, which

is considered to be the best among all possible reduced models.

(2) Based on the statistical results of the reduced model, it can be concluded that

the interaction factor log(x1)�log(x2) has a significant effect on log(y) within the
three defined time periods. In other words, the data support the hypothesis that the

effect of X1 on Y is dependent on X2, based on a translog linear model.

(3) Note again that the exogenous variables X1 and X2 should be selected based on

best judgment, so that they are good predictors (source or cause factors) of the

endogenous variable Y. &

4.9 Additional selected seemingly causal models

This section presents three types of simple SCMs, namely the polynomial model, the

Cobb–Douglass model and the CES (i.e. constant elasticity of substitution) model,

which could easily be extended to the lagged-variable autoregressive models, either

univariate or multivariate, with multivariate exogenous variables.

Figure 4.71 Statistical results based on an AR(2) interaction model
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4.9.1 A Third-degree polynomial function

Griffiths and Wall (1996, p. 573) presented a third-degree polynomial cost function,

which can be generalized as follows:

TC ¼ Cð1ÞþCð2Þ*QþCð3Þ*Q2 þCð4Þ*Q3 þ ut ð4:89Þ

where TC is the total cost andQ is the output of the firm. Therefore, the marginal cost

(MC) will be a quadratic function as follows:

MC ¼ dðTCÞ
dQ

¼ Cð2Þþ 2Cð3Þ*Qþ 3Cð4Þ*Q2 ð4:90Þ

4.9.2 A Three-dimensional bounded semilog linear model

A bounded time series model can be defined using a semilog linear model as follows:

log
Yt�L

U�Yt

� �
¼ Cð1ÞþCð2Þ*X1 þCð3Þ*X2 þ ut ð4:91Þ

where L andU are the lower and upper bounds of all possible values of the variable Yt
or values of Yt in the corresponding population. Note that in the three-dimensional

Figure 4.72 Statistical results based on a reduced model in Figure 4.71
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coordinate system with X1, X2 and log[(Y�L)/(U�Y)] axes, the corresponding

regression function will present a plane.

Special cases of this model are as follows.

4.9.2.1 Logistic seemingly causal model

If 0< Yt< 1 for all t, then a logistic SCM is as follows:

log
Yt

1�Yt

� �
¼ Cð1ÞþCð2Þ*X1 þCð3Þ*X2 þ ut ð4:92Þ

4.9.2.2 Modified logistic SCM

If Yt is a variable of percentages and 0< Yt< 100 for all t, then a modified logistic

SCM is as follows:

log
Yt

100�Yt

� �
¼ Cð1ÞþCð2Þ*X1 þCð3Þ*X2 þ ut ð4:93Þ

4.9.3 Time series Cobb–Douglas models

For illustration purposes, in three-dimensional space, the basic Cobb–Douglas (CD)

model can be presented as a translog (i.e. translogarithmic) linear model as follows:

logðYtÞ ¼ Cð1ÞþCð2Þ*logðX1ÞþCð3Þ*logðX2Þþmt ð4:94Þ

with a constant partial elasticity of logðŶÞ with respect to X1, which is computed as

h ¼ qŶ
qX1

.
X̂1

Ŷ
¼ Ĉð2Þ ð4:95Þ

This basic CD model can be extended to a bounded CD model as follows:

log
Yt�L

U�Yt

� �
¼ Cð1ÞþCð2Þ*logðX1ÞþCð3Þ*logðX2Þþ ut ð4:96Þ

Furthermore, since this is time series data that is being investigated, then the model

may be a lagged-variables autoregressive CD model. Refer to all possible models

based on the trivariate time series (Xt, Yt, Zt), as presented in Section 4.4. Further-

more, note the following example.
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Example 4.29. (An AR(1) Cobb–Douglas model) The printout in Figure 4.73

(with its residual graph in Figure 4.74) presents the results based on an AR(1)

Cobb–Douglas model, by entering the following equation specification:

logðm1Þ C logðgdpÞ logðprÞ ARð1Þ ð4:97Þ

For a comparison, Figure 4.75 (with its residual graph in Figure 4.76) and Figure 4.77

present the statistical results by entering the following equation specifications

respectively:

logðm1Þ C logðgdpÞ logðprÞ logðm1ð�1ÞÞARð1Þ ð4:98Þ

logðm1Þ C logðgdpÞ logðprÞ logðm1ð�1Þ logðgdpð�1ÞÞ logðprð�1ÞÞARð1Þ ð4:99Þ

which are the LVAR(1,1) models.

Figure 4.74 Residual graph of the regression in Figure 4.73

Figure 4.73 Statistical results based on the AR(1) model in (4.97)

246 Time Series Data Analysis Using EViews

www.trading-software-collection.com



Figure 4.77 Statistical results based on the model in (4.99)

Figure 4.75 Statistical results based on the model in (4.98)

Figure 4.76 Residual histogram of the regression in Figure 4.75

www.trading-software-collection.com



Based on these three statistical results, the following notes and conclusions are

presented:

(1) Themodel in (4.98) has the largest value of theDW-statistic, even though it is less

than two, and thismodel is the simplestmodel. For these reasons, thismodel could

be said to be the best of the three.

(2) The R-squared value of this model is the lowest, that is 0.999 594, because it has

the least number of numerical independent variables or this is a nested model of

the others.

(3) At the significant level a¼ 0.10, log(pr) and AR(1) in the model in (4.99) have

insignificant adjusted effects. However, in this model only the indicator AR(1) is

insignificant.

(4) Corresponding to the model in (4.99), special notes are given as follows:
. Since the model has the first lagged endogenous variable as an independent

variable and AR(1) is insignificant with a negative estimate, then a reduced

modelmay be obtained by deletingAR(1). Therefore, an LV(1)modelwould

be used with the following equation specification:

logðm1ÞC logðgdpÞlogðprÞlogðm1ð�1ÞlogðgdpÞð�1ÞÞlogðprð�1ÞÞ
ð4:100Þ

However, the results are not presented.
. Thematrix correlation in Figure 4.78 shows that its residual, namelyResid01,

and RS have a significant correlation with a p-value¼ 0.0156, which in-

dicates that RSmay be used as an additional independent variable. However,

the scatter graphs (log(M1),RS) in Figures 4.28 and 4.30 show thatRS is not a

relevant linear predictor of log(M1). For this reason, RS should not be used as

an additional variable of themodel, exceptwhen using amodelwith a dummy

variable(s). &

Example 4.30. (A two-piece Cobb–Douglas model) A two-piece CD model with

two input variables can be presented as

logðytÞ ¼ ðCð11ÞÞþCð12Þ*logðX1ÞþCð13Þ*logðX2ÞÞ
ðCð21ÞþCð22Þ*logX1 þCð23Þ*logðX2ÞÞ*D2þmt

ð4:101Þ

Figure 4.78 Correlation matrix of the residual of the model in Figure 4.77 with time t and RS
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or

logðytÞ ¼ ðCð11ÞÞþCð12Þ*logðX1ÞþCð13Þ*logðX2ÞÞ*D1
ðCð21ÞþCð22Þ*logX1 þCð23Þ*logðX2ÞÞ*D2þmt

ð4:102Þ

where D1 and D2 are two dummy variables, which can be defined:

(a) using or based on the time t-variable as previously presented;

(b) using either X1 or X2 independent variables;

(c) using the endogenous variable;

(d) based on any variables outside the model.

For example, by using the median of X1, say m, D1¼ 1 if X1�m and D1¼ 0 if

otherwise; and D2¼ 1 if D1¼ 0 and D2¼ 0 if otherwise. &

4.9.4 Time series CES models

It is recognized that the constant elasticity of substitution (CES) model for time series

data can be estimated by using its Taylor approximation as a translog quadratic model

as follows:

logðYtÞ ¼ Cð1ÞþCð2Þ*logðX1ÞþCð3Þ*logðX2ÞþCð4Þ*logðX1Þ2
þCð5Þ*logðX1Þ*logðX2ÞþCð6Þ*logðX2Þ2 þmt

ð4:103Þ

Agung and Pasay dan Sugiharso (1994, p. 53) proposed a modified translog quadratic

model as follows:

logðYtÞ ¼ Cð1ÞþCð2ÞlogðX1ÞþCð2ÞlogðX2Þ
þCð4Þ*ðlogðX1Þ�logðX2ÞÞ2 þmt

ð4:104Þ

Note that, under the null hypothesis H0: C(4)¼ 0, this model becomes the translog

linear model (CD model) in (4.94).

Furthermore, the models in (4.103) and (4.104) can easily be extended to lagged

(endogenous)-variable autoregressive CESmodels, either univariate ormultivariate

or vector CESmodels, with dummy variables. Refer to the special notes presented in

Section 2.14 corresponding to the model(s) having a multivariate exogenous

variable(s).

Example 4.31. (An AR(1) CES model) The printout in Figure 4.79 presents the

results based on an AR(1) CES model:

logðm1tÞ ¼ Cð1ÞþCð2Þ*logðgdpÞþCð3Þ*logðprÞþCð4Þ*logðgdpÞ2
þCð5Þ*logðgdpÞ*logðprÞþCð6Þ*logðprÞ2 þ ½ARð1Þ ¼ Cð7Þ� þ «t

ð4:105Þ
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Since the results show that each of the independent variables has an insignificant

adjusted effect, it might be preferable to find a reducedmodel. However, the following

notes are given:

(1) Figure 4.80 shows that the null hypothesis H0: C(4)¼C(5)¼C(6)¼ 0 is rejected

based on the F-and chi-squared-statistics. Therefore, it can be concluded that the

quadratic exogenous variables, namely log(gdp)2, log(gdp)�log(pr) and log(pr)2,

have a significant joint effect on log(m1). This significant joint effect indicates that all

of these variables cannot be deleted from the model if a reduced model is required.

(2) On the other hand, at the level of significance of a¼ 0.10, each of these quadratic

variables and the interaction factor have a significant adjusted effect based the

one-sided hypothesis. For examples, each of log(gdp)2 and log(pr)2 has a

significant positive effect on log(m1) with p-values of 0.1313/2¼ 0.065 65 and

0.1655/2¼ 0.082 75 respectively, and log(gdp)�log(pr) has a significant negative

Figure 4.79 Statistical results based on the model in (4.105)

Figure 4.80 The Wald test for H0: C(4)¼C(5)¼C(6)¼ 0, based on the model in (4.105)
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effect on log(m1) with a p-value¼ 0.1716/2¼ 0.0858. For these reasons, the

model does not need to be reduced.

(3) However, for further illustration purposes, the following data analysis has been

based on selected models.

(4) Since M1, GDP and PR have the same growth patterns, then the squared

independent variables are deleted, one by one, giving the results in Figure 4.81

(with its residual graph in Figure 4.82), which shows that log(gdp)�log(pr) is
significant, but log(pr) is insignificant with a p-value¼ 0.2691.

(5) Now there is another choice as to whether there should be an additional reduced

model or not. If one is required, then a choice needs to be made as to which

variable should be deleted from themodel. Under the assumption that the effect of

GDP onM1 is highly dependent onPR (or the effect ofPR onM1 is dependent on

GDP) then either one of themain factors should be deleted, even though log(gdp)�

log(pr) might have an insignificant effect. Therefore, there could be two possible

reduced models, as presented in Figures 4.83 and 4.84. In many cases, it has been

recognized that an independent variable would be deleted from a model based on

Figure 4.81 Statistical results based on a reduced model in Figure 4.79

Figure 4.82 Residual graph of the regression in Figure 4.81
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the largest p-value. However, it is suggested that judgment should be used to

delete a variable that is less important on a theoretical basis (refer to the special

notes in Section 2.14).

(6) Based on these last two reduced models, the model in Figure 4.83 will always be

chosen as the best model, which is highly dependent on the data set used. In other

words, the data supports the model in Figure 4.83 as the best model.

(7) Now, suppose in other cases that both statistical results show that each independent

variable has a significant effect, the interaction factor in particular. Which model

would be your choice? If the main objective is to study the effect of GDP onM1

dependent on PR, then the two models should be written or presented as follows:

logðm1Þ¼cð11Þþfcð12Þþcð13Þ*logðprÞg*logðgdpÞþ½arð1Þ¼cð1Þ� ð4:106Þ
logðm1Þ¼fcð21Þþcð22Þ*logðprÞgþfcð23Þ*logðprÞg*logðgdpÞþ½arð1Þ¼cð2Þ�

Figure 4.84 Statistical results based on a reduced model in Figure 4.81 by deleting log(gdp)

Figure 4.83 Statistical results based on a reduced model in Figure 4.81 by deleting log(pr)

(4.106)
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In the two-dimensional coordinate system with log(m1) and log(gdp) as the

coordinate axes, the first regression (i) represents a set of straight lineswith a single

intercept, namely c(11), and various slopes that are dependent on PR, namely

{c(12)þ c(13)�log(pr)}. On the other hand, the second regression (ii) represents a
set of straight lines with various intercepts, namely {c(21)þ c(22)�log(pr)}, as
well as various slopes, namely {c(23)�log(pr)}. From the present point of view, if

each independent variable is significant, then the second regression would be

chosen as the best model, since a set of regressions with a single intercept is an

impossible model in reality or practice.

(8) By doing further experimentation, an alternative acceptable model is obtained,

which is an LVAR(1,1) SCM,with the statistical results in Figure 4.85. Compared

to the results in Figure 4.84, note that Figure 4.85 shows that each of the variables

log(pr) and log(gdp)� log(pr) has a significant adjusted effect, but the model in

Figure 4.84 shows that both variables have insignificant effects. On the other

hand, the correlation matrix in Figure 4.86 shows that the independent variables

Figure 4.85 Statistical results based on an LVAR(1,1)_SCM

Figure 4.86 Correlation matrix of the residual of regression in Figure 4.85 and its indepen-

dent variables
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have significant bivariate correlations with the p-values¼ 0.0000. These results

indicate that the impact of correlations or multicollinearity between independent

variables on the parameter estimates is unpredictable, so that the statistical results

can also be considered as unexpected results, which are highly dependent on the

data set used. Refer to the special notes and comments on multicollinearity

problems in Section 2.14.

(9) Furthermore, corresponding to themodel in Figure 4.84, twomodifiedmodels have

been found with the statistical results presented in Figures 4.87 and 4.88, which

show that the interaction factor log(gdp)�log(pr) has a significant negative effect on
log(m1), based on the p-values of 0.0001/2¼ 0.000 05 and 0.0814/2¼ 0.0407

respectively. The model in Figure 4.88 should be considered as an unexpected

model, since it has the indicators AR(1), AR(2) and AR(4) without AR (3). &

Figure 4.87 Statistical results based on an unexpected or interaction model

Figure 4.88 Statistical results based on an LVAR(1,1) interaction model
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Example 4.32. (A two-piece AR(3) CES model) Similar to Example 4.6, this

example presents two-piece modified CES models in (4.104) with an endogenous

variable log(m1), exogenous variables log(gdp(�1)) and log(rs(�1)) and the dummy

variables Drs1 and Drs2 of the variable RS. After using the trial-and-error methods,

two alternative models are presented, with the statistical results given in Figures 4.89

and 4.90.

Both results show that the quadratic term (log(gdp(�1))-log(rs(�1)))2 has a

significant effect on log(m1) in both defined intervals. Since the basic model has

a very small value of the DW-statistic, the AR(3) model should be considered as the

bettermodel, even though the indicatorAR(3) is insignificant. Do this as an exercise to

Figure 4.89 Statistical results based on a two-piece modified CES model

Figure 4.90 Statistical results based on an AR(3) modified CES model
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construct other alternative models by deleting the AR(3) indicator and do residual

analyses to identify the limitation of each model. &

4.10 Final notes in developing models

4.10.1 Expert judgment

In the last three chapters, many alternative models have been presented with an

endogenous variable M1, either univariate or multivariate linear models. These

chapters have also demonstrated many more alternative models, so that an infinite

number of models have been obtained. The author is very confident that many

alternative models can also be presented based on any sets of three of five time series,

namely two endogenous variables and three exogenous variables, in various fields.

In practice, however, a few of all possible alternativemodels are always considered,

which, in fact, cannot represent the true population model. Refer to the special notes

on this problem in Section 2.14. Since the true populationmodel will never be known,

then best judgment should always be used in developing several alternative models,

which can be considered as acceptable models in a statistical sense as well as in a

theoretical sense.

When talking about the judgment, Tukey (1962, quoted in Gifi, 1990, p. 23) stated

the following three different kinds of judgment that are likely to be involved in almost

every instance:

(a1) judgment based upon experience of the particular field of subject matter from

which the data come;

(a2) judgment based upon a broad experience with how particular techniques of data

analysis have worked out in a variety of fields of application;

(a3) judgment based upon abstract results about the properties of particular techni-

ques, whether obtained by mathematical proofs or empirical sampling.

4.10.2 Other unexpected models

In the last three chapters examples of unexpectedmodels have been presented, as well

as �not recommended models� or �not appropriate models,� but they are acceptable

models, in a statistical sense. In practice, at the first stage, an association model based

on any set of variables should be defined based on a strong theoretical basis, since its

statistical results will be highly dependent on the data set available, and the estimates

of the model parameters could be unexpected statistical values. In other words, the

data do not support a particular model(s). In some cases, EViews presents the �Near
Singular Matrix� or �Overflow� error messages, as well as the note �Convergence not
achieved after . . . iterations,� even though a �good� model exists.

On the other hand, statistical results may be obtained with many of the independent

variables having an insignificant adjusted effect. This type of statistical result does not

directly mean that the model is a �bad� model.
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To overcome these problems, it is suggested that the following steps should be

applied, besides using the trial-and-error methods in order to obtain alternative

models, which are acceptable models in a statistical sense. Also refer to the special

notes and comments presented in Section 2.14.

(1) To select a good linear predictor variable. A scatter plot or graph should be

constructedwith linear regression between the dependent variable and each of the

numerical independent variables. In most cases, additive models would be

applied. Refer to the basic scatter graphs presented in Chapter 1.

(2) On the other hand, the scatter graph with regression based on the transformed

variables should also be observed. For example, consider the graph of (Y log(X))

where Y is a ratio or percentage variable and X is a numerical variable with very

large observed values.

(3) Each graph can be used to judge or identify whether an independent variable

should be used or not as a linear predictor or explanatory variable. Refer to the

previous Example 4.6, where it is stated that RS cannot be used as a linear

predictor ofM1 or log(M1), as well as the special notes and comments on scatter

graphs presented in Section 1.4.

(4) The datamay consist of several groups or time periods having different patterns of

relationships between the independent and dependent variables. If this is the case,

then a model may be presented with dummy variables and should be defined

based on the numerical independent or dependent variables, or other external

variables.

4.10.3 The principal component factor analysis

If there is a large dimensional multivariate time series, it is suggested that factor

analysis should be applied in order to reduce the dimension of input or source

variables, as well as the dimension of the output or downstream variables. In general,

the principal component method will be used to construct a few orthogonal input

factors as well as a few orthogonal output factors. EViews 4, 5 and 6 provide the

principal component method.

Then, based on those input and output factors, it is easy to apply all the alternative

models presented in this book, as well as models from other sources. For a detailed

discussion on factor analysis, refer to Tsay (2002), Hair et al. (2006) and Timm

(1975).
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5

Special cases of regression
models

5.1 Introduction

In the previous chapters,many alternative time seriesmodels have been presented that

are based on the variables in the Demo_workfile. The author is very confident that

those models will also be applicable for other data sets. This chapter will present

selected models based on selected other data sets. By selecting a specific set of

variables, it is possible to present special cases of regression models.

For the first group of special cases, four selected variables, ivmaut, ivmdep, ivmmae

and mmdep, are used in the POOL1_workfile of the EViews Examples Files, as

presented in Figure 5.1. These variables are interesting because of their specific

patterns of growth curves, as shown in Figure 5.2.

In order to present specific cases of growth curve patterns, a new variable �time�
should be generated as follows:

(1) After opening the POOL1 workfile, click Quick/Generate Series . . . and enter

time¼@trend(1968:01) in the window available on the screen. Then click OK,

which gives an additional name �time� in the data set with a value 0 in 1968 : 01.
(2) Another time variable t¼ time þ 1 is also defined, with a value 1 in 1968 : 01.

This variable is needed if log(t) is used as an independent variable.

(3) To check the new variables, block the variables and then click View/Show. . .OK.

In the following sections, several alternative growth curve models are presented.

5.2 Specific cases of growth curve models

Observing the growth curve of the dated variableMMDEP in Figure 5.2, there should

be confidence that a third-degree polynomial growth curve model can be applied,

using the time t-variable as an independent variable. For a comparative study, present

the following alternative regressions are presented.
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5.2.1 Basic polynomial model

The first model presented is a basic polynomial model with the time t as an exogenous

variable. By entering the variable series

mmdep c t t2 t3 ð5:1Þ
the statistical results in Figure 5.3 are obtained, with its residual graph in Figure 5.4.

Note that this model is not the same as the classical growth model presented in (2.3).

Figure 5.1 Selected variables in POOL1.wf1

Figure 5.2 Growth curves of the variables IVMAUT, IVMDEP, IVMMAE and MMDEP, in

POOL1.wf1
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For this reason, this model will not be named �growth model,� but the third-degree

polynomialmodel ofMMDEP on the time t. As a comparison, the growthmodel of the

variable MMDEP should be presented using the semilog model with the equation

specification as follows:

logðmmdepÞ c t t2 t3 ð5:2Þ
However, it should always be remembered that this basic model is not an

appropriate model for statistical inference, which corresponds to a small value of

the DW-statistic with the sign (�) of the error terms having systematic changes over

time.Hence, anAR(1)model is presented in the following subsection. Note that, since

there is only one observation at each time point, then there will always be systematic

changes of the positive and negative values of the error terms, based on any basic

regressions with the time t as an independent variable.

However, for the estimation in the sense of fitted values, this polynomial model can

be considered as a goodmodel because itsR-squared value is very large (¼ 0.974290).

Figure 5.3 Statistical results based on the growth model in (5.1)

Figure 5.4 Residual graph of the regression in Figure 5.3
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5.2.2 An AR(1) regression model

Corresponding to the previous basic regression model, Figure 5.5 presents the results

based on the AR(1) third-degree polynomial model, as follows:

mmdep c t t2 t3 arð1Þ ð5:3Þ
Note that this model hasDW¼ 2.74 compared to a very low value of 0.231 263 for

the basic regression model in (5.1).

However, the residualgraph inFigure5.6 showsheterogeneityof the error terms,which

should be considered as a limitation of this model. Refer to the following subsection.

Figure 5.5 Statistical results based on the AR(1) polynomial model in (5.3), using the LS

estimation method

Figure 5.6 Residual graph of the regression in Figure 5.5

5.2.3 Heteroskedasticity-consistent covariance (White)

In the previousmodels the assumption has beenmade that the error terms have constant

variance, called homoskedasticity. However, in many cases, the homoskedasticity

assumption is not appropriate. Hence, a modified estimation method should be used.
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In order to take into account the unknown heteroskedasticity of the error terms of a

model, White (1980, p. 277), in the EViews 4 User�s Guide, has derived a hetero-

skedasticity consistent covariant matrix estimator, given by

X̂
W
¼ T

T�k
ðX0XÞ�1

XT
t¼1

u2t xtx
0
t

 !
ðX0XÞ�1 ð5:4Þ

where T is the number of observations, k is the number of exogenous or independent

variables and ut is the least squares residual. This matrix provides correct estimates of

the coefficient covariance in the presence of heteroskedasticity of an unknown form,

but it uses the assumption that the residuals of the estimated equation are serially

uncorrelated. However, EViews 6 (User�s Guide II, p.158) presents a general multiple

regression with two independent variables as an illustrative example.

In order to take into account the two problems of unknown heteroskedaticity and the

serial correlation of the residuals, Newey and West (1987a, 1987b, EViews 6 User�s
Guide II, p. 36) have proposed amore general covariance estimator that is consistent in

the presence of both heteroskedasticity and autocorrelation of an unknown form.

The processes of the analysis are:

(1) After entering the variable series mmdep c t t2t3ar(1) in the �Equation speci-

fication� window, click Option . . . , which gives the options of the estimation

methods, as presented in Figure 5.7.

Figure 5.7 The LS and TLS options of the estimation methods
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(2) Click the Het. . . option and then select either the White or Newey–West option.

(3) By clicking OK, the statistical results in Figure 5.8 are obtained. Note that the

estimation method uses iteration.

(4) Using theWhite or the Newey-West methods does not change the point estimates of

the parameters, but the standard errors. Hence, the same regression functions will be

obtained as in the previous results in Figure 5.5, by using the LS estimation method,

as well as the residual graph in Figure 5.9, but with different values of the t-statistic.

5.3 Seemingly causal models

In general, based on the time series data, the relationship can also be studied between a

group of independent (exogenous or source) variables with a dependent (an endoge-

nous or downstream) variable, as well as the growth curve models. However, the

relationships between dated independent variables with a dated dependent variable

may not have any meaning, which has been mentioned in Chapter 1. For this reason,

Figure 5.8 Statistical results based on the AR(1) polynomial model in (5.3), using the

Newey–West estimation method

Figure 5.9 Residual graph of the regression in Figure 5.8
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here alternative models, called seemingly causal models, will be presented as in

Chapter 4, which look like showing a causal relationship between selected groups of a

set of exogenous variables with an endogenous variable.

The following examples present statistical results of some possible types of

relationships between an endogenous and a set of exogenous variables in the basic

regression, based on the selected variable in the POOL1_workfile. Since this involves

working with the time series data, the AR(1) models in the examples are presented

using the Newey–West estimation method to take into account the unknown form of

the autocorrelation and heteroskedasticity of their error terms.

5.3.1 Autoregressive models

Because of the time series data, this subsection will present directly examples of

autoregressive models. The problem in constructing or defining an autoregressive

model is to find an appropriate or a good or the best AR(p) model, besides selecting

relevant exogenous variables corresponding to each endogenous variable.

Based on experience in doing the data analyses, a start should be made with an AR

(1) model. If the AR(1) model is considered as not a good model, e.g. based on the

value of its DW-statistic or the residual plot, then the procedure should be to move to

an AR(2) model, then an AR(3) model and so on, until the highest AR(p) model is

obtained that is not significant. Then the AR(p� 1)model should be used as the best

model. However, in some cases, selected or unordered AR indicators may be used out

of the set of AR(1) up to AR(p) indicators. Alternative models are presented in the

following examples.

Example 5.1. (AR(p) interaction models) Here, alternative AR(p) two-way inter-

action models are presented having the dependent variable mmdep and three

independent variables ivmaut, ivmdep and ivmaut�ivmdep. Figure 5.10 presents

statistical results based on a basic regression with its residual graph in Figure 5.11.

Figure 5.10 Statistical results based on a basic two-way interaction model
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Figure 5.11 Residual graph of the regression in Figure 5.10

Figure 5.12 Statistical results based on an AR(2) two-way interaction model

Figure 5.13 Residual graph of the regression in Figure 5.12
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Note that the regression in Figure 5.10 shows that the adjusted effect of each

variable is significant. However, its DW¼ 0.484 799, as well as its residual graph in

Figure 5.11, indicate an autoregressive problem. For this reason, alternative auto-

regression models need to be applied. Then an AR(2) regression was found, as

presented in Figure 5.12 with its residual graph in Figure 5.13, withDW¼ 2.276 204.

This indicates that the AR(2) regression is better than the basic regression, in a

statistical sense.

For further illustration purposes, Figures 5.14 to 5.16 present the statistical results

based on AR(3) models, with a special note �Estimated AR process is nonstationary.�
Hence, these models are unacceptable time series models, corresponding to the data

Figure 5.14 Statistical results based on an AR(3) two-way interaction model

Figure 5.15 Statistical results based on a nonhierarchical model
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used in this analysis, even though the results in Figure 5.16 show that each of the

independent variables and the AR indicators are significant.

Note that there might be nothing wrong with the models, but the data used gives

unacceptable estimates. The author is very confident that acceptable estimates can be

obtained using these models based on other data sets.

Finally, the output in Figure 5.17 based on anAR(3)model is obtained, but does not

present the note �Estimated AR process is nonstationary,� even though one of the

presented inverted AR roots is equal to 1.00. It is certainly true that this value is in fact

Figure 5.16 Statistical results based on another nonhierarchical model

Figure 5.17 Statistical results based on an AR(3) additive model
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strictly less than one or it has a value¼ 1.00 – «. For this reason and the sufficiently

large DW¼ 2.076 256, this output is an acceptable estimate with respect to the data

used in the data analysis.

In order to study the limitation or weakness of the estimates of the AR(3) model in

Figure 5.17, Figure 5.18 presents the residuals graph and box plot. Both the histogram

and box plot show that there are some far outliers and it was found that the first three

error terms are very large. For this reason, other data analyses should be carried out.

However, do this as an exercise, e.g. by deleting the outliers. &

Example 5.2. (Unexpected AR models) Based on the AR(3) interaction model

presented in the previous example, further experimentation has been done for

illustration purposes. Figure 5.19 presents statistical results based on the AR(4)

interaction model using EViews 6 and Figure 5.20 presents statistical results based

on the same model using EViews 5. However, EViews 6 presents the note

�Estimated AR process is nonstationary,� but the output of EViews 5 does not

present the statement. Therefore, it can be said that these outputs are unexpected

outputs. For a comparison, refer to the inconsistent results presented in Example

2.39, specifically the statistical results in Figure 2.96 and Example 2.40. These

outputs demonstrate that different statistical results could be obtained using

EViews 4 or 5 compared to the statistical results presented in this book, which

in general use EViews 6.

On the other hand, themodel considered is an unexpected or unusualmodel, since it

has four unordered indicators AR(2), AR(3), AR(5) and AR(6). The statistical results

are obtained by entering the following equation specification:

mmdep c ivmaut ivmdep ivmaut*ivmaut arð2Þ arð3Þ arð5Þ arð6Þ ð5:5Þ
&

Figure 5.18 Residual histogram and box plot of the regression in Figure 5.17
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Example 5.3. (AnAR(1) Cobb–Douglas model) In this example, a Cobb–Douglas

additiveAR(1) model is presented, having a dependent variable log(mmdep) and three

independent variables log(ivmaut), log(ivmdep) and log(ivmmae). Based on the

statistical results in Figure 5.21, the following findings are obtained:

(1) Each of the independent variables has a positive adjusted effect on the

dependent variable, at a significant level of 0.05 based on the t-test, with

DW¼ 2.586 209 and R-squared¼ 0.995 544.

Figure 5.20 Statistical results based on the model in (5.5), using EViews 5

Figure 5.19 Statistical results based on the model in (5.5), using EViews 6
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(2) Corresponding to theCDproduction function, theWald statistic inFigure 5.22 shows

that the null hypothesis of C(2) þ C(3) þ C(4)¼ 1 (i.e. a constant return-to-scale

production function) is rejected. The result shows that C(2), C(3) and C(4) have

positive estimated values and C(2) þ C(3) þ C(4) is significantly less than one.

Hence, in fact, the regression function is a decreasing return to the scale function.

(3) Compared to the previous model, this model has smaller values of AIC and SC

and hence it may be concluded that this model is preferred to the previous model,

in a statistical sense. &

Example 5.4. (An AR(p) CESmodel) As an illustration, a CES (constant elasticity

of substitution) AR(1)model is presented, having the dependent variable log(mmdep)

and two main independent variables log(ivmaut) and log(ivmdep). An AR(p) CES

model having an output and two input variables, in general, can be presented as

logðyÞ ¼ cð1Þþ cð2Þ*logðx1Þþ cð3Þ*logðx2Þ
þ cð4Þ*ðlogðx1ÞÞ2 þ cð5Þ*logðx1Þ*logðx2Þþ cð6Þ*ðlogðx2ÞÞ2
þ ½arð1Þ ¼ cð7Þ; . . . ; arðpÞ ¼ cð7þ pÞ�

ð5:6Þ

Figure 5.21 Statistical results based on a Cobb–Douglas model

Figure 5.22 A constant return-to-scale Wald test for the model in Figure 5.21
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For the analysis, the following series of variables are entered:

logðmmdepÞ c logðivmautÞ logðivmdepÞ logðivmautÞ^2
logðivmautÞ*logðivmdepÞ logðivmdepÞ^2 arð1Þ . . . arðpÞ

ð5:7Þ

Figure 5.23 presents statistical results based on an AR(4) CES model and

Figure 5.24 presents statistical results based on its reduced model, namely the AR(3)

CES model. The AR(3) model should be a preferred model.

Now, since log(ivmdep)2 has a very large p-value¼ 0.99, then a reduced model

should be obtained. For this reason, in most cases, log(ivmdep)2 would be deleted

from the model. Do this as an exercise.

Figure 5.23 Statistical results based on an AR(4) CES model

Figure 5.24 Statistical results based on an AR(3) CES model
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However, for illustration purposes, experimentation has been done by deleting

other variable(s). By deleting the interaction factor from the model in Figure 5.23,

even though it has a much smaller p-value, the statistical results in Figure 5.25 are

obtained . This result shows that log(ivmdep)2 is significant with a p-value¼ 0.0284,

which has the largest p-value in the full models in Figure 5.24. This finding proves

that an independent variable having a greater p-value should not be deleted from a

model in order to obtain an acceptable model. It is suggested that the variable which

is considered less important, in a theoretical sense or based on best judgment, should

be deleted. Even though log(ivmdep) is insignificant with a p-value¼ 0.2329, it

may be kept in the model. Otherwise another reduced model, such as that in

Figure 5.26, could be found. &

Figure 5.25 Statistical results based on a reduced AR(3) CES model

Figure 5.26 Statistical results based on another reduced AR(3) CES model
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Example 5.5. (An AR(1) modified CES model) Corresponding to the modified

CES model in (4.104), Figure 5.27 presents an AR(1) modified CES model of the

model in (5.6) with the following equation:

logðmmdepÞ ¼ cð1Þþ cð2Þ*logðivmautÞþ cð3Þ*logðivmdepÞ
þ cð4Þ*ðlogðivmautÞ�logðivmdepÞÞ2 þ ½arð1Þ ¼ cð5Þ� ð5:8Þ

If a condition is that c(4)¼ 0, the Cobb–Douglas AR(1) model with the statistical

results in Figure 5.28 are obtained. Furthermore, by using additional AR indicators,

namely AR(2) or AR(3), or both, in the modified CES model, unexpected statistical

results would occur. Do this as an exercise. &

Figure 5.27 Statistical results based on the modified CES model in (5.8)

Figure 5.28 Statistical results based on a reduced model of (5.8)
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5.4 Lagged variable models

This section presents alternative models using lagged variables. Two alternative

models will be considered: (i) linear models for an endogenous variable, called the

basic lagged-variable model or the pure autoregressive model and (ii) linear models

for an endogenous and a set of exogenous variables, called the general lagged-variable

model.

5.4.1 The basic lagged-variable model

The basic lagged-variable model, namely the LVAR(p) model, can be presented in the

following general equation:

Yt ¼ cð1Þþ
Xp
i¼1

cð1þ iÞYt�i þ «t ð5:9Þ

Note that EViews has been using the letter �c� for the model parameter, where c(1)

indicates the intercept and c(1 þ i), i¼ 1,2,. . ., p, are the coefficients of the lagged
variables. In fact, corresponding to the basic lagged model in (5.9), a pure AR(p)

model may be obtained, which can be presented as

Yt ¼ cð1Þþ ut

ut ¼
Xp
i¼1

riut�i þ «t
ð5:10Þ

Example 5.6. (Basic lagged-variable models) Figure 5.29 presents the statistical

results using two basic lagged-variable models, namely LV(2) models. In order to take

into account the unknown heteroskedasticity and autocorrelation of the error terms, the

Figure 5.29 Statistical results based on LV(2) models with dependent variables: (a) log

(ivmaut) and (b) log(ivmdep), using the Newey–West estimation method
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Newey–West estimation method is used. Based on these results, the following notes

and conclusions are presented:

(1) In fact, this figure presents the results based on twoLV(2)modelswith the dependent

variables log(ivmautt) and log(ivmdept) respectively. The statistical results are

obtained by using or entering the following general equation specification:

logðyÞ c logðyð�1ÞÞlogðyð�2ÞÞ ð5:11Þ

(2) The result based on the first model shows that the second lagged variable log

(ivmaut(�2)) does not have a significant partial (adjusted) effect with a large

p-value of 0.98. In a statistical sense, this suggests that the model should be

reduced. On the other hand, the result of the second model suggests the use of an

additional lagged variable(s), since both lagged variables have significant

adjusted (partial) effects. However, the analysis based on modified models will

not be done here. Do this as an exercise. &

Example 5.7. (Comparison between the lagged-variable model and the auto-

regressivemodel) Corresponding to the twomodels in (5.9) and (5.10), Figures 5.30

and 5.31 present the statistical results by using the following two alternative equation

specifications:

logðmmdepÞ c logðmmdepð�1ÞÞlogðmmdepð�2ÞÞlogðmmdepð�3ÞÞ ð5:12aÞ
and

logðmmdepÞ c arð1Þarð2Þarð3Þ ð5:12bÞ

Themodel in (5.12a) is an LV(3)model and themodel in (5.12b) is anAR(3)model

with a dependent variable log(mmdep). Note that except for the value of C¼C(1)

Figure 5.30 Statistical results based on the LV(3) model in (5.12a)
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(i.e. the intercept parameter), both figures show equal values of the summary

statistics, as follows:

(1) The coefficient of log(mmdep(�1) equals the coefficient of AR(1), which is the

first (partial) autocorrelation, say r1¼C(2) in the models in (5.9) and (5.10), and

likewise for the other model parameters C(3)¼ r2 and C(4)¼ r3.
(2) The values of the t-test for the adjusted effect of each independent variable,

R-squared, DW-statistic and the F-test, are found.

(3) However, the estimation equations are differently written or printed, as presented

above. For example, the term C(2)�log(mmdep(�1)) in the first model corre-

sponds to the term [AR(1)¼C(2)] in the second model.

(4) Based on the estimation equations above, C(1) in the first model is an intercept

parameter, butC(1) in the secondmodel corresponds to an adjustedmean or average

of the endogenous variable log(mmdep), which can be presented as follows:

logðmmdeptÞ ¼ cð1Þþ ut
ut ¼ r1ut�1 þ r2ut�2 þ r3ut�3 þ «t

ð5:13Þ

On the other hand, C(1) may also be named as an intercept of the AR(3) model

in (5.12b), because the average value of log(mmdep) is 8.310 450 with the Std

Err¼ 0.035 735, while the estimated value of C(1) is 16.158 15952. &

Example 5.8. (Illustration of the AR(p) models) Figure 5.32 presents statistical

results based on an AR(4) model with an endogenous variable log(ivmmae), and its

reduced ormodifiedmodel in Figure 5.33 is obtained by deleting the indicators AR(2)

and AR(3), since both have large p-values. Note that both models have DW-statistics

of 2.09 and 2.20 respectively. Based on these twomodels only, the reducedmodelmay

Figure 5.31 Statistical results based on the AR(3) model in (5.12b)
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be considered to be a better model. Furthermore, note that this reduced model is an

uncommon or unexpected model, since it has unordered autoregressive indicators.

On the other hand, by doing other processes, by deleting the AR(4) even though it

has a significant effect, the results based on theAR(3) andAR(2)models, as presented

in Figures 5.34 and 5.35 are obtained . These processes again demonstrate that a

significant indicator or exogenous variables can be deleted from a model in order to

obtain a statistically acceptable reduced model. Now there are four alternative

models. Do you think the AR(2) is the best model?

For further illustration purposes, Figure 5.36 presents the growth curve of log

(ivmmae) and the residual graph and box plot of the AR(2) model. Note that the

residual graph, as well as the box plot, show that there are far outliers, which cannot be

identified based on the growth curve of log(ivmmae).

Figure 5.32 Statistical results based on an AR(4) model of log(ivmmae)

Figure 5.33 Statistical results based on an unexpected model of log(ivmmae)
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Figure 5.34 Statistical results based on an AR(3) model of log(ivmmae)

Figure 5.35 Statistical results based on an AR(2) model of log(ivmmae)

Figure 5.36 Growth curve of log(ivmmae), the residual graph and the box plot of its AR(2)

model
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On the other hand, the residual graph indicates heterogeneity of the error terms. For this

reason, modified AR(2) models are presented with endogenous variables: the first and

second differences of log(ivmmae), namely d(log(ivmmae)), and d(d(log(ivmmae))).

Then the AR(2) model of d(d(log(ivmmae))) is obtained, which is considered to be the

best model, with the statistical results given in Figure 5.37 and its residual graph in

Figure 5.38. Based on these results, the following notes and conclusions are presented:

(1) The residual graph indicates that there is a breakpoint or an outlier. However, the AR

(2)model of the seconddifferencecanbeconsideredas anaccepmodel.Note that this

model is quite different from the model based on the original variable log(ivmmae).

(2) By observing the raw data set, it is found that d(d log(ivmmae)) has a maximum

value of 0.110 771 at 1982 : 1 and a minimum value of �0.101 873 at 1982 : 2,

which should be considered as outliers. Hence, there can be three alternative data

analyses, as follows:

(i) The first data analysis is based on the subset of data without the outliers.

Figure 5.37 Statistical results based on an AR(2) model of d(d(log(ivmmae)))

Figure 5.38 Residual graph of the regression in Figure 5.37
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(ii) The second data analysis is based on amodified data set, which is constructed

by replacing the outliers with the average of the observed values or the

average of adjacent observed values of the outliers, or by interpolation.

(iii) The third data analysis is based on the original model, by adding dummy

variables of the two outliers as independent variables, which are defined as

DO1¼ 1 if d(d log(ivmmae))¼ 0.110 771 and DO1¼ 0 if otherwise, and

DO2¼ 1 if d(d log(ivmmae))¼ �0.101 873 and DO2¼ 0 if otherwise. Do

this as an exercise.

(3) Corresponding to the model in Figure 5.37, the model with dummy variables will

be considered as follows:

dðdlogðivmmaetÞÞ ¼ cð1Þþ cð2ÞDO1þ cð3ÞDO2
þ ½arð1Þ ¼ cð4Þ; arð2Þ ¼ cð5Þ� þ «t

ð5:14Þ

This model, in fact, represents a set of four models, corresponding to the four

possible values of the two dummyvariables, which are (DO1,DO2)¼ (0,0), (1,0),

(0,1) and (1,1), with the following equations respectively:

dðdlogðivmmaetÞÞ ¼ cð1Þþ ½arð1Þ ¼ cð4Þ; arð2Þ ¼ cð5Þ� þ «t
dðdlogðivmmaetÞÞ ¼ cð1Þþ cð2Þþ ½arð1Þ ¼ cð4Þ; arð2Þ ¼ cð5Þ� þ «t
dðdlogðivmmaetÞÞ ¼ cð1Þþ cð3Þþ ½arð1Þ ¼ cð4Þ; arð2Þ ¼ cð5Þ� þ «t
dðdlogðivmmaetÞÞ ¼ cð1Þþ cð2Þþ cð3Þþ ½arð1Þ ¼ cð4Þ; arð2Þ ¼ cð5Þ� þ «t

ð5:15Þ

Note that, compared to the first model, which is themodel based on the subdata

set without the outliers, the parameters c(2), c(3) and {c(2) þ c(3)} represent the

effects of each outlier and both outliers. &

Example 5.9. (Autocorrelation (AC) and partial autocorrelation (PAC)) Cor-

responding to the alternative AR(2) models presented in the previous examples,

namely Examples 5.7 and 5.8, Figure 5.39 presents illustrative graphs for the

variable log(ivmmae) and three residual correlograms, namely the correlograms of

log(ivmmae), d(log(ivmmae) and d(d(log(ivmmae). The process of constructing a

graph has been presented in Chapter 1, such as click Show. . . , insert the corre-

sponding endogenous variable and then click OK to present the data on the screen.

Then select click View/Graph. . . or View/Correlogram. . . options.
Please note that the growth curve of log(ivmmae) is nonlinear and is awaving curve.

However, its correlogram shows that only the first partial autocorrelation (PAC) is

significant. On the other, the PACs of its first difference are significantly positive at

higher orders or levels, but the PACs of its second differences are significantly

negative at higher levels. Furthermore, note that their significant differences of the

aucorrelations are at a certain level k, namely rk These findings indicate that the

models based on the endogenous variables log(ivmmae), d(log(ivmmae) and d(d(log

(ivmmae) are in fact representing three different models. &
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5.4.2 Some notes

Based on various examples, the following question and notes are presented:

(a) Should all lagged variables, Yt�1, Yt�2, . . . and Yt�p, be used for each selected

value of p?

(b) On the other hand, only the lagged variables might be used, which happen to have

a significant effect(s), based on a time series. In a statistical sense, this process

could be done easily. However, if a researcher is using this procedure, then it

could be said that he/she has been highly dependent on the sample statistics to

develop a model. It is suggested that a researcher should be using personal best

judgment (see Section 4.10.1), since sample data could lead to an unexpected

conclusion of a testing hypothesis.

(c) This is similar for the autoregressive (AR) models. Refer to the growth model

presented by Yaffee and McGee (2000) in Example 4.22. They present a model

with three unordered autoregressive indicators, which areAR(1),AR(5) andAR(6).

5.4.3 Generalized lagged-variable autoregressive model

This subsection will present examples of seemingly causal models having a combi-

nation of the lagged (endogenous) variables and autoregressive indicators as

Figure 5.39 Illustrative graphs for the endogenous variable log(ivmmae): (a) the growth

curve of log(ivmmae), (b) correlogram of log(ivmae), (c) correlogram of d log(ivmae) and

(d) correlogram of d(d log(ivmae))
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independent variables, namely LVAR(p,q), starting with the simplest model for

p¼ q¼ 1. The simplest model considered has the general equation

Yt ¼ cð1Þþ cð2Þ*Yt�1 þ ut
ut ¼ r1ut�1 þ «t

ð5:16Þ

or

Yt ¼ cð1Þþ cð2Þ*Yt�1 þ cð3Þ*mt�1 þ «t ð5:17Þ
In the data analysis, the following estimation equation is used or entered:

Yt ¼ cð1Þþ cð2Þ*Yt�1 þ ½Arð1Þ ¼ cð3Þ� ð5:18Þ

Example 5.10. (Comparing simple models) For a first comparison, Figure 5.40

presents statistical results using two alternativemodels having the following equation

specifications:

logðmmdepÞ ¼ Cð11ÞþCð12Þ*logðmmdepð�1ÞÞ ð5:19Þ

logðmmdepÞ ¼ Cð21Þþ ½ARð1Þ ¼ Cð22Þ� ð5:20Þ

Both statistical results show that the estimated values of C(12) and C(22) are equal

to 0.997 736. Based on the first model in (5.19), C(12) indicates the effect of log

(mmdep(�1)) on log(mmdep) and C(22) indicates the first-order autocorrelation or

serial correlation of the error terms of the model in (5.20), which can be considered as

an AR(1) mean model of log(mmdep). Are they equal, in a mathematical statistics

sense? Or are they equal up to certain decimal points? A theoretical explanation of

these findings has not yet been found.

Figure 5.40 Statistical results based on (a) the LV(1)_MODEL in (5.19) and (b) the AR(1)_

Model in (5.20)

Special Cases of Regression Models 283

www.trading-software-collection.com



On the other hand, it has been known that C(12) is not equal to the correlation

coefficient between log(mmdep) and log(mmdep(�1)), which is in fact equal to

0.997 765. For a further comparison, an LVAR(1,1) model is applied in the following

equation with the dependent variable log(mmdep):

logðmmdepÞ ¼ Cð1ÞþCð2Þ*logðmmdepð�1ÞÞþ ½ARð1Þ ¼ Cð3Þ� ð5:21Þ

Based on the results in Figure 5.41, the following notes and conclusions can be

made:

(1) The effect of log(mmdep(�1)) is 0.999 265, which is a little bit larger than the

effect based on the model in (5.19), and the estimated value of the first-order

autocorrelation of the error terms, C(3), is a negative value of �0.433 969.

Figure 5.41 Statistical results based on the LVAR(1,1) model in (5.21)

Figure 5.42 Residual graph of the regression in Figure 5.41
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However, note that, based on this model, C(3) is not the first-order serial

correlation of log(mmdep), but of the error term ut in the following model,

which is in fact the same as the model in (5.21):

logðmmdepÞ ¼ Cð1ÞþCð2Þ*logðmmdepð�1ÞÞþmt

mt ¼ Cð3Þ*mt�1 þ «t
ð5:22Þ

(2) TheDW-statistic of 2.188 296 is sufficient to accept the null hypothesis of no first-

order serial correlation of the error terms «t. This hypothesis also can be tested by
using the BG serial correlation LM test.

(3) R2¼ 0.996 394, which is very close to one, indicates that the fitted values of the

model are very close to the observed values.

(4) However, the residual graph in Figure 5.42 indicates that there is a breakpoint or

an outlier. Corresponding to this problem, refer to Example 5.8. &

Example 5.11. (Modelswith exogenous variables) As an extension of the previous

models, Figure 5.43 presents the statistical results based on the following LVAR(1,1)

model with two exogenous variables log(ivmaut) and log(ivmaut(�1)):

logðmmdepÞ ¼ cð1Þþ cð2Þ*logðmmdepð�1ÞÞþ cð3Þ*logðivmautÞ
þ cð4Þ*logðivmautð�1ÞÞþ ½arð1Þ ¼ cð5Þ� ð5:23Þ

This figure shows that each of the exogenous variables log(ivmaut) and log

(ivmaut(�1)) have an insignificant adjusted effect with a large p-value. One of the

main reasons for this is that the two variables have a high correlation, which is

0.999 127. Hence, they should not be used as independent variables of the model,

and a reduced model should be presented by deleting one of them.

Figure 5.43 Statistical results based on the LVAR(1,1) model in (5.23)
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Comparing the two possible reducedmodels, it is found that the best reducedmodel

is the model having the independent variable log(ivmaut(�1)), with lower values of

AIC and SC. The results are presented in Figure 5.44.

By using the trial-and-error methods, two acceptable models have been found, an

LVAR(1,2) model and an LV(3) model, with the statistical results presented in

Figure 5.45, using the two variables MMDEP and IVMAUT. His example has

demonstrated that various LVAR(p, q) models could be applied based on only two

variables, but their estimates are highly dependent on the data set used. Refer to the

special notes and comments presented in Section 2.14. &

Example 5.12. (The AR(p) and LV(p) models with exogenous variables) To

study the differences between an AR(p) model and an LV(p) model, Figures 5.46

and 5.47 present the statistical results based on AR(3) and LV(3) models having

Figure 5.44 Statistical results based on on the LVAR(1,1) in (5.21)

Figure 5.45 Statistical results based on (a) the LVAR(1,2) model and (b) the LV(3) model

with a dependent variable log(mmdep)
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exactly the same exogenous variables, namely log(ivmautt), log(ivmautt�1) and log

(ivmautt�2). Here, the Newey–West estimation method is used in order to take into

account the unknown autocorrelation and heteroskedasticity of the error terms, with

the following equation specifications:

logðmmdeptÞ ¼ cð1Þþ cð2ÞlogðivmauttÞþ cð3Þlogðivmautt�1Þþ cð4Þlogðivamutt�2Þ
þ ½arð1Þ ¼ cð5Þ; arð2Þ ¼ cð6Þ; arð3Þ ¼ cð7Þ�þ «t

ð5:24Þ
logðmmdeptÞ ¼ cð1Þþ cð2ÞlogðivmauttÞþ cð3Þlogðivmautt�1Þ

þ cð4Þlogðivmautt�2Þþ cð5Þlogðmmdept�1Þ
þ cð6Þlogðmmdept�2Þþ cð7Þlogðmmdept�3Þþ «t

ð5:25Þ

Figure 5.46 Statistical results based on the AR(3) model in (5.24)

Figure 5.47 Statistical results based on the LV(3) model in (5.25)
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Based on the statistical results in Figures 5.46 and 5.47, the following notes and

conclusions are presented:

(1) In both models, log(ivmaut) and log(ivmaut(�2)) have insignificant adjusted

effects. Themain reason for these findings should be themulticolinearity between

the three exogenous variables log(ivmaut), log(ivmaut(�1)) and log(ivmaut

(�2)). As a result, an attempt should be made to obtain a modified or reduced

model by deleting either one of these variables, at each stage of the analysis. Do

this as an exercise and several unexpected results will be seen.

(2) The values of the DW-statistics are sufficient to accept the null hypothesis of no

first-order serial correlation of the error terms in both models. &

Example 5.13. (Translog linear model of a set of exogenous variables) The

models in the previous examples could easily be extended to models having a set of

exogenous variables, specifically using the first lagged exogenous variables. After

doing experimentation, the four best translog linearmodels orCobb–Douglas SCM(i.e.

seemingly causalmodel)were found, as presented inFigures5.48 to 5.51. In a statistical

sense, these models are acceptable models, but the model in Figure 5.51 should be

considered as an unusual or unexpectedmodel, since it has log(mmdep(�2)) andAR(2)

as independent variables, without log(mmdep(�1)) and AR(1).

However, it is certain that there are many other acceptable or unexpected models

that can be presented using the four time series variables ivmaut, ivmdep, ivmmae and

mmdep.

On the other hand, in the process of doing experimentation a poor or worst model

may be found. For example, the results based on the followingmodel is unacceptable,

in a statistical sense, since each independent has an insignificant adjusted effect, but

the joint effects of all independent variables is significant based on theF-statistic with

a p-value¼ 0.000, as presented in Figure 5.52. However, by replacing the indicator

Figure 5.48 Statistical results based on an LV(3) model of log(mmdep)

288 Time Series Data Analysis Using EViews

www.trading-software-collection.com



Figure 5.49 Statistical results based on an AR model of log(mmdep)

Figure 5.50 Statistical results based on an LVAR(1,2) model of log(mmdep)

Figure 5.51 Statistical results based on an unexpected model
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AR(1)withAR(2), an acceptable estimate can be obtained of themodel in Figure 5.53,

which is really unexpected. &

5.5 Cases based on the US domestic price of copper

Based on time series data, namely �theUSdomestic price of copper, 1951–1980,� as an
exercise, Gujarati (2003, Table 12.7, p. 499) proposed the application of a translog

linear (Cobb–Douglas) model as follows:

lnðPtÞ ¼ b1 þb2lnðGtÞþb3lnðItÞþb4lnðLtÞþb5lnðHtÞþb6lnðAtÞþmt ð5:26Þ

where P¼ 12-month average US domestic price of copper (cents per pound), G¼
annual gross national product ($ billions), I¼ 12-month average index of industrial

Figure 5.52 Statistical results based on an LVAR(2,1) model of log(mmdep)

Figure 5.53 Statistical results based on an unexpected model of log(mmdep)

290 Time Series Data Analysis Using EViews

www.trading-software-collection.com



production, L¼12-month average London Metal Exchange price of copper (pounds

sterling), H¼ number of housing starts per year (thousands of units) and A¼ 12-

month average price of aluminum (cents per pound).

Based on this data set, a workfile has been developed, called Gujarati_12.7. In this

section, several alternative models will be presented, besides the model (5.26)

proposed by Gujarati, as illustrative examples.

5.5.1 Graphical representation

Graphical representation based on pairs of variables should be considered as the first

stage of analysis in developing a regression, even though it is difficult to predict or judge

what type of relationship will occur in the corresponding multidimensional space.

To study the relationship between the exogenous variable P and the other five

variables,G, I, L,H andA, Figure 5.54 presents the growth curve of each variable. The

first question to arise is �What type of a growth curve equation or model could be a

good fit for each of the variables�? Then, how can a true population growth model be

predicted or defined?

On the other hand, in most cases, without using or considering a bivariate graph, a

researcher directly defines a model to present the relationship between the variables,

Figure 5.54 Growth curves of the variables A, G, H, I, L and P in the US domestic price of

copper data, 1951–1980
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and he/she assumes that the model is the true population model. This is also the case

for the Cobb–Douglas functions presented above. Data analysis based on any defined

models can easily be done using a package program, including EViews. However,

some cases therewill be errormessages,which are highly dependent on the data set, as

well as the starting coefficient values in the iterative procedure.

Example 5.14. (Scatter plots with regression lines) For further exercises and

discussion, look at the graphical relationship between the pairs of variables, (G, P),

(H, P), (A, P) and (I, P), presented in Figure 5.55, since P will be taken as an

endogenous variable and the others are exogenous variables. Note that the scatter

graph of (L, P) is not presented.

The process of obtaining the scatter graphswith regression lines usingEViews 6 are

as follows:

(1) Present the variables on the screen in a series: P, G, H, A and I.

(2) Click View/Graph. . ., which produces the options window in Figure 5.56

(3) Then by clicking OK, the graphs will appear on the screen.

Based on these graphs, the following notes and conclusions are obtained:

(a) Two of the observed values of theP-variable can be considered as out of the others

as a group, or theymight be outliers. Hence, two possible alternative data analyses

Figure 5.55 Scatter graphs with regression lines of G, H, A and I on P
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can be presented. The first data analysis uses the whole unit of observations and

the second does not use the two outliers.

(b) The scatter plot (H, P) shows that the H-variable may not need to be used as an

independent variable, because the regression line is almost horizontal, even

though in a multidimensional space this could be different.

(c) On the other hand, because of the time series data, an autoregressivemodel should

be used, but the Newey–West estimation method as presented in the previous

section as well as in the previous chapters could also be used. &

The following examples present cases of regression models based on specific

selected groups of the six variables.

5.5.2 Seemingly causal model

Even thoughGujarati proposed a translog linearmodel in (5.26)with five independent

variables, in this section alternative models are presented, starting with the simplest

model with one exogenous variable.

Since the US_DPOC data is a time series data set, the autoregressivemodels can be

directly applied using the Newey–West estimation method in order to anticipate the

unknown forms of the serial or autocorrelation and heteroskadisticity of the error

terms.

Figure 5.56 The graph options in EViews 6
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5.5.2.1 Simplest seemingly causal models

A seemingly causal model (SCM) is defined as the simplest SCM if the model uses an

exogenous variable, including its lags. An SCM will be called a simple model if and

only if the SCM is defined based on only two time series, namely an endogenous

variable Yt and an exogenous variableXt. Here, the findings from the experimentation

are presented in order to obtain several simple SCMs using the endogenous variableP

and each of the variables G, L, I and A as an independent variable.

A model is defined as an acceptable model if and only if its DW-statistic is around

two and the p-value of each independent variable is strictly less than 0.20. The reason

for selecting this upper bound is that the corresponding independent variable would

have either a negative or a positive significant adjusted effect on the dependent

variable, at a significant level of a¼ 0.10. For a comparison, in fact Hosmer and

Lemeshow (2000, p. 95) stated that �Any variable whose univariable test has a

p-value< 0.25 is a candidate for the multivariable model along with all variables of

known clinical importance.�

Example 5.15. (Simple AR(p) SCM with one exogenous variable) By using the

trial-and-errormethods four acceptable simpleSCMswith the endogenous variable log

(P) have been obtained, as presented in Figures 5.57 to 5.60. The regressions in

Figures 5.57 and 5.58 are considered to be the simplest linear regressions in a two-

dimensional coordinate system or space, since each of the regressions has only one

independent variable, namely log(G(�1)) and log(I) respectively, since each of these

regressions has only one exogenous variable Xt.

On the other hand, the regressions in Figures 5.59 and 5.60 are considered to be the

simplest linear regressions in a three-dimensional space, since each of the regressions

has only two exogenous variables, namely {log(L),log(L�1))} and {log(A),log(A

(�1))} respectively.

Figure 5.57 Statistical results based on an AR(2) simplest model of log(P) on log(G(�1))
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Figure 5.58 Statistical results based on an AR(3) simplest model of log(P) on log(A)

Figure 5.59 Statistical results based on an AR(2) simplest model of log(P) on {log(L),

log(L(�1))}

Figure 5.60 Statistical results based on an AR(3) simplest model of log(P) on {log(L),

log(L(�1))}
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For each of these simple models, exercises in detailed residual analysis can be

done, which have been presented in the previous example, especially to study

whether an external variable should be used as an additional variable to improve the

�quality� of the model. Do this as an exercise.

However, corresponding to the findings of these four models, we would define a

general equation can be defined for the AR(p) SCM with an endogenous variable Yt
and an exogenous variable Xt, as follows:

Yt ¼ cð1Þþ
Xk
i¼0

cð2þ iÞ*Xt�i þ ut

ut ¼
Xp
i¼1

riut�i þ «t

ð5:27Þ

&

5.5.3 Generalized translog linear model

Associated with the time series data, the generalized translog linear models or Cobb–

Douglas typemodels or a constant elasticity function should have at least two exogenous

variables and their lagged variables, including the lags of endogenous variables. The

following examples present a data analysis using autoregressive translog linear models.

Example 5.16. (The model proposed by Gujarati) Figure 5.61 presents statistical

results based on an AR(3) and an AR(2) translog linear model, which are autore-

gressive modified models of the model in (5.26) proposed by Gujarati. Note that the

AR(2) model is a reduced model of the AR(3) model. Based on this reduced model,

the following conclusions can be derived:

(1) Log(H) has an insignificant adjusted effect with a very large p-value of 0.9506,

which is confirmed by the scatter plot with regression presented above. On the

Figure 5.61 Statistical results based on (a) an AR(3) translog linear model and (b) an AR(2)

translog linear model
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other hand, log(G) and log(I) also have an insignificant adjusted effect with a

p-value sufficiently large.As a result, a reducedormodifiedmodel shouldbe found.

(2) Corresponding to the statement about the variable H above, at the first stage log

(H) is deleted and then the results in Figure 5.62 are obtained, which shows that

log(G) and log(I) are insignificant. Therefore, a reduced model may be obtained

by deleting log(G) or log(I) or both. Note that the p-value of log(G) is greater than

that of log(I), so in general log(G) should be deleted from the model.

(3) However, here it needs to be demonstrated that a contradictory method can be

applied, since the impact of multicollinearity of the independent variables is

unpredictable. When log(I) is deleted, the statistical results in Figure 5.63 are

Figure 5.62 Statistical results based on an AR(2) reduced model

Figure 5.63 Statistical results based on an AR(2) Cobb–Douglas model
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obtained. This reduced model should be considered as a good or best fit model or

an acceptablemodel, in a statistical sense, since the DW-statistic¼ 1.938 137 and

each of the independent variables, as well as the AR indicators, is significant.

(4) Since the estimated values of the parameters c(2), c(3) and c(4) are positive, this

model is confirmed with the basic Cobb–Douglas production function. As a

result, the hypothesis of �a constant return to scale� of the function can be tested
with the null hypothesis H0: C(2) þ C(3) þ C(4)¼ 1. At a significant level of

0.10, the null hypothesis is accepted based on the F-statistic of 2.460 694 with

df¼ (1, 22) and p-value¼ 0.1310, as presented in Figure 5.64.

(5) For illustration purposes, find the t-statistic as presented in Figure 5.64. Based on

theWald test in Figure 5.64(a), it is easy to compute the t-statistic as presented in

Figure 5.64(b).

(6) Note that the Prob(2-tailed) of the t-statistic equals the Prob(F-statistic) of 0.1310

with df¼ (1, 22). Corresponding to the negative value of the t-statistic, for

illustration purposes, if a left-side hypothesis is considered, then

H0 : Cð2ÞþCð3ÞþCð4Þ � 1 versusH1 : Cð2ÞþCð3ÞþCð4Þ < 1 ð5:28Þ
Then, at a significant level of 0.10, the null hypothesis is rejected based on the

t-statistic of�1.568 664with df¼ 22 and p-value¼ 0.1310/2¼ 0.0655< 0.10.&

Example 5.17. (Modified translog linear models) Note that all previous models

have presented values of the DW-statistic of less than two. For this reason, further

exercises are done to obtain simple SCMs having larger values of DW. Figure 5.65

presents statistical results based on two alternative models.

Furthermore, note that the first model in Figure 5.65(a) is an AR(2) model with

independent variables log(G(�1)) and log(L(�1)). However, log(L(�1)) has an

insignificant adjusted effect with a p-value of 0.2071.

The other model in Figure 5.65(b) is also an AR(2) model with independent

variables, log(L), log(L(�1)) and log(A(�1)), where each of them has a positive

Figure 5.64 (a) The wald test forH0: c(2) þ c(3) þ c(4)¼1 and (b) the t-statistic for testing

the one-sided hypothesis
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significant adjusted effect on log(P). These conclusion can easily be obtained using

the t-test available in the output. For example, to test the right-hand hypothesis

H0 : Cð4Þ � 0

H1 : Cð4Þ > 0 ð5:29Þ

then t0¼ 1.969 638with a p-value¼ 0.0622/2¼ 0.0311. Hence, the null hypothesis is

rejected at a significant level of a¼ 0.05.

Furthermore, note these twomodels can be considered as theAR(2) Cobb–Douglas

models, since their independent variables have positive coefficients.

For further illustrations, Figure 5.66 presents alternative lagged-variable autore-

gressive models, namely LVAR(1,2) translog linear models. Note that the indicator

AR(1) is insignificant with large p-values in bothmodels. For this reason, bothmodels

should be modified. Do this as an exercise. &

Figure 5.65 Statistical results based on alternative AR(2) Cobb–Douglas models

Figure 5.66 Statistical results based on alternative LVAR(1,2) translog linear models
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5.5.4 Constant elasticity of substitution models

A constant elasticity of substitution (CES) model is, in fact, a nonlinear model.

However, it could be estimated using a reduced linear model, i.e. a translog quadratic

model, which is an approximation obtained based on a Taylor series expansion

(Agung, Pasay and Sugiharso, 1994, pp. 53–54).

Example 5.18. (ACESmodel) Figure 5.67 presents statistical results based on a full

AR(2) CES (constant elasticity of substitution) model having the endogenous variable

P and exogenous variables I and A. It also shows its reduced model, which will be

considered as a special reduced model.

Based on this figure the following notes and conclusions are obtained:

(1) The full model shows that log(I)�log(A) is insignificant with a p-value that is

smaller than log(A)2.However, for illustration purposes, in order to obtain a special

reduced model it is preferable to delete log(I)�log(A), for the following reasons:
. For a fixed value log(P), the full regression function represents a quadratic graph

in a two-dimensional orthogonal coordinate system with axes log(I) and log(A).
. By doing a transformation, namely a rotation of the coordinate system, a

quadratic function can always be obtained without the interaction factor.

(2) Each of the independent variables in the reduced model is significant, so this

model is an acceptable or a good fit model, in a statistical sense.

(3) However, for illustration purposes, if log(A)2 is deleted from the full model, there

will also be a good fit model as presented in Figure 5.68, with each of the

independent variables having a significant adjusted effect. Now, which one should

be choosen as the best fit model?

Figure 5.67 Statistical results based on (a) a CESmodel of log(P) and (b) its special reduced

model
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(4) The residual graph in Figure 5.69 shows that the� signs of the error terms of the

model in Figure 5.68 in fact have a systematic change over time, especially before

1970. Therefore, themodelmay need to bemodified.By using theAR(3)model, a

�better� residual graph was found, but the AR(3) indicator is insignificant with a

p-value¼ 0.6461. On the other hand, by using log(P(�1)) a better residual graph

is obtained, but log(P(�1)) is insignificant with a p-value¼ 0.8420. For these

reasons this AR(2) reduced CES model is presented.

(5) Similar to the case presented in Figure 5.67, Figure 5.70 presents statistical results

based on another CES model and its special reduced model. Note that these

models use the first lagged exogenous variables, compared to the models in

Figure 5.67. Furthermore, if experimentation is performed by deleting other

independent variable(s), then unexpected statistical results will be found.

(6) To generalize the above results, the quadratic function

Fðx; yÞ ¼ Ax2 þ 2BxyþCy2 þDxþEyþE ð5:30Þ

Figure 5.68 Statistical results based on the reduced CES model in Figure 5.67

Figure 5.69 Residual graph of the regression in Figure 5.68
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represents the full CES model. It has been known that this function has the following

characteristics:

. By using a rotation of the coordinate system a new quadratic function can always be

obtained, namely G(x�, y�), without the interaction x�y�. For this reason, at the first
stage, it is suggested that the interaction factorxy should bedeleted inorder toobtain a

reducedmodel based on a full CESmodel, as demonstrated in Figures 5.67 and 5.70.
. The function could have a minimum or maximum value under the first-order

necessary conditions: qF=qx¼ qF/qy¼ 0 or Fx¼Fy¼ 0.
. The minimum value is obtained if Fx, Fy> 0 and F2

xy�FxFy < 0 and the maximum

value is obtained if Fx, Fy <0 and F2
xy�FxFy < 0.

. The function also could have a saddle point if F2
xy�FxFy ¼ 0: &

Example 5.19. (AmodifiedCESmodel) Figure 5.71 presents the results based on a

modified CES model in (4.104) with an endogenous variable P and exogenous

variables I and A. Compared to the CES model in the previous examples, it could be

said that this modified CESmodel is a worst model, since it has a greater values of the

AIC and SC as well as its reduced model.

However, if there were only these two models, it could be concluded that the

reduced model is a good fit or the best fit model, in a statistical sense, since

DW¼ 1.740 485 could be considered sufficient and each of the independent variables

is significant. &

Example 5.20. (An advanced CES model) Figure 5.72 presents statistical results

based on an advanced CES model with an endogenous variable P and exogenous

variablesG, L and A, and one out of several possible reducedmodels. Compared to all

previous CES models, this reduced model has the smallest AIC and SC statistics. In

Figure 5.70 Statistical results based on (a) a CES model of log(P) and (b) its special reduced

model
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this case, it was found that each of the independent variables of the reducedmodel has

a significant adjusted effect on log(P). However, in general, it may be possible to keep

some independent variables having insignificant adjusted effects in an acceptable

model.

Note that the reduced model is obtained by deleting two independent variables

having the two largest p-values. This statistical process is widely used in most cases.

However, should this process be used in all cases? The answer is certainly �No,�
because the largest p-valuemay not directlymean that the corresponding independent

variable is unimportant theoretically and substantively. Refer to the contradictory

process in developing a reduced model presented in the previous examples. This

Figure 5.71 Statistical results based on a modified CES model and its reduced model

Figure 5.72 Statistical results based on an advanced CES model and one of several possible

reduced models
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statement corresponds to Enders� statement: �the more parameters estimated, the

greater the parameter uncertainty� (Enders, 2004, p. 106). &

5.5.5 Models for the first difference of an endogenous variable

The general model considered in this subsection is

dYt ¼ cð10Þþ
Xp
i¼1

cð1pÞ*dYt�i þ
XK
k¼1

cð2kÞ*Xkt þ ut

ut ¼
Xq
j¼1

rjut�j þ «t

ð5:31Þ

where d(Yt)¼ Yt – Yt�1 is the first difference of an endogenous variableYt,Xk is thekth

exogenous variable and rj is the jth partial serial correlation of the error term ut.

Furthermore, note that

dlogðYtÞ ¼ logðYtÞ� logðYt�1Þ ¼ rt ð5:32Þ
represents the return rate of the series Yt at time t or the exponential growth rate of Yt
within the time interval [t� 1,t], which can be derived as follows:

rt ¼ logðYt=Yt�1Þ! Yt=Yt�1 ¼ expðrtÞ! Yt ¼ Yt�1expðrtÞ; t ¼ 1; 2; . . . ; T

ð5:33Þ
From the author�s point of view, a data analysis based on the first difference and the

exponential growth rate of Yt would be a completely different data analysis based on

the original series Yt or log(Yt). Hence, there would be different and unexpected

results, as presented in the following examples.

Example 5.21. (Simple models for d(Pt)) Figure 5.73 presents statistical results

based on two simplemodels for the first difference ofPtwith the following equations:

dðPtÞ ¼ cð1Þþ ut
ut ¼ r1ut�1 þ «t

ð5:34Þ

dðPtÞ ¼ cð1Þþ cð2Þ*dðPt�1Þþ ut ð5:35Þ
The results in Figure 5.73 are obtained by entering the equation specifications �d(p)

c ar(1)� and �d(p) c d(p(�1))� respectively. Based on these results the following notes
and conclusions are made:

(1) The model in (5.34) is a first-order autoregressive mean model or AR(1) mean

model (see the mean model in Chapter 4) and the model in (5.35) is a first lagged

(endogenous)-variable model.

(2) Except for the intercepts, both models give the same statistical estimated values,

such as the first-order autocorrelation c(2)¼ r1¼�0.110 106 and the values of

DW¼ 2.045 117> 2.
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(3) The null hypotheses H0: c(2)¼ 0 and H0: r1¼ 0 are accepted based on a

p-value¼ 0.3391. Hence, in a statistical sense, consideration should be given

to using modified models. Do this as an exercise.

(4) However, the negative values of the �Adjusted R-squared� indicates that the

models are improper or poor time series models.

(5) For a comparison, the following example presents simple models for the return

rate of Pt, that is rt¼ d(log(Pt)). &

Example 5.22. (Simple models for d(log(Pt))) Table 5.1 presents a summary of

the statistical results based on three simple models for the first difference of

d(log(Pt))¼ rt as follows:

rt ¼ dðlogðPtÞÞ ¼ cð1Þþ ut
ut ¼ r1ut�1 þ «t

ð5:36Þ

Figure 5.73 Statistical results based on (a) an AR(1) model in (5.34) and (b) an LV(1) model

in (5.35) of the first difference d(P)

Table 5.1 Summary of the statistical results based on the models in (5.36) to (5.38)

Dependent variable: r¼ d(log(P))

Newey–West HAC standard errors and covariance (lag truncation¼ 3)

Model (5.36) Model (5.37) Model (5.38)

Variable Coefficient Prob. Coefficient Prob. Coefficient Prob.

C 0.054 108 0.0778 0.053 745 0.0958 0.060 942 1.0000

r(�1) — — 0.006 711 0.9729 �0.002 588 1.0000

AR(1) 0.006 711 0.9729 — — �0.002 586 1.0000

R-squared 0.000 045 0.000 045 0.000 022

Adjusted R2 �0.038 415 �0.038 415 �0.083 310

DW 1.961 179 1.961 179 1.929 867

F-statistic 0.001 172 0.9730 0.001 172 0.9730 0.000 262 0.999 738
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dðlogðPtÞÞ ¼ cð1Þþ cð2Þ*ðdðlogðPtÞÞÞt�1 þ ut
or

rt ¼ cð1Þþ cð2Þ*rt�1 þ ut

ð5:37Þ

and an LVAR(1,1) model

rt ¼ dðlogðPtÞÞ ¼ cð1Þþ cð2Þ*rt�1 þ ut
ut ¼ r1ut�1 þ «t

ð5:38Þ

which is in fact the AR(1) model of the model in (5.37).

The results are obtained by entering equation specifications �r c ar(1),� �r c r(�1)�
and �r c r(�1) ar(1)� respectively, after a new variable, namely r¼ d(log(p)), has been

generated. Based on these results, the same notes and conclusions are presented as in

the previous example, especially corresponding to the negative values of the adjusted

R-squared value. Hence, these models are poor models.

On the other hand, it is also surprising that the probabilities of each t-statistic of the

model in (5.38) are equal to one. Therefore, this model is the worst model among the

three poor models in Table 5.1.

For a comparison, Figure 5.74 presents statistical results based on two acceptable

growth rate models, in a statistical sense, with endogenous Rt¼ d(log(Pt)). Note that

d log(G) is significant in the first model, but is insignificant in the second model. This

result demonstrates or shows the unexpected or unpredictable impact of correlation

between the independent variables d log(G), d log(A) and d log(L). &

5.5.6 Unexpected findings

The scatter plot with regression of P on H, in Figure 5.55, shows that H is not a good

explanatory variable for P. However, after doing further experimentation on the

relationship between the endogenous variable log(P) and the exogenous variable log

(H), unexpected statistical results have been found in the application of the seemingly

causal or explanatorymodels, without using the time t as an exogenous variable of the

models. Note the following examples.

Figure 5.74 Statistical results based on two acceptable models of Rt¼ d(log(Pt))
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Example 5.23. (Unexpected results based on the series (Pt,Ht)) The scatter graph

or plot with regression of (H, P) in Figure 5.55 shows that H cannot be a good

linear predictor of P. It is also easy to show that the coefficient correlation of bivariate

{Ht, Pt}¼ {Hi, Pi} with Hi�Hiþ 1 is not significant.

Figure 5.75 presents statistical results based on a basic translog linear model by

using the OLS (ordinary least squares) estimation method and the Newey–West

estimation method, based on the following equation specification:

logðPÞ c logðHÞ ð5:39Þ

These statistical results show that, except for the values of the Std Err, t-statistic and

its probability, all other statistics have the same values. Since this involves a time

series data, then the Newey–West estimation method should be used to test the

hypothesis. However, since there is a negative adjusted R-squared value, then this

model is a poor model.

Even though both results in Figure 5.75 are poor, here contradictory results should

be noted when using the two estimation methods, i.e. the effect of log(H) on log(P).

Based on theOLS estimationmethod, the result shows that log(H) has an insignificant

effect on log(P), but it has a significant effect when based on the Newey–West

estimation method.

Hence an alternative model(s) should be found. By using an AR(1) model with the

equation specification

logðPÞ c logðHÞarð1Þ ð5:40Þ
the statistical results in Figure 5.76 are obtained using the OLS and Newey–West

estimation methods. Based on these results the following notes and conclusions are

presented:

(1) These results also show contradictory conclusions, where log(H) has an insignifi-

cant effect on log(P) based on the OLS estimation method, but based on the

Newey–West estimation method it has a significant effect.

(2) Since there is a positive adjustedR-squared value and aDW-statistic of 1.903 414,

this model is an acceptable model, in a statistical sense.

Figure 5.75 Statistical results based on the basic model in (5.39), by using the OLS and

Newey–West estimation methods
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(3) In order to compare other characteristics or the limitations of the results in

Figures 5.75 and 5.76, Figures 5.77 and 5.78 present their residual graphs

respectively. Based on these graphs, it could be said that the AR(1) model

in (5.40) is a better model, corresponding to the residual graph in Figure 5.78. On

Figure 5.76 Statistical results based on the AR(1) model in (5.40), by using the OLS and

Newey–West estimation methods

Figure 5.77 Residual graph of the regression in Figure 5.75

Figure 5.78 Residual graph of the regression in Figure 5.76
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the other hand, it is also well known that the basic regression in (5.39) cannot be

used for inferential statistical analysis, since the time series data are used.

(4) It is not easy to know which estimation method to use, since both estimation

methods in Figure 5.76 will give exactly the same residual graphs. Since the

Newey–West estimation method takes into account the unknown autocorrelation

and heterogeneity of the error terms, then therewould be a preference to apply this

method instead of the OLS. Compare this with the results of the following

example. &

Example 5.24. (Simple models based on the series (Pt, Gt)) For a comparison

study, here a simple model is considered, as follows:

logðPtÞ ¼ cð1Þþ cð2Þ*logðGtÞþmt ð5:41Þ

Table 5.2 presents a summary of statistical results obtained using three estimation

methods, the OLS, Newey–West and White estimation methods.

Compared to the model in the previous example, based on the series (Pt, Ht), this

model gives different results. Using the OLS, Newey–West and White estimation

methods:

(1) The adjusted R-squared value is positive, which indicates that the model is an

acceptable model or a good fitmodel. Note that, except for the t-statistic, all other

statistics have the same estimated values.

Table 5.2 Summary of statistical results based on the model in (5.41), by using the OLS,

Newey–West and White estimation methods

Dependent variable: log(P)

Date: 06/10/07 Time: 06:51
Sample: 1951–1980
Included observations: 30

t-statistic t-statistic t-statistic

Variable Coefficient OLS Newey-West White

C �0.793 353 �3.065 716 �2.654 005 �2.817 953

log(G) 0.677 000 17.52 080 15.842 458 16.50 839

R-squared 0.916 413 Mean dependent

variable

3.721 145

Adjusted R-squared 0.913 427 SD dependent

variable

0.447 149

Std Err of regression 0.131 566 Akaike information

criterion

�1.154 282

Sum squared residual 0.484 666 Schwarz criterion �1.060 869

Log likelihood 19.31 423 F-statistic 306.9786

Durbin–Watson statistic 1.146 215 Prob.(F-statistic) 0.000 000

Special Cases of Regression Models 309

www.trading-software-collection.com



(2) Since the three estimationmethods show that log(G) has a significant effect on log

(P), then either one of the estimation methods will give the same conclusion in

testing the hypothesis. This conclusion is confirmed by observing the scatter

graph with regression presented in Figure 5.55.

(3) The aim is to findwhich onewould be preferred in the time series data analysis. Since

the Newey–West estimationmethod takes into account the unknown autocorrelation

and heteroskedasticity of the error terms, then this method should be chosen.

(4) In order to improve the quality of the simplemodel, as well as to increase theDW-

statistic, a first-order autoregressive model should be applied as follows:

logðPtÞ ¼ cð1Þþ cð2Þ*logðGtÞþmt

mt ¼ rmt�1 þ «t
ð5:42Þ

or higher-order autoregressive models. Do this as an exercise.

Furthermore, based on all the variables in the US domestic price of copper,

many lagged-variable autoregressive models, namely LVAR(p,q)_SCMs, can be

applied, either additive, two-way interaction or three-way interaction models,

which could give unexpected estimates because of the unpredictable correlations

and multicollinearity of the independent variables. Refer to the special notes and

comments presented in Section 2.14. &

5.5.7 Multivariate linear seemingly causal models

Byusing themultivariate series (Pt,Gt, It,Lt,Ht,At), variousmultivariate SCMs could

be applied, even those only based on a path diagram defined on the six time series,

which have been demonstrated in the last three chapters, including various simulta-

neous causal models.

Example 5.25. (A simultaneous causal model) Figure 5.79 presents the statistical

results under the assumption that log(P) and log(G) have simultaneous causal effects.

This model is a first-order autoregressive or AR(1) simultaneous causal model, with

two other exogenous variables, log(A) and log(L), and their interaction. Based on this

figure, the following notes and conclusions are given:

(1) Since many of the variables of the full model are insignificant, an attempt should

be made to try to obtain a reduced model, by deleting some of the independent

variables from each regression.

(2) By using the trial-and-error methods, the statistical results based on a reduced

model are obtained, with the first regression an AR(2) interaction translog model

and the second regression an AR(1) additive translog model. Based on this

reduced model, the following notes and conclusions are presented:
. Based on the first regression, the following function is found:

logðpÞ ¼ �10:006þ 3:625logðaÞþ ½1:451�0:447logðaÞþ 0:048logðlÞ�*logðgÞ
þ ½arð1Þ ¼ 0:582; arð2Þ ¼ �0:560�

ð5:43Þ
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where log(g) has a significant effect on log(p),which is dependent on the function

[1.451� 0.447 log(a) þ 0.048 log(l )], since each of the independent variables

log(g), log(g)�log(a) and log(g)�log(l ) is significant based on the t-statistics.
. The second regression shows that log(p) has a significant positive adjusted

effect on log(g) with a p-value¼ 0.0183.
. Therefore, it can be concluded that the data supports the assumption that log(p)

and log(g) have simultaneous causal effects. However, it should always be

remembered that simultaneous causality between a pair of variables should be

defined based on a theoretical and substantial basis.

(3) As an additional exercise, define your own path diagram, either with or without a

simultaneous causal effect(s). Then, based on the path diagram write an additive,

two-way interaction or three-way interaction model, as presented in the previous

chapters. Those models can use either the original variable, the transformed

variable, such as the bounded semilog or translog models, or the lagged

endogenous and exogenous variables. &

5.6 Return rate models

By considering the classical exponential growth model as

Yt ¼ Y0expðr*tÞ ð5:44Þ
or

logðYtÞ ¼ logðY0Þþ r*t ð5:45Þ

Figure 5.79 Statistical results based on an AR(1) simultaneous causal interaction model and

its reduced model
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which has been presented in Section 2.2, it is easy to derive a time seriesRt, as follows:

logðYtÞ ¼ logðYt�1ÞþRt; for t ¼ 1; 2; . . . ; T ð5:46Þ
or

Rt ¼ logðYtÞ�logðYt�1Þ ¼ dðlogðYtÞÞ; for t ¼ 1; 2; . . . ; T ð5:47Þ

Note thatRt is in fact the return rate or the growth rate of the endogenous variable Yt
at the time point t. This can be compared to other types of return rates in econometrics,

such as the return of asset (ROA), return of investment (ROI) and return of equity

(ROE), which have been widely used or considered in time series models. However,

they are defined as the ratios of two indicators or variables.

Hence, by using theRt series inmodeling, in fact a different aspect of the Yt series is

being modeled. For this reason, a specific model is used or proposed, namely the

return rate model (RRM), if the model has an endogenous variable Rt.

Furthermore, by using Rt as an endogenous variable, it is easy to apply all types of

models presented in this chapter and previous chapters, such as the continuous and

discontinuous growth models, models with trend and time-related effects, seemingly

causal models (SCMs), models with dummy variables and the system equations, as well

as themodels presented in the following chapters. Themodels can easily be derived from

the previousmodels by usingRt for the Yt in the univariate linearmodels and by usingRgt

for the Ygt, g¼ 1, 2, . . . , G in the multivariate linear models.. For this reason, examples

based on a model having Rt as an endogenous variable will not be presented here.

However, since in general the return rates can have negative values, then for the

translog linearmodels, the bounded growthmodel should be used. For example, based

on the multivariate autoregressive model (MAR) presented in Chapter 2, the

following general autoregressive return rate model (AR_RRM) would be obtained:

log
Rgt�Lg

Ug�Rgt

0
@

1
A ¼

XK
k¼1

CðgkÞ*Xgk

( )
þQg*tþmgt

mgt ¼ rgmgðt�1Þ þ «gt; for g ¼ 1; 2; . . . ;G

ð5:48Þ

where Xg1, Xg2, . . . , XgK are multivariate independent or cause variables with Xg1¼ 1

for all g, Lg and Ug are lower and upper bounds of all possible values of the random

variable Rg respectively and Qg is the adjusted growth rate of the return rate variable

Rg. The values of Lg andUg should be subjectively selected by the researchers, and the

lower bound Lg in general will be negative. One of the author�s students, Kernen
(2003), has been using a bounded multiple regression having a negative lower bound.

For basic illustration purposes, Figure 5.80 presents the growth curves of the

variables M1, GDP, PR and RS in Demo.wf1, based on a subsample 1990Q1 to

1996Q4, and Figure 5.81 presents the growth curves of their return rates, namely d(log

(M1)), d(log(GDP)), d(log(PR)) and d(log(RS)).
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Note that these figures clearly show the differences between the return rate growth

curves and the growth curves of their original variables. For this reason, amodel of the

return rates should be quite different from the model of the original variables.

However, all time series models presented in the previous chapters should be

applicable, by using Rt as an endogenous variable instead of Yt.

Figure 5.80 Growth curves of the time series ofM1,GDP, PR and RS, based on a subsample

1990Q1 to 1996Q4

Figure 5.81 Growth curves of the return rates ofM1,GDP, PR and RS, based on a subsample

1990Q1 to 1996Q4

Special Cases of Regression Models 313

www.trading-software-collection.com



For a more detailed comparison, Figure 5.82 presents the growth curves of the

return rates based on thewhole sample: 1952Q1 to 1996Q4,which can be compared to

the growth curves of the original variables, as presented in Chapter 2.

5.7 Cases based on the BASICS workfile

All models that have been presented can easily be applied using any subsets of

variables in BASICS.wf1. In this section, however, special cases are considered. So

far, it was found that there is an acceptable functional relationship between any

endogenous variable and exogenous variable(s). However, in some or many cases, it

was easily identified or visually observed that the function cannot be accepted as a

good explanatory model, or even as a causal model. Refer to the scatter graphs

presented in Figures 4.28 and 4.30, which present the possible causal relationships

between the components of bivariate variables.

By observing the scatter graph of a bivariate (Xt,Yt), in some ormany cases it is very

difficult to define a regression model or a statistical function, as

Yt ¼ f ðu;XtÞþmt; t ¼ 1; 2; . . . ; T ð5:49Þ
where f(u, Xt) is a known function having a finite number of parameters u and mt is an

unknown error term or disturbance. For illustration purposes, note the following

cases, based on BASICS.wf1.

Figure 5.82 Growth curves of the return rates of M1, GDP, PR and RS, based on the whole

sample 1952Q1 to 1996Q4
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Example 5.26. (Industry production index and federal fund) Figure 5.83 pre-

sents two scatter graphs with regressions of an endogenous variable IP (industry

production total index) and log(IP) on an exogenous variableFF (interest rate: federal

funds, % per annum). Based on this figure, the following notes and conclusions are

presented:

(1) Neither the simple linear regression nor the semilogarithmic regression, presented

in the graphs, can be considered as an acceptable regression or a good fit model.

(2) Even though IPt andFFt are time series variables, the graphs represent the graphs

of (FFi, IPi) with FFi�FFiþ 1 for all i. As a result, for a value FFi, there could be

several observations or values of the endogenous variable IP. Therefore, in a

mathematical sense, there cannot be a functional relationship between IP andFF.

(3) Even though FF has a significant effect on IP, as well as on log(IP), the

simple models should not be considered as an acceptable model or a good fit

model. &

Example 5.27. (Scatter graphs based on the bivariate (Xt, Yt)) The scatter graph

of these variables, which is, in fact, the graph of (Xi, Yi) for Xi�Xiþ 1, has been

presented in Figure 4.30. For further illustration and discussion, Figure 5.84 presents

two additional scatter graphs with regression lines.

Figure 5.83 Scatter graphs with regressions of IP and log(IP) on FF

Figure 5.84 Scatter graphs with regression lines of Y on X and log(X)
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(a) Case 1: Scatter Graph with Simple Regressions

If f(u, Xt)¼ a þ bX, for all t, is defined, then a simple linear regression function

will be obtained, based on any data set. In the case where Xt is a positive variable,

then a simple linear regressionmay also be obtained if f(u,Xt)¼ c þ d�log(X), for
all t, is defined. Both regression functions are presented in Figure 5.84, alongwith

their scatter plots.

Furthermore, it has been found that each regression has a very small value of

R-squared of 0.000 213 and 0.000 847 respectively, and the variable X, as well as

log(X), has an insignificant adjusted effect onY. On the other hand, the regressions

have negative adjusted R-squared values of�0.002 745 and�0.002 470, so these

models are not acceptable time series models. For a comparison see the following

case model.

(b) Case 2: A Third-Degree Polynomial Regression

Figure 5.85 presents the statistical results based on a third-degree polynomial of Y

on X. The function has a very small R-squared value, and each of the independent

Figure 5.85 A third-degree polynomial model of Y on X

Figure 5.86 Residual graph of the regression in Figure 5.85
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variables has an insignificant adjusted effect. The statistical result also shows a

negative value of the adjusted R-squared value. Therefore, this model is an

unacceptable model even though its residual graph indicates that the regression is

a good regression, as presented in Figure 5.86. In other words, the residual graph

does not clearly show that the� signs of the error terms have a systematic change

over time. This case has demonstrated that a residual graph could indicate that the

corresponding model is a good model, based on the residual analysis, but the

statistical results present a poor estimate. &

5.7.1 Special notes

By observing the scatter graph(s), in some or many cases, it was found that it is very

difficult or (almost) impossible to define an explicit function f(u, Xt) such that the

corresponding regression has a good fit or a sufficiently large value of R-squared. For

this reason, the nonparametric estimationmethod or nonparametric regression should

be used (Huitema,1980; Hardle, 1999), including the simplest or very basic moving

average estimation method, which will be discussed in Chapter 11.
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6

VAR and system estimation
methods

6.1 Introduction

Corresponding to time series data, a first-order autoregressive multivariate linear

model or an AR(1) multivariate regression can be presented using a general

equation:

yg;t¼ Xg;t*Cg þmg;t

mg;t¼ rgmg;t�1 þ «g;t
ð6:1Þ

where yg is the gth endogenous or dependent variable, Xg is an exogenous or

independent multivariate or multivariable, say Xg¼ (Xg1, Xg2, . . . , XgK), of the gth

regression,Cg¼ (C(g, 1), . . . ,C(g,K))0 is aK� 1 vector of model parameters and «g
is the error term and rg is the first autocorrelation or serial correlation of the gth

regression, for g¼ 1, 2, . . . , G.
If the multivariate Xg¼ (X1, X2, . . . , XK) for all g, then all multiple regressions will

have the same exogenous variables. In this case the system can be written as

yg;t ¼Xt*Cg þmg;t

mg;t ¼ rgmg;t�1 þ «g;t
ð6:2Þ

Note that the components of the multivariate Xg¼ (Xg1, Xg2, . . . , XgK) could be any

type of measured variables, including various main exogenous variables and the

lags of each endogenous or dependent variables, as well as their selected two-way or

three-way interactions.

EViews provides several alternative estimation methods for a multivariate time

series model, such as the least squares estimates (LS) using the system of equations,

Time Series Data Analysis Using EViews IGN Agung
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the VAR (vector autoregression), the VEC (vector error correction) and the system

equation estimation methods. Note that the model in (6.1) can be easily extended to a

higher-order autoregressive multivariate model, say the AR(p) multivariate regres-

sion, either using the original observed variables or transformed variables, such as the

natural logarithmof the endogenous or exogenous variable(s), or both. Furthermore, it

has beenwell known that there are several ormany possible types of linear association

or structural equation models that could be defined, based on a specific multivariate

data set.

This chapter, in general, will present examples of alternative bivariate linear

models, based on two endogenous variables, say Y1 and Y2, and a set of exogenous

variables, namelyXk, k¼ 1, 2, . . . ,K. It is expected that allmodels could be applicable

or used in various fields. Furthermore, those models can easily be extended for

multivariate endogenous variables.

As a generalization, the symbol Y will be used for selected endogenous variables

and the symbolX for selected exogenous variables. Hence, all variables in the data sets

used for the illustrations will be defined or selected as the Y-variables for the

endogenous and the X-variables for the exogenous variables. By using the symbols

Y and X for the multivariate endogenous and exogenous variables respectively, it is

proposed that alternative multivariate linear models or system of equations presented

in the following sections and examples could be applicable for any sets of variables in

various fields of study.

To illustrate this, in the following sections cases will be presented based on the

data set in the Demo_Modified workfile, which have been used in the previous

chapters, and other selected time series data with a limited number of detailed

examples.

6.2 The VAR models

EViews versions 4, 5 and 6 provide a specific VAR estimation method or VAR

function, which can be used to apply specific lagged endogenous multivariate

models, called the vector autoregressive (VAR) models. Figure 6.1 presents the

options of the VAR specification or estimation method of a basic VAR model with

endogenous variables Y1 and Y2. This presentation can be obtained by selecting

Quick/Esimate VAR . . . or Object/New Object/VAR . . . OK, after opening any

EViews workfiles.

For illustration purposes, Figure 6.2 presents a representation of a basic or

default bivariate VAR model having endogenous Y1 and Y2, with �Lag intervals of

Endogenous�: 1 2. Both equations in Figure 6.2 show that the model parameters are

presented, as well as recorded, in EViews, by using the symbol C(i, j).

Corresponding to the pth-order lagged-variable models, namely the LV(p)

models presented in Chapter 2, specifically the model in (2.26) for q¼ 0, this VAR

model can be considered as a special case of the LV(p) models. Furthermore, the

VARmodel with exogenous variables can also be considered as a special case of the

general MAR(p)_T growth model in (2.74), for p¼ 0.
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6.2.1 The basic VAR model

Based on two endogenous variables, namely Y1 and Y2, the basic VARmodel has the

following general equation:

Y1t ¼ a1 þ
Xk
j¼1

b1jY1t�j þ
Xk
j¼1

d1jY2t�j þ u1t ð6:3aÞ

Y2t ¼ a2 þ
Xk
j¼1

b2jY1t�j þ
Xk
j¼1

d2jY2t�j þ u2t ð6:3bÞ

Estimation Proc: 
=============================== 
LS 1 2 Y1 Y2  @ C

VAR Model: 
=============================== 
Y1 =   C(1,1)*Y1(-1) + C(1,2)*Y1(-2)  
       + C(1,3)*Y2(-1) + C(1,4)*Y2(-2)  
        + C(1,5) 

Y2 =  C(2,1)*Y1(-1) + C(2,2)*Y1(-2) 
        + C(2,3)*Y2(-1) + C(2,4)*Y2(-2) 
        + C(2,5) 

Figure 6.2 The representation of the VAR model in Figure 6.1

Figure 6.1 The VAR specification of a basic bivariate VAR model

VAR and System Estimation Methods 321

www.trading-software-collection.com



where Yt�j¼ (Y1, Y2)t�j is the jth lagged variable of Yt, and it is assumed that each of

the error terms does not have serial correlations or autocorrelations. In general, these

assumptions could be accepted because the model has been using the lagged

dependent variables. Thus, the statistical results can be obtained by entering only

the endogenous variables �Y1 Y2�with selected options on the lags of the endogenous
variables, as presented in Figure 6.1.

For j¼ 2, the causal association or path diagram between the endogenous

variables in model (6.3) can be presented as in Figure 6.3. The correlation between

the error terms m1t and m2t indicates that the endogenous variables have a type of

relationship.

Since both regressions represent the first lagged variables Y1t�1 and Y2t�1 as the

cause factors of Y1 and Y2, then it may also be considered that Y1t�2 and Y2t�2 are the

cause factors of Y1t�1 and Y2t�1. However, the model could not show these causal

relationships explicitly. For this reason, dotted lines are used between the four

variables Y1t�1, Y1t�2, Y2t�1 and Y2t�2.

On the other hand, note that their multicollinearity should have (unpredictable)

effects on the parameter estimates, as well as the testing hypotheses (refer to the

special notes in Section 2.14).

The model in (6.3) is considered as a bilateral causality model, because of the two

exogenous variables Y1 and Y2. Four types of causality can be distinguished, as

follows (Gujarati, 2003, p. 697):

(1) Unidirectional causality from Y2 to Y1 is indicated if the estimated coefficients on

the laggedY2 in (6.3a) are statistically different from zero as a group (i.e.Sb1j„ 0)
and the set of estimated coefficients on lagged Y1 in (6.3b) is not statistically

different from zero (i.e. S b2j„ 0).
(2) Conversely, unidirectional causality fromY1 to Y2 exists if the set of the laggedY2

coefficient in (6.3a) is not statistically different from zero as a group (i.e.Sb1j¼ 0)

and the set of estimated coefficients on lagged Y1 in (6.3b) is statistically different

from zero (i.e. S b2j„ 0).
(3) Feedback or bilateral causality is suggested when the sets of lagged Y1

and Y2 coefficients are statistically significantly different from zero in both

regressions.

(4) Finally, independence is suggested when the sets of lagged Y1 and Y2 coefficients

are not statistically significant in both regressions.

Y1t-1

Y2t-1

Y1t

Y2t

µ1t

µ2t

Y1t-2

Y2t-2

Figure 6.3 The path diagram of a VAR model in (6.3) for k¼ 2
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6.2.2 The VAR models with exogenous variables

AVAR model based on only two endogenous variables and multivariate exogenous

variables can be presented as

Y1;t ¼ a1 þ
XJ
j¼1

b1jY1;t�j þ
XJ
j¼1

d1jY2;t�j þ
XK
k¼1

l1kXk þ u1t

Y2;t ¼ a2 þ
XJ
j¼1

b2jY1;t�j þ
XJ
j¼1

d2jY2;t�j þ
XK
k¼1

l2kXk þ u2t

ð6:4Þ

where Yt�j¼ (Y1, Y2)t�j is the jth lagged variable of Yt and Xk is the kth exogenous

variable, and it is assumed that each of the error terms does not have serial correlations

or autocorrelations. These assumptions could be accepted because themodel has been

using the lagged dependent variables.

The exogenous variables, Xk, can be any variable that has been presented in the

previous chapters, such as the time t, pure exogenous variables, the lags of exogenous

variables, the environmental variable and dummy variables. Compared to the

multivariate models presented in Chapter 2, the VAR model can be considered as

a special case of the MAR(p)_T model in (2.74). For this reason, the analysis using

any VAR models can be done using the �System Equation�, which has been demo-

nstrated in the previous chapters.

6.2.3 Cases based on the demo_modified workfile

In order to generalize the models presented in the following examples, the endoge-

nous variables Y1¼M1 and Y2¼GDP and the exogenous variables X1¼PR and

X2¼RS are defined. For the data analysis EViews 6 has been used.

Example 6.1. (A basic VAR model) Figure 6.4 presents the result by applying a

bivariate VARmodel. The process of the data analysis based on a basic VARmodel is

as follows:

(1) Click Objects/New Objects, which gives the VAR specification block presented

above, with the VAR type �Unrestricted VAR.�
(2) By entering the variables Y1 and Y2 and clicking OK, the statistical results will

appear on the screen, as presented in Figure 6.4.

(3) Note that the default of the lag interval of the endogenous variable entered is �1 2.�
The lag intervals for the endogenous variables can be modified, as well as the

estimation sample; �k k,� for k¼ 0, 1, . . . , may also be used.

(4) The default of the exogenous variables used is C (a constant variable), as

presented in the window.

(5) Stability of a VAR model.
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In order to obtain additional results or conduct further analysis, select View;

alternative options can then be seen on the screen, as presented in Figure 6.5. Selecting

the AR Roots Table gives the result in Figure 6.6, and selecting the AR Roots Graph

gives the graphical representation of the roots in Figure 6.7 using a complex

coordinate system.

Figure 6.4 Statistical results based on a basic VAR model in (6.4) for k¼ 2

Figure 6.5 Options of the lag structure
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Note that Figure 6.6 presents two complex roots of 0.296 375 – 0.046 881i and

0.296 375 þ 0.046 881i, with an equal modulus of 0.299 073, and two real roots.

Furthermore, one of the roots is outside the unit circle, which indicates that the VAR

model is not stable, as shown in Figure 6.7. Therefore, thismodel is a poorVARmodel.

As a result, further analysis does not need to be done and a modifiedVARmodel needs

to be found, which will be presented in the following example. &

Example 6.2. (Other basic bivariate VAR models) After doing some experimen-

tation, alternativeVARmodelswere found that satisfy the stability condition. The first

model is a basic VAR model using the endogenous variables log(Y1) and log(Y2), as

Figure 6.6 The VAR stability check of the VAR model in Figure 6.4

Figure 6.7 The graph of the AR roots in Figure 6.5
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presented in Figure 6.8, with the stability condition check presented in Figure 6.9. The

other model uses the bivariates {dY1, dY2}. However, their statistical results are not

presented.

This output presents the observed values of the t- andF-statistics for testing specific

hypotheses. Note that the t-statistic can also be used to test one-sided hypotheses.

Based on this result, the following should be noted:

Figure 6.8 Statistical results based on a basic bivariate VAR model of {log(Y1), log(Y2)}

Estimation Proc: 
=============================== 

LS 1 2 LOG(Y1) LOG(Y2)  @ C 

VAR Model: 
=============================== 

LOG(Y1) = C(1,1)*LOG(Y1(-1)) + C(1,2)*LOG(Y1(-2))  
                                  + C(1,3)*LOG(Y2(-1)) + C(1,4)*LOG(Y2(-2)) + C(1,5) 

LOG(Y2) = C(2,1)*LOG(Y1(-1)) + C(2,2)*LOG(Y1(-2)) 
                                  + C(2,3)*LOG(Y2(-1)) + C(2,4)*LOG(Y2(-2)) + C(2,5) 

VAR Model - Substituted Coefficients: 
=============================== 

LOG(Y1) = 0.8403600893*LOG(Y1(-1)) + 0.1072972616*LOG(Y1(-2)) - 
0.05320159724*LOG(Y2(-1)) + 0.09577722874*LOG(Y2(-2)) + 0.06463733726 

LOG(Y2) =  - 0.03968193379*LOG(Y1(-1)) + 0.01778400987*LOG(Y1(-2)) + 
1.340858557*LOG(Y2(-1)) - 0.3242358467*LOG(Y2(-2)) + 0.03962883563 

Figure 6.9 Representation of the basic bivariate VAR model in Figure 6.8
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(1) The VAR estimates do not present the p-values for testing the corresponding

parameters. However, based on each value of the t-statistics, it is easy to

conclude whether or not a lagged variable has a significant adjusted effect on

the corresponding dependent variable, by using a critical point of t0¼ 2

or 1.96. For example, if |t0| > 2, or 1.96, then it can be concluded that

the corresponding independent variable has a significant adjusted (partial)

effect.

(2) For example, corresponding to the exogenous variable log(y1(�1)), H0: C(2,

1)¼ 0 is accepted based on the t-statistic of �0.776 28. Hence, it has an insigni-

ficant adjusted effect on log(Y2). The others can easily be identified.

(3) Since some of the endogenous variables have insignificant effects, then a reduced

model could be produced by deleting at least one of them. However, this process

cannot be done by using the VAR function, since all regressions in a VAR model

should have exactly the same set of exogenous variables. In order to obtain a

reduced model, the �System� function or option should be used, which will be

presented in a following relevant section.

(4) The information criteria, AIC and SC, can be used for model selection in order to

determine the lag length of theVARmodel, with smaller values of the information

criterion being preferred.

(5) In order to test hypotheses using the Wald test, the parameters of a VAR model

should be identified, as presented in Figure 6.9, which can be obtained by

selecting View/Representation. Note that the model parameters are presented

and saved by using the symbol C(i, j), for i¼ 1 and i¼ 2, j¼ 1, 2, . . . , 5, where
C(i, 5), i¼ 1 and i¼ 2, are the intercept parameters. These parameters should be

used to write the hypotheses. However, in practice, the model parameters may be

presented by using other symbols, such as bij or others.

(6) Further statistical analysis based on this model will be presented sequentially in

the following examples. &

Example 6.3. (The lag structure analysis) Corresponding to the basic models of

{log(Y1), log(Y2)} in Figure 6.8, this example presents a detailed lag structure ana-

lysis or options as presented in Figure 6.5, such as follows:

(1) The AR Roots of a Characteristic Polynomial

Figure 6.10 presents four real-valued AR roots of the VAR model in

Figure 6.8, with a statement that the VAR model satisfies the stability

condition, and Figure 6.11 presents the graph of the roots using a complex

coordinate system. Note that this graph in fact presents four points in the real

(or horizontal) axis.

(2) The VAR Granger Causality Tests

By selecting View/Lag Structure/Granger causality . . ., the result in Figure 6.12.
Based on this result, the following notes and conclusions are obtained:
. The null hypothesis that log(Y2) is not a Granger-cause of log(Y1), that is H0:

C(13)¼C(14)¼ 0, is rejected based on the chi-squared test of 20.813 99, with

df¼ 2 and a p-value¼ 0.0000. Note that, in fact, this is carried out to test the
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joint effects of log(Y2(�1)) and log(Y2(�2)) on log(Y1), and similarly for the

following test.
. The null hypothesis that log(Y1) is not a Granger-cause of log(Y2), that is H0:

C(21)¼C(22)¼ 0, is rejected based on the chi-squared test of 6.944 871, with

df¼ 2 and a p-value¼ 0.0000.
. Therefore, it can be concluded that Granger causality can run in two ways. In

other words, log(Y2) is significantly a Granger-cause of log(Y1) and log(Y1) is

significantly a Granger-cause of log(Y2). Corresponding to the causality forms

proposed by Gujarati, log(Y1) and log(Y2) have a feedback or bilateral

causality.

Figure 6.10 The AR roots of the VAR model in Figure 6.8

Figure 6.11 The graph of the AR roots in Figure 6.10
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(3) The VAR Lag Exclusion Wald Tests

Based on the result in Figure 6.13, the following findings are given:
. Lag1, namely each of the first lags log(y1(�1)) and log(y2(�1)), aswell as their

joint effects, are significant with a p-value¼ 0.000 000.
. Log(y2(�2) has a significant effect based on the chi-squared test of 18.984 71

with a p-value¼ 7.54e-05.
. The joint effects of log(y1(�2)) and log(y2(�2)) is significant, based on the chi-

squared test of 24.820 25 with a p-value¼ 5.47e-05.

Figure 6.12 The VAR Granger causality tests for the model in Figure 6.8

Figure 6.13 The VAR lag exclusion tests for the model in Figure 6.8
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(4) The Lag Order Selection Criteria

By selecting Lag Structure/Lag Length Criteria . . . , the statistical results in

Figure 6.14 are obtained. This figure shows that the lags of order two are

sufficient, which conforms with the model above, based on the SC statistic.

However the LR, FPE, AIC and HQ statistics select the lags of order six.

Hence, it is possible to observe the VAR model with the lags interval �1 6�. Do
this as an exercise. &

Example 6.4. (Cointegration test) By selecting View/Cointegration Test . . . , the
six options presented in Figure 6.15 appear as well as two windows to insert

selected exogenous variables and lag intervals. However, it is very difficult to

identify or define the best possible selection. For this reason, it is suggested that the

default options given in Figure 6.15 should be used. Corresponding to the VAR

model in Figure 6.8, by clicking OK, the statistical results in Figure 6.16 are

obtained.

This figure shows that there is one cointegration equation at the 0.05 level based

on the trace test, as well as the maximum eigenvalue test. Based on this finding, the

VEC model of {log(Y1), log(Y2)} should be applied, which will be presented in

Section 6.3. &

Example 6.5. (Residual tests) By selectingView/Residual Tests . . . , the alternative
options presented in Figure 6.17 are obtained. Since alternative residual analyses have

been presented in the previous chapters, here only some selected analyses will be

presented. However, to consider the residual analysis, refer to the special notes and

comments in Section 2.14.3.

Figure 6.14 Statistical values of the VAR lag order selection criteria for the model in

Figure 6.4

330 Time Series Data Analysis Using EViews

www.trading-software-collection.com



(1) Correlograms

Figure 6.18 presents the correlograms of the basic VAR model with endogenous

variables log(Y1) and log(Y2) with lag intervals of endogenous �1 2�, with the

statistical results presented in Figure 6.8. Note that Figure 6.18 presents four

correlograms, which show that one or two of the corresponding population

autocorrelations (or autocorrelation parameters) are significant. For example,

the first graph shows that one of the autocorrelations is outside the interval

with two standard error bounds and the second graph shows that two of the

autocorrelations are outside the interval.

Figure 6.16 Statistical results of the default option for the cointegration test

Figure 6.15 Alternative options of the Johansen cointegration test
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Figure 6.17 Alternative options of the residual tests

Figure 6.18 Residual correlograms of the VAR model in Figure 6.8

(2) White Heteroskedasticity Tests

Figure 6.19 presents two alternative statistical results for testing the residual

heteroskedasticity of the basic VAR model with endogenous variables log(Y1)

and log(Y2). Based on this figure, the following conclusions are obtained:

332 Time Series Data Analysis Using EViews

www.trading-software-collection.com



Figure 6.19 Two alternativeWhite heteroskedasticity tests for the residuals of the basic VAR

model in Figure 6.8

. At a 5% significant level, the joint test of �No Cross Terms� shows that the
residuals are heterogeneous, but at the 10% significant level, both joint tests

show that the residuals are heterogeneous.
. The null hypothesis H0: r(res2, res1)¼ 0 or Cov(res2, res1)¼ 0 is accepted,

based on either the F-statistic or the chi-squared-statistic, based on both tests.
. If there are contradictory conclusions based on the two tests, then one would

have to be selected as the final conclusion. Since both tests are acceptable, in a

statistical sense, then either one of the tests could be used. &

Example 6.6. (Stability status of theVARmodelswith exogenous variables) The

two previous examples presented a basic VARmodel with endogenous variables {Y1,

Y2}, which is not stable, and a basic VARmodel with endogenous {log(Y1), log(Y2)},

which is a stable VAR model.

After doing experimentation, it was found that the stability status of aVARmodel is

unpredictable, which is not consistent with the basic VAR models in the previous

examples. Table 6.1 presents alternative VAR models having endogenous variables

{Y1, Y2} or {log(Y1), log(Y2)} and various sets of endogenous variables, with their

stability status.

This table presents only a limited number of all possible VAR models correspond-

ing to all types of AR(p) models with linear trend or time-related effects, as well as

SCMs (i.e. seemingly causal models). These models could easily be extended tomore

advanced VAR models, such as by inserting an environmental or instrumental

variable, namely Zt, as presented in Section 4.4, and using the natural logarithm

of the X-variables as independent variables, especially for the endogenous variables

log(Y1) and log(Y2).

Note that some of the models in this table are considered as �not recommended� or
�improper� models, since the endogenous variables are not consistent with their

lagged variables used in the models. For example, in model c.3 with endogenous

variables {log(y1), log(y2)}, the exogenous variables use y1(�1) and y2(�1) in the

form of t�y1(�1) and t�y2(�1).
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The data analysis can easily be done by inserting the relevant set of exogenous

variables in the �Exogenous Variables� window, as presented in Figure 6.1. The

characteristics of each VAR model can be studied by using the same methods

presented in Example 6.2.

However, note that all regressions in a VAR model should have the same set of

exogenous variables. Hence, if an exogenous variable needs to be deleted or inserted,

then thevariablewill be deleted fromor inserted into all regressions. Corresponding to

Table 6.1 VAR models with various sets of exogenous variables and their stability status

Endogenous variables

Model Alternative VAR models/exogenous variables {Y1, Y2} {log(Y1), log(Y2)}

(a) Basic VAR model

(a.1) C Not stable Stable

(b) VAR models with trend

(b.1) C t Not stable Stable

(b.2) C t t2t3 Not stable Stable

(b.3) C t X1 X2 Stable Not stable

(b.4) C t X1 X2 X1�X2 Stable Not stable

(c) Models with time-related effects

(c.1) C t X1 X2 t�X1 t�X2 Stable Stable

(c.2) C t X1 X2 X1�X2 Stable Stable

T�X1 t�X2 t�X1�X2
(c.3) C t t�(y1(�1)) t�(y2(�1)) Not stable Not stablea

(c.4) C t t�log(y1(�1)) t�log(y2(�1)) Stablea Not stable

(c.5) C t t�log(Y1(�1)) Not stablea Stable

t�log(Y1(�2)) t�log(Y2(�1))

t�log(Y2(�2))

(c.6) C t t�Y1(�1) t�Y1(�2) Not stable Stablea

t�Y2(�1) t�Y2(�2)

(c.7) C t X1 t�X1 t�(Y1(�1)) Not stable Not stablea

t�(Y1(�2)) t�(Y2(�1))

t�(Y2(�2))

(c.8) C t X1 X2 t�X1 t�X2 Stablea Stable

t�log(Y1(�1)) t�log(Y2(�))

(d) Seemingly causal models

(d.1) C X1 X2 Stable Not stable

(d.2) C X1 X2 X1(�1) X2(�1) Stable Not stable

(d.3) C X1 X2 X1�X2 Stable Not stable

(d.4) C X1(�1) X2(�1) Stable Not stable

X1(�1)�X2(�1)

(d.5) C X1 X2 X1�X2 Stable Not stable

X1(�1) X2(�1) X1(�1)� X2(�1)

Source: Outputs Using EViews 5.
aNot recommended models.
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some problems in using a large number of variables in a VAR model, refer to the

special notes and comments in Section 2.14. &

Example 6.7. (A VARmodel corresponding to the model in (2.78)) Correspond-

ing to the multivariate model with trend in (2.78), here alternative VAR models are

presented that are based on the three variables, M1, GDP and PR. Using these

variables many alternative VAR models can be defined, similar to the VAR models

that have been presented in the previous examples, since their lags, as well as the time

t, can be used. One of the VAR models is presented in Figure 6.20:

(1) This model is a stable (i.e. no root outside the unit circle) VAR model with

endogenous variables log(M1) and log(GDP) and exogenous variables t, log(PR)

and t�log(PR), and can be considered as a translog linear model with trend and a

time-related effect.

(2) Even though log(M1(�2)) has an insignificant effect on both log(M1) and log

(GDP), this variable cannot be deleted by using theVARestimationmethod, since

log(GDP(�2)) should be in the model, corresponding to the option �1 2� lagged
interval. However, it is possible to modify the exogenous variables.

(3) Since the time t has insignificant effects on both endogenous variables with

t-statistics of �0.479 78 and 0.576 24 respectively, this variable may be

deleted from the model. The reduced model shows that log(pr) and t�log(pr)
have significant effects on only the second endogenous variable, log(gdp).

However, the results are not presented. Note that each regression in the VAR

model should have the same set of exogenous variables. Hence, there could be

two alternative models based on these set of variables, since each regression of

a VAR model should have the same set of exogenous variables. The first is the

Figure 6.20 A stable VAR model with trend and time-related effect
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full VAR model and its reduced model with exogenous variables log(pr) and

t�log(pr).
(4) For a comparison, a stable VAR model has been found with endogenous

variablesM1 andGDP and exogenous variables t, pr and t�pr. Its three possible
reducedmodels with exogenous variables, (i) t and t�pr, (ii) pr and t�pr and (iii)
t�pr, are also stable VAR models. Two of the stability tests are presented in

Figure 6.21. &

Example 6.8. (Possible reduced VAR models) The models presented in this

example should be considered as modifications of the VAR models above. The

models still have selected lagged endogenous variables in both regressions, but with

different sets of exogenous variables. In order to meet this objective, the system

estimation method or function should be used, as already presented in the previous

chapters. Find the following alternative models:

(1) A Reduced Model of the Model in Figure 6.20

The results in Figure 6.20 show that some of the independent variables are

insignificant, with very small values of the t-statistic. It should be possible to

obtain a reduced model. Corresponding to the results in Figure 6.20, an attempt

has been made to obtain regressions having different sets of exogenous

variables. Figure 6.22 presents the statistical results using the SUR estimation

method based on a reduced model, by using the �System� function or option,

which has been demonstrated in the previous chapters. Note that the two

regressions in this multivariate model have different sets of independent

variables.

(2) Another Modified Model

Figure 6.23 presents statistical results based on a modified model. This is not a

reduced model of the model in Figure 6.20, since the first regression in the MAR

model is an AR(1) model. The second regression is not an AR(1) model, because

the indicator AR(1) is insignificant with a large p-value if it is in the model.

Compare this with the model in Figure 6.22. &

Figure 6.21 Alternative stable VAR models with endogenous variables M1 and GDP and

exogenous variables t, PR and t�PR
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Example 6.9. (A simultaneous causal model) Under the assumption that the time

series M1 and GDP have a simultaneous causal relationship, to present the data

analysis the �System� function or option should be used. Refer to the simultaneous

seemingly causal models presented in Sections 4.5 and 4.6.

Corresponding to each of the VAR model in Figure 6.20, many alternative

simultaneous causal models could be obtained by inserting an independent variable

log(gdp) in the first regression and log(m1) in the second regression. For an

illustration, Figure 6.24 presents a simultaneous causal model that is directly derived

from to the VARmodel in Figure 6.20. Note that five of the independent variables are

insignificant with large p-values. For illustration purposes, the following tests are

performed by using the Wald tests:

(1) The joint effects of log(gdp), log(gdp(�1)) and log(gdp(�2)) on log(m1) are

investigated, with the null hypothesis H0: C(13)¼C(14)¼C(15)¼ 0. This null

hypothesis is rejected based on the chi-squared-statistic of 20.926 15 with df¼ 3

and a p-value¼ 0.0001.

Figure 6.22 Statistical results based on a reduced model of the model in Figure 6.20

Figure 6.23 A modified model of the VAR model in Figure 6.20
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Similarly, the joint effects of log(m1), log(m1(�1)) and log(m1(�2)) on log

(gdp) are investigated, with the null hypothesis H0: C(21)¼C(22)¼C(23)¼ 0.

This null hypothesis is rejected based on the chi-squared-statistic of 30.542 02

with df¼ 3 and a p-value¼ 0.0000.

These testing hypotheses could be considered as an extension of the Granger

causality tests based on the VAR model. These tests could be called generalized

Granger causality (GGC) tests.

(2) On the other hand, in order to generalise the causality forms proposed by Gujarati

(2003, p. 697), the total coefficient parameters of log(gdp), log(gdp(�1)) and log

(gdp(�2)) are tested, with the null hypothesis H0: C(13) þ C(14) þ C(15)¼ 0.

This null hypothesis is accepted based on the chi-squared-statistic of 1.141 332

with df¼ 1 and a p-value¼ 0.2854. However, the null hypothesis of the total

coefficients of log(m1), log(m1(�1)) and log(m1(�2)), orH0:C(21) þ C(22) þ
C(23)¼ 0, is rejected based on the chi-squared-statistic of 10.764 61 with df¼ 1

and a p-value¼ 0.0010. These findings show that there is a unidirectional

causality from log(gdp) to log(m1).

Since the results in Figure 6.24 present several large p-values, an attempt has been

made to find better models in a statistical sense. By using the trail-and-error method, a

reduced model was obtained, as shown in Figure 6.25, which is a statistically

acceptable model with respect to the DW-statistics and each of the independent

variables is significant. Figure 6.26 presents an acceptable AR(1) model. &

Example 6.10. (A basic VAR model of four time series) By using the four

variables log(M1), log(GDP), log(PR) and RS as endogenous variables of a basic

VARmodel, the statistical results were easily obtained, and several testing hypotheses

Figure 6.24 Statistical results based on a simultaneous causalmodel derived directly from the

VAR model in Figure 6.20
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were conducted. This example only presents selected testing hypotheses, without

presenting the complete statistical results of the model.

(1) Stability of the VAR model

The VAR model does not have a root outside the unit circle, with four real roots

and four complex roots. Hence the model is a stable VARmodel. However, if the

original endogenous variablesM1, GDP PR and RS are used, there will be eight

complex roots, where two roots have amodulus of 1.011 75. Therefore, themodel

is an unstable VAR model.

(2) Granger Cause Causality

Figure 6.27 presents the statistical results for the VAR Granger causality tests.

Based on these results, conclusions can be made on the Granger cause causality

(GCC) for each pair of the variables. For an example, note the following:

(a) The joint effect of log(GDP(�1)) and log(GDP(�2)) on log(M1) is signifi-

cant, based on the chi-squared-statistic of 28.558 02 with df¼ 2 and a

p-value¼ 0.0000. The joint effect of log(M1(�1)) and log(M1(�2)) on

log(GDP) is significant, based on the chi-squared-statistic of 15.003 65 with

Figure 6.25 A reduced model of the model in Figure 6.24
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df¼ 2 and a p-value¼ 0.0000. Hence, the GCC of the variables log(m1) and

log(GDP) runs in twoways. Since there are other exogenous variables in each

regression, then the GCC may be considered as the adjusted GCC, and

similarly for the variables log(m1) and RS.

(b) The joint effect of log(PR(�1)) and log(PR(�2)) on log(M1) is insignificant,

based on the chi-squared-statistic of 2.569 528 with df¼ 2 and a p-value¼
0.2767. The joint effect of log(M1(�1)) and log(M1(�2)) on log(PR) is

insignificant, based on the chi-squared-statistic of 0.036 559with df¼ 2 and a

p-value¼ 0.9819. Hence, the GCC between the variables log(m1) and log

(PR) are insignificant. In other words, there is no GCC between log(m1) and

log(PR).

(c) The joint effect of the first and second lagged variables of log(GDP), log(PR)

and RS on log(M1) is significant, based on the chi-squared-statistic of

54.038 44 with df¼ 6 and a p-value¼ 0.0000. Similarly, the first and second

lagged variables of another set of three variables has a significant effect on the

fourth variable.

(d) For a later comparison with the VEC model, this VAR model has AIC¼
�18.899 13 and SC¼�18.255 63. &

Figure 6.26 An AR(1) model of the model in Figure 6.25
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6.2.4 The VAR models with dummy variables

All models with dummy variables, including the growthmodels by states presented in

Chapter 2, can easily be extended to the VAR models with dummy variables. For

illustration purposes, selected VAR models are presented in the following examples.

The dummyvariables considered are the dummyvariablesDrs1 andDrs2,which have

previously been defined based on the variable RS, namely Drs1¼ 1 for t� 119 and

Drs1¼ 0 otherwise, and Drs2¼ 1 for Drs1¼ 0 and Drs2¼ 0 for Drs1¼ 1.

Example 6.11. (The simplest VAR model of {Y1, Y2} with dummy variables)

Figure 6.28 presents statistical results, with the t-statistic in [�], based on a VAR

model of the bivariate endogenous variables {Y1, Y2} with a dummy variableDrs1,

which can be considred as the simplest VAR model with a dummy variable(s). This

model is a stable VAR model; in fact, it is a first lagged endogenous variable

bivariate model.

The main objective of this model is to study the differential effects of the first

lagged variables Y1(�1) and Y2(�1) on their corresponding endogenous variables,

between the two defined time periods. As an exercise, write the regression functions

within each of the time periods. Based on the analysis the following results have

been found:

(1) The model is a stable VAR model having two complex roots with a modulus of

0.992 364.

(2) Figure 6.29 presents a part of the output �Cointegration Test . . . . � Based on this
result, the following findings are presented:
. The trace test indicates that there is no integration at the 0.05 level.

Figure 6.27 The Granger causality tests for the basic VARmodel with endogenous variables

log(M1), log(GDP), log(PR) and RS
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. However, the result shows that there is one integrating equation, with a

normalized cointegrating coefficient, namely Y1 – 0.588 799Y2. Hence, a VEC

model should be applied, which will be presented in the following section.

(3) For an extension of the VARmodel with dummy variables, it is easy to modify all

of the models with dummy variables presented in Chapter 3. Therefore, many

Figure 6.28 AVAR model of {Y1, Y2} with a dummy variable

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

0.05 Max-Eigen Hypothesized 
Statistic Eigenvalue No. of CE(s) Prob.** 

 0.0606  14.26460  13.72893  0.074633 None 
 0.861151  0.004853 At most 1  0.3534  3.841466 

 Max-eigenvalue test indicates no cointegration at the 0.05 level 
 * denotes rejection of the hypothesis at the 0.05 level 
 **MacKinnon-Haug-Michelis (1999) p-values 

1 Cointegrating Equation(s):  -1160.367 Log likelihood 

Normalized cointegrating coefficients (standard error in parentheses) 
Y2 Y1 

-0.588799  1.000000 
 (0.04507) 

Figure 6.29 Cointegration test of the VAR model in Figure 6.28
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VARmodels with dummy variables could be obtained, in addition to the selection

of various lag intervals. &

Example 6.12. (Modification of the model in (4.68)) The model in (4.68) is an

additive bivariate SCM (i.e. seemingly causal model) having the independent

variables log(m1) and log(gdp) and exogenous variables log(pr) and log(pr

(�1)), as well as the lags of the endogenous variables. The analysis used the system

equation. This example presents a modified model, which is a VAR model as

presented in Figure 6.30. Based on this result, the following notes and conclusions

are made:

(1) Each of the exogenous variables log(pr) and log(pr(�1)) has a significant

adjusted effect on log(gdp). Hence, these variables should be acceptable or good

explanatory variables of the VAR model.

(2) Even though log(m1(�2)) has an insignificant adjusted effect on log(m1) and

log(gdp), it cannot be deleted from the VAR model, since log(gdp(�2)) has a

significant adjusted effect on log(gdp).

(3) Furthermore, it has been found that the trace test indicates one integrating

equation at the 0.05 level. The cointegrating equation of the endogenous variables

is �log(m1) – 0.825 759 log(gdp).� Hence, consideration should be given to using
or applying a VEC model, which will be presented in the following section.

(4) For a comparison, conduct additional or further data analysis based on the model

in (4.68). &

Figure 6.30 AVAR model of {log(M1), log(GDP)} with exogenous variables log(PR) and

log(PR(�1))
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6.2.5 Selected VAR models based on the US domestic
price of copper data

In this subsection time series models are presented based on two endogenous

variables, namely Y1 and Y2, and three exogenous variables, say X1, X2 and X3. By

using the symbolsY andX for endogenous and exogenousmultidimensional variables

respectively, it is proposed that alternative multivariate linear models or systems of

equations presented in the following subsections and examples could be applicable

for any sets of variables in various fields of study. Hence, each multivariate linear

model using the variables Y1, Y2, X1, X2 and X3 presented below should be considered

as an acceptable model in various fields.

However, for illustrative examples, the US domestic price of copper data presented

in Chapter 4 will be used, with the Y-variables and X-variables defined or selected as

follows:

Y1¼ 12-month average US domestic price of copper (cents per pound);

Y2¼ 12-month average price of aluminum (cents per pound);

X1¼ annual gross national product ($ billions);

X2¼ 12-month average index of industrial production;

X3¼ 12-month average LondonMetal Exchange price of copper (pounds sterling).

6.2.5.1 Application of continuous VAR models with trend

Corresponding to the hypothetical path diagram in Figure 2.89, the continuous VAR

linear models will be presented as follows:

(a) The VAR Additive Models

Corresponding to the multivariate continuous models presented based on the path

diagram in Figure 2.89, here alternative VAR additivemodels will be presented as

modifications of the multivariate models presented in Chapter 2. By entering the

two endogenous variables Y1 and Y2 and the endogenous variables t, X1, X2 and

X3, with the �Lag Interval for Endogenous� as �1 1,� the statistical results based on
the following VAR model will be obtained:

Y1t ¼ cð1;1ÞY1t�1þcð1;2Þþcð1;3Þtþcð1;4ÞX1þcð1;5ÞX2þcð1;6ÞX3þm1t
Y2t ¼ cð2;1ÞY2t�1þcð2;2Þþcð2;3Þtþcð2;4ÞX1þcð2;5ÞX2þcð2;6ÞX3þm2t

ð6:5Þ
The association or structural relationship of all variables in this VARmodel can

be presented as the path diagram in Figure 6.31.

Compare this path diagram with the path diagram in Figure 2.89. Figure 6.31

represents the following characteristics:

(1) All thearrowsfromeachof the independentvariables tobothdependentvariables

indicate that each of the independent variables, in general, are considered as

sourcevariables,whichcouldnotbepure cause factors. For example, it cannot be

said that the time t is a cause factor of any endogenous variables.
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(2) The diagram does not present an arrow or a line between any pairs of

independent variables. However, their correlations and multicollinearity

have unpredictable impact(s) on the estimates of the model parameters.

Refer to the special notes in Section 2.14.2.

(3) The model in (6.4) can easily be extended to higher-level lagged intervals for

endogenous variables. Here, the empirical results are not presented, since it

will not be a problem when doing the data analysis.

(4) For simplicity the path diagram in Figure 6.31 will be presented as the path

diagram in Figure 6.32. This path diagram shows that the six exogenous or

independent variables are defined as having direct �effects� on both endoge-

nous variables Y1t and Y2t. In fact, in general, they are source variables (they

are not pure cause factors).

As a further extension for amodification of theMARadditivemodel in (2.83), a

VAR model is presented of the four variables Y1, Y2, X1 and X3, with �1 1� as the
lag interval for endogenous and exogenous variables t and X2, as follows:

Y1¼Cð1;1Þ*Y1ð�1ÞþCð1;2Þ*Y2ð�1ÞþCð1;3Þ*X1ð�1ÞþCð1;4Þ*X3ð�1Þ
þCð1;5ÞþCð1;6Þ*TþCð1;7Þ*X2þm1

Y2¼Cð2;1Þ*Y1ð�1ÞþCð2;2Þ*Y2ð�1ÞþCð2;3Þ*X1ð�1ÞþCð2;4Þ*X3ð�1Þ
þCð2;5ÞþCð2;6Þ*TþCð2;7Þ*X2þm2

X1¼Cð3;1Þ*Y1ð�1ÞþCð3;2Þ*Y2ð�1ÞþCð3;3Þ*X1ð�1ÞþCð3;4Þ*X3ð�1Þ
þCð3;5ÞþCð3;6Þ*TþCð3;7Þ*X2þm3

X3¼Cð4;1Þ*Y1ð�1ÞþCð4;2Þ*Y2ð�1ÞþCð4;3Þ*X1ð�1ÞþCð4;4Þ*X3ð�1Þ
þCð4;5ÞþCð4;6Þ*TþCð4;7Þ*X2þm3

ð6:6Þ

X2t

X3t

X1t

Y2t

Y1t

t

Y 2,t-1

Y1,t-1

Figure 6.31 The path diagram of the VAR model in (6.5)

Y1t
Y2t

X1t
X2t
X3t

T
Y1t-1
Y1t-2

(µ1,µ2)t

Figure 6.32 A simplified path diagram of the path diagram in Figure 6.31
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The association or structural relationship between the variables of this model

can be presented as the path diagram in Figure 6.33. Note that all regressions in a

VAR model should have the same set of independent variables. For this reason,

the six independent variables are assumed or defined to have direct effects on each

of the four dependent variables Y1t, Y2t, X1t and X3t. In order to differentiate the

type of variables, the lagged endogenous variables are presented on the left-hand

side and the exogenous variables on the right-hand side in Figure 6.33.

(b) The VAR Two-Way Interaction Models

Corresponding to the two-way interaction models presented in the previous

chapters,aswellas theVARmodelswith interactionsexogenousvariablespresented

in Table 6.1, various VAR two-way interaction models can be defined based on the

fivedefinedvariables, oranysetofvariables.For illustrationpurposes, the following

sections present general VAR two-way interaction models with two endogenous

variables only, namely Y1 and Y2.

b.1 The Two-Way Interaction VAR Models with Trend

The assumption that the exogenous variables X1, X2 and X3 have pairwise

correlations or associations provides the set of independent variables t, X1,

X2, X1�X2, X1�X3 and X2�X3. For this reason, there is a general two-way

interaction VAR model with trend, using �1 1� as the lag interval for

endogenous variables, as follows:

Y1¼ Cð1;1Þ*Y1ð�1ÞþCð1;2Þ*Y2ð�1ÞþCð1;3ÞþCð1;4Þ*T
þCð1;5Þ*X1þCð1;6Þ*X2þCð1;7Þ*X3
þCð1;8Þ*X1*X2þCð1;9Þ*X1*X3þCð1;10Þ*X2*X3

Y2¼ Cð2;1Þ*Y1ð�1ÞþCð2;2Þ*Y2ð�1ÞþCð2;3ÞþCð2;4Þ*T
þCð2;5Þ*X1þCð2;6Þ*X2þCð2;7Þ*X3
þCð2;8Þ*X1*X2þCð2;9Þ*X1*X3þCð2;10Þ*X2*X3

ð6:7Þ

The statistical results based on this full model, as well as its possible reduced

models, could easily be done as an exercise. Furthermore, this two-way

interaction VAR model can be modified by using the transformed variables,

such as the logarithm of the endogenous variables, as well as the exogenous

variables and their lags.

Y1t
Y2t
X1t
X3t

Y1t-1
Y2t-1
X1t-1
X3t-1

T

X2t

µt

Figure 6.33 Path diagram of the VAR model in (6.6)
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b.2 The VAR Models with Time-Related Effects

The VAR models with time-related effects can have many or countable

infinite alternativemodels having the endogenous variables Y1 and Y2. Some

simple models could have the following set of exogenous variables:

(i) t, X1, X2, X3, t�X1, t�X2 and t�X3, with various lag intervals for

endogenous variables. The main objective to apply this model is to

study or test the effects of each exogenous variable X1, X2 and X3, as

well as their joint effects, which are dependent on the time t.

(ii) t, t�Y1(�1)and t�Y2(�1), specifically for themodelswith the lag interval

for endogenous variables¼ �1 1.�Themain objective to apply this model

is to study or test the effects of each Y1(�1) and Y2(�1), as well as their

joint effects, which are dependent on the time t. For other lag intervals,

such as the lag interval of �1 2�, additional two-way interaction factors

t�Y1(�2) and t�Y2(�2) should be entered as exogenous variables.

(iii) Corresponding to the points in (i) and (ii) above, there could be a VAR

modelwith the exogenous variables t,X1,X2,X3, t�X1, t�X2, t�X3, t�Y1
(�1) and t�Y2(�1), for the lag interval �1 1�.

(c) The VAR Three-Way Interaction Models

Under the assumption that the exogenous variables X1, X2 and X3 are completely

correlated, the following VAR three-way interaction models may be presented:

(i) Corresponding to the path diagram in Figure 6.31 and the VAR additive

model in (6.5), there may be a VAR three-way interaction model with trend

using the exogenous variables t, X1, X2, X3, X1�X2, X1�X3, X2�X3 and

X1�X2�X3, which is a hierarchical VAR model with trend. In practice, a

nonhierarchical three-way interaction VAR model could be obtained by

deleting some of the main factors or two-way interactions.

(ii) Corresponding to the VAR two-way interaction model in (6.7), the most

general VARmodel with time-related effects can be derived from the model

in (6.7) by entering additional exogenous variables t�X1, t�X2, t�X3,
t�X1�X2, t�X1�X3, t�X2�X3, t�Y1(�1) and t�Y2(�1) as exogenous vari-

ables. The interactions t�X1�X2, t�X1�X3 and t�X2�X3 indicate that the

model is a VAR three-way interaction model.

(iii) Furthermore, under the assumption that X1, X2 and X3 have a complete

association, a more advanced VAR interaction model can be proposed or

defined, by inserting a four-way interaction t�X1�X2�X3. In this case, a VAR
four-way interaction model would be produced.

(d) Special Notes on the VAR Models

In fact, based on the five time series, namely X1,X2,X3, Y1 and Y2, a countable or

an infinite number of VARmodels could be defined, because a set of three, four or

all of these variables could also be used as endogenous variables, as well as their

transformations, such as their natural logarithms, their first differences and their

return rates, and the lagged exogenous variables. In practice, however, therewould

only be a very limited number of VAR models, which are highly dependent on

personal knowledge and judgment.
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On the other hand, by usingmany or a large number of independent variables in

any model, including the VAR models, there should be awareness of the unpre-

dictable statistical results (refer to the special notes in Section 2.14).

Example 6.13. (An application of the VAR additive model) Figure 6.34 presents

statistical results based on a VAR translog linear model with trend, as follows:

logðY1Þ¼ Cð1; 1Þ*logðY1ð�1ÞÞ þCð1; 2Þ*logðY2ð�1ÞÞþCð1; 3ÞþCð1; 4Þ*T
þCð1; 5Þ*logðX1ÞþCð1; 6Þ*logðX2ÞþCð1; 7Þ*logðX3Þ

logðY2Þ¼ Cð2; 1Þ*logðY1ð�1ÞÞ þCð2; 2Þ*logðY2ð�1ÞÞþCð2; 3ÞþCð2; 4Þ*T
þCð2; 5Þ*logðX1ÞþCð2; 6Þ*logðX2ÞþCð2; 7Þ*logðX3Þ

ð6:8Þ
Based on this result, the following notes and conclusions are obtained:

(1) The (adjusted) growth rate of Y1 is 0.004 252 and 0.018 995 for Y2. Even though

the time t has an insignificant adjusted effect, it should be kept in the model, since

a study needs to be made of the growth rates of Y1 and Y2 or a VAR model with

trend should be presented.

(2) Since log(X1) has an insignificant effect on both endogenous variables, a reduced

model may be obtained by deleting log(X1). However, the result will not be

presented. &

Example 6.14. (A VAR model with time-related effects) Figure 6.35 presents

statistical results based on a VAR model with trend and time-related effects using

endogenous variables Y1 and Y2, with the lag interval for endogenous variables

Figure 6.34 Statistical results based on the model in (6.8)
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of �1 1,� and exogenous variables t, x1, t�x1, t�y1(�1) and t�y2(�1). This case shows

that t�y1(�1) has a significant (adjusted) effect on y2. Since t�y2(�1) is insignificant

in both regressions, as well as x1, then this may be a reduced model. Do this as an

exercise. &

Figure 6.35 AVAR model with time-related effects

Figure 6.36 A three-way interaction VAR model and its stability check
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Example 6.15. (A three-way interaction VAR model) After doing experimenta-

tion, the statistical results are obtained based on a nonhierarchical VAR three-way

interaction model, as presented in Figure 6.36, p. 349 with the lag interval for

endogenous variables of �1 1.� This figure shows that the three-way interaction

X1�X2�X3 has a significant negative adjusted effect on Y1, but it has an insignificant
effect on Y2 and similarly for the two-way interaction X1�X3.

By using the system estimation method, a multivariate model can be obtained

where the two regressions have different sets of independent variables, e.g. by

deleting X1�X3 or X1�X2�X3 from the second regression. &

Example 6.16. (The classical growth models of the five defined variables) By

entering the endogenous variables log(Y1), log(Y2), log(X1), log(X2) and log(X3) and

the lag interval for endogenous variables of �0 0,� the statistical results are obtained
based on a set of five classical growth models, as presented in Figure 6.37. This figure

 Vector Autoregression Estimates 
 Date: 12/20/07   Time: 14:15 
 Sample: 1951 1980 
 Included observations: 30 
 Standard errors in ( ) & t-statistics in [ ] 

LOG(LOG(Y2) LOG(Y1) LOG(X3) LOG(X2) X1) 

 5.232134  3.817477  5.568688  2.978364  2.886780 C 
 (0.03748)  (0.05648)  (0.07316)  (0.08641)  (0.02155) 
[ 148.588] [ 52.7299] [ 39.4606] [ 60.5473] [ 177.180] 

 0.050944  0.042059  0.070948  0.047921  0.031063 T 
 (0.00211)  (0.00318)  (0.00412)  (0.00487)  (0.00121) 
[ 33.6079] [ 15.0619] [ 7.53811] [ 10.4660] [ 34.6550] 

 0.890136  0.669901  R-squared  0.796418  0.977217  0.975810 
 0.886212  0.658112  Adj. R-squared  0.789147  0.976403  0.974946 

 1.491029  0.092692  0.280451  0.637028  1.068603  Sum sq. resides 
 0.150834  0.195357  S.E. equation  0.230762  0.057536  0.100080 
 226.8600  56.82303  F-statistic  109.5365  1200.971  1129.488 

 2.457807  44.12698  27.52016  15.21394  7.454521  Log likelihood 
-0.880929 -0.363635  Akaike AIC -0.030520 -2.808465 -1.701344 
-0.787516 -0.270222  Schwarz SC  0.062893 -2.715052 -1.607931 
 3.721145  3.368254  Mean dependent  6.021767  4.469389  6.668382 
 0.447149  0.334108  S.D. dependent  0.502544  0.374553  0.632279 

 Determinant resid covariance (dof 
 1.10E-10 adj.) 
 7.76E-11  Determinant resid covariance 
 136.3416  Log likelihood 
-8.422773  Akaike information criterion 
-7.955707  Schwarz criterion 

Figure 6.37 A set of classical growth models presented as a VAR model
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shows that each of the variables Y1, Y2, X1, X2 and X3 has significant growth rates

during the observation time period, based on the standard t-statistic. For possible

modified models, refer to the piecewise growth models presented in Chapter 3.

On the other hand, note that these growth models could be considered as

unacceptable time series models, since their error terms are autocorrelated, as

presented in Figure 6.38. To overcome these problems, a lag interval should be used

for endogenous variables of �1 k.� For a comparison, Figure 6.39, p. 352 presents the

residual graphs by using the lag interval �1 4� for the endogenous variables. This figure
shows that the corresponding model is a better time series model compared to the

growth model in Figure 6.37. For a comparison study, it is suggested that readers

should use smaller lag intervals. &

6.2.5.2 Application of the VAR seemingly causal models

Each of the seemingly causal models (SCMs) presented in Chapter 4 can easily be

modified to obtain a VAR model, namely VAR_SCM, which is a special type of the

multivariate seemingly causal models. Furthermore, by deleting the time t from

the additive, two-way and three-way interaction models presented in Chapter 2, as

well as the VAR model in the previous sections, can easily provide various

VAR_SCMs. Therefore, in this subsection, only a few illustrative examples will be

presented.

Example 6.17. (Additive VAR_SCMs) Corresponding to the VAR translog linear

model with trend in Figure 6.34, by deleting the time t from the model, an additive

VAR_SCM can be obtained with the statistical results presented in Figure 6.40.

Figure 6.38 Four out of five residual graphs of the growth models in Figure 6.37
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Figure 6.39 Residual graphs of a VAR model of the variables log(y1), log(Y2), log(X1),

log(X2) and log(X3), using a lag interval of �1 4�

Figure 6.40 AVAR_SCMas a reducedmodel with trend in Figure 6.34 and its stability check
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For a modifiedmodel, Figure 6.41 presents the statistical results based on the additive

VAR_SCM with endogenous variables Y1 and Y2. Note that this model has greater

values of AIC and SC statistics compared to the previous model. Therefore, the

previous model could be the preferred model. &

Example 6.18. (AVAR two-way interaction semilogmodel) Figure 6.42 presents

a VAR two-way interaction semilog model, which shows that log(Y1(�1)) and log

(Y2(�1)) should be kept in both regressions, even though they are insignificant, since

the lag interval of �1 1� is used. In order to modify this model, other lag intervals of

�nm� may be used, either n¼m or n <m.

Figure 6.41 Statistical results based on an additive SC_VAR model of {Y1, Y2}

Figure 6.42 Statistical results based on a two-way interaction semilog VAR model
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On the other hand, since only X3 and X2�X3 have significant adjusted effects on

log(Y1), one or two other exogenous variables should be deleted in order to obtain an

acceptable VAR model, in a statistical sense. Do this as an exercise. &

Example 6.19. (Another interaction VAR model) Corresponding to the CES or

quadratic translogmodel in (4.103), Figure 6.43 presents the statistical results based

on a VAR CES model with endogenous variables Y1 and Y2.

The result shows that log(X1) and log(X2) have significant adjusted effects on log

(Y1), but only log(X1) has a significant adjusted effect on log(Y2). Therefore, in a

statistical sense a reduced model should be made. Do this as an exercise. &

6.3 The vector error correction models

6.3.1 The basic VEC model

Figure 6.44 presents the window for doing analysis based on a VEC model and the

equation of a basic VEC model with dependent variables Y1 and Y2, by using the

default option of the �Lag Interval for Endogenous,� i.e. �1 2.� Furthermore, the

window presents a note �DoNOT include C or Trend in VECs.�This basic VECmodel

has special characteristics as follows:

(1) Both regressions have the first differences of the endogenous variables Y1 and

Y2, namely D(Y1) and D(Y2), as dependent variables. Hence, a VEC model can

be considered as a special case of the multivariate models of the first

differences.

Figure 6.43 Statistical results based on a CESVARmodel of {Y1, Y2}, using the lag interval

�1 1�
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(2) Both regressions have the same specific term or a linear combination of Y1(�1)

and Y2(�1), namely �B(1, 1)�Y1(�1) þ B(1, 2)�Y2(�1) þ B(1, 3),� which is

called the �Cointegrating Equation,� as an independent variable of both regres-

sions in the model.

(3) The other independent variables are the first and second lags ofD(Y1) andD(Y2),

namely D(Y1(�1)), D(Y1(�2), D(Y2(�1)) and D(Y2(�2)), which are associated

with the lag interval �1 2.�
(4) The lag intervals forD(Endogenous) can also bemodified to �0 0� or �1 1,� in order

to have the first two simplest VEC models. In these cases, the VECmodels are as

presented in Figure 6.45.

(5) Note that the threeVECmodels of the variables {Y1, Y2}with the lag intervals for

D(Endogenous) of �0 0,� �1 1� and �1 2� have the same form of �Cointegrating
Equation,� namely �B(1, 1)�Y1(�1) þ B(1, 2)�Y2(�1) þ B(1, 3),� but they will

have different estimates. Do this as an exercise.

Example 6.20. (The VEC specification is imposing one unit root) Figure 6.46(a)

and (b) presents the statistical results of two VEC models that are imposing one

Figure 6.44 The default options and a basic VEC model of {Y1, Y2}

Estimation Proc: 
==============================
EC(C,1) 0 0 Y1 Y2

VAR Model: 
==============================
D(Y1) = A(1,1)*(B(1,1)*Y1(-1)  
             + B(1,2)*Y2(-1) + B(1,3)) + C(1,1) 

D(Y2) = A(2,1)*(B(1,1)*Y1(-1)  
             + B(1,2)*Y2(-1) + B(1,3)) + C(2,1) 

Estimation Proc: 
=============================== 
EC(C,1) 1 1 Y1 Y2

VAR Model: 
=============================== 
D(Y1) = A(1,1)*(B(1,1)*Y1(-1) + B(1,2)*Y2(-1) + B(1,3)) 
             + C(1,1)*D(Y1(-1)) + C(1,2)*D(Y2(-1)) + C(1,3) 

D(Y2) = A(2,1)*(B(1,1)*Y1(-1) + B(1,2)*Y2(-1) + B(1,3)) 
             + C(2,1)*D(Y1(-1)) + C(2,2)*D(Y2(-1)) + C(2,3) 

Figure 6.45 The first two simplest VEC models of (Y1, Y2)
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unit root. It was also found that the printout of any VEC models, either with or

without exogenous variable(s), presents the message �VEC specification imposes 1

unit root(s).� &

Example 6.21. (A VEC model with lag specification �0 0�) Figure 6.47 presents

statistical results based on a VEC model having endogenous variables {log(Y1), log

(Y2)} with lag specification �0 0�. The regression function of this VEC model is

DðlogðY1ÞÞ ¼ �0:0654½logðY1ð�1ÞÞ�1:9058logðY2ð�1ÞÞþ3:6953�þ0:0454
DðlogðY2ÞÞ ¼ 0:0241½logðY1ð�1ÞÞ�1:9058logðY2ð�1ÞÞþ3:6953�þ0:0529

ð6:9Þ

Figure 6.46 Illustrations of the VEC specification which imposes one unit root: (a) the VEC

model of (Y1, Y2) and (b) the VEC model of (log(Y1), log(Y2))

Figure 6.47 Statistical results based on the VEC model of {log(y1), log(y2)} with lag

specification�0 0�
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with an estimated cointegrating equation log(Y1(�1))� 1.9058 log(Y2(�1))þ
3.6953, which has a significant negative effect on the first difference D(log(Y1)),

but has an insignificant positive effect on D(log(Y2)). &

Example 6.22. (The system estimation of the VEC model in figure 6.47) For a

comparison, Figure 6.48 presents statistical results of a similar bivariate model of the

endogenous variables Dlog(Y1) and Dlog(Y2) on the cointegrating equation of the

VECmodel in Figure 6.47. This figure also shows that the cointegrating equation has

a significant negative effect on Dlog(Y1) but an insignificant positive effect on

Dlog(Y2). However, they have different values of t-statistics.

The advantages of using the system equation are that theWald coefficient tests can

be used, which cannot be done using the VEC model in Figure 6.47. In this case, a

multivariate hypothesis of the cointegration equation effect can be tested on both

endogenous variables, with the null hypothesis H0: C(11)¼C(21)¼ 0. This null

hypothesis is rejected based on the chi-squared-statistic of 10.257 74with df¼ 2 and a

p-value¼ 0.0059. Therefore, it can be concluded that the cointegrating equation has a

significant effect on the bivariate {Dlog(y1), Dlog(y2)}.

For further comparison, Figure 6.49 presents the statistical results based on a

system equation, which can be considered similar to the VEC model in Figure 6.47,

since it has the same endogenous and exogenous variables, but without the coin-

tegrating equation. Based on this model, various hypotheses on the model parameters

Figure 6.48 Statistical results based on the VEC model in Figure 6.47 using the system

equation
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could be tested, using theWald tests, which cannot be tested using the VAR and VEC

models. For example, note the following hypotheses:

(1) The joint effect of log(Y1(�1)) and log(Y2(�1)) onDlog(Y1), with the univariate

null hypothesis H0: C(11)¼C(12)¼ 0, is rejected based on the chi-squared-

statistics of 8.139 081 with df¼ 2 and a p-value¼ 0.0171.

(2) The joint effect of log(Y1(�1)) and log(Y2(�1)) on both endogenous variables,

with the multivariate null hypothesis H0: C(11)¼C(12)¼C(21)¼C(22)¼ 0,

is rejected based on the chi-squared-statistic of 10.631 43 with df¼ 4 and a

p-value¼ 0.0310.

(3) Figure 6.50 presents the options available for the VAR model, which does not

present the �Coefficient Tests� option, compared to the options for the system

equation. &

Example 6.23. (An extension of the basic VAR model) The VEC model in

Figure 6.51 is an extension of the basic VAR model with endogenous variables

{log(Y1), log(Y2)}. Based on the results in this figure, the following notes and

conclusions are produced:

(1) The cointegrating equation has an insignificant effect on each of the endogenous

variables.

(2) Even though only Dlog(Y2(�2)) is significant, the other independent

variables cannot be deleted by using the lag specification �1 2.� However, the

Figure 6.49 Statistical results based on a system equation, which is similar to the VECmodel

in Figure 6.47
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lag specification �2 2�may be used to obtain a modified model with the statistical

result presented in Figure 6.52. Based on this result the following notes are made:
. The cointegration has a significant negative effect on Dlog(Y1).
. Dlog(Y2(�2)) has a significant negative effect on Dlog(Y2).

Figure 6.50 Some differential options available for the VAR model and the system equation

Figure 6.51 Statistical results based on a VEC model of {log(Y1), log(Y2} with lag

specification �1 2�

VAR and System Estimation Methods 359

www.trading-software-collection.com



. Even though Dlog(Y1(�2)) has insignificant effects on both endogenous

variables, it cannot be deleted in order to obtain a reduced model, using the

VEC model. &

6.3.2 General equation of the basic VEC models

Based on the basic VEC models presented in the previous examples, the general

equations of alternative basic VEC models can be derived, as follows:

(1) The Lag Intervals for D(Endogenous): �0 0�

DðYg;tÞ ¼ Aðg; 1Þ*CointþCðg; 1Þþmg;t ð6:10aÞ
or

DðYg;tÞ¼Aðg;1Þ*
XG
k¼1

Bðg;kÞYg;t�1þBðg;Gþ1Þ
( )

þCðg;1Þþmg;t ð6:10bÞ

where Yg,t is the gth endogenous variable at the time t, for g¼ 1, 2, . . . , G.
(2) The Lag Intervals for D(Endogenous): �1 1�

DðYg;tÞ ¼ Aðg; 1Þ*Cointþ
XG
k¼1

Cðg; kÞ*DðYg;t�1ÞþCðg;Gþ 1Þþmg;t ð6:11Þ

Figure 6.52 Statistical results based on a VEC model with lag specification �2 2�
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(3) The lag intervals for D(Endogenous): �1 2�

DðYg;tÞ ¼ Aðg; 1Þ*Cointþ
XG
k¼1

Cðg; 2k�1Þ*DðYg;t�1Þ

þ
XG
k¼1

Cðg; 2kÞDðYg;t�2ÞþCðg; 2Gþ 1Þþmg;t

ð6:12Þ

(4) Special Lag Intervals for D(Endogenous): �p p�
If there is a quarterly time series, the lag interval �4 4� forD(Endogenous)might be

considered in order tomatch the quarters in recent and previous years, and if there

is amonthly time series, the lag interval �12 12�might be used in order tomatch the

months in recent and previous years for D(Endogenous). Hence, the following

general equation, for p¼ 4 or p¼ 12, is obtained:

DðYg;tÞ ¼ Aðg; 1Þ*Cointþ
XG
k¼1

Cðg; kÞ*DðYg;t�pÞþCðg;Gþ 1Þþmg;t ð6:13Þ

(5) VEC Models with Endogenous Variables

Thegeneral basicVECmodels above can easily be extended to aVECmodelwith

various exogenous variables.

Example 6.24. (A special basic VECmodel) As an extension of theVARmodels of

{log(M1), log(GDP)} presented in the previous section, there is a need to present a

special basic VEC model with endogenous variables log(m1) and log(gdp), and the

lag specification �4 4.� The background of using this lag specification is to match the

quarters in recent and previous years. Based on the statistical results presented in

Figure 6.53, the following notes and conclusions can be made:

(1) The cointegrating equation has a significant negative effect on each of the

endogenous variables: D(log(M1)) and D(log(GDP)) based on the t-statistics of

�4.029 and �4.862 respectively.

(2) Dlog(M1(�4)) has a significant positive effect on Dlog(M1), but it has an

insignificant positive effect on Dlog(GDP).

(3) Even though Dlog(GDP(�4)) has an insignificant effect on both endogenous

variables, Dlog(GDP(�4)) cannot be deleted since the VEC model should have

Dlog(M1(�4)) and Dlog(GDP(�4)) as a couple of independent variables. &

6.3.3 The VEC models with exogenous variables

Since there is a note �Do NOT include C or Trend in VECs,� then the time t should not

exist as a single exogenous variable. However, an experiment is conducted to use it
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and its interaction with other exogenous variable(s) as independent variable(s) of the

model, in order to explore or study its statistical results. Note the following example.

The general equation of a VEC model with exogenous variables can easily be

derived from themodels in (6.10) to (6.12). For example, by using the lag intervals for

D(Endogenous) of �0 0,� the general equation is obtained as follows:

DðYg;tÞ ¼ Aðg; 1Þ*CointþCðg; 1Þþ
XK
k¼1

Cðg; kþ 1ÞXk;t þmg;t ð6:14Þ

Since the equation of each VEC model with exogenous variables can easily be

obtained or written based on the output, the general equation of the VEC model with

other lag specifications will not be presented.

Example 6.25. (The simplest VEC model with interaction exogenous variables)

By applying the simplest VECmodel (i.e. the lag intervals forD(Endogenous) of ‘0 0�
with the endogenous variables {Y1, Y2} and the exogenous variables X1, X2 and

X1�X2, the statistical results in Figure 6.54 are obtained. Based on this output, the

following notes and conclusions are presented:

(1) The VEC model, as well as its regression functions, can easily be obtained by

selecting View/Representations.

Figure 6.53 A special VECmodel of {log(M1), log(GDP)} with lag specification �4 4� and its
stability condition check
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(2) The �cointegrating equation� has a significant adjusted effect onD(Y1), but it has
an insignificant adjusted effect on D(Y2).

(3) Each of the exogenous variables X1 and X2 has a significant adjusted effect on

bothD(Y1) andD(Y2). However, the interaction X1�X2 has a significant adjusted
effect only on D(Y1).

(4) For illustration purposes, Figure 6.55 presents the VEC stability condition

checks based on two VEC models of {Y1, Y2}. The first model is the

interaction VEC model with exogenous variables and the second is the VEC

model without exogenous variables, which has a root outside of the unit circle

(¼ 1.013 952). Hence, the VEC model with exogenous variables should be

considered as a better model. &

Figure 6.54 Statistical results based on an interaction VECmodel with lag specification �0 0�

Figure 6.55 The VEC stability condition checks based on two alternative VEC models of

{Y1, Y2}, with and without exogenous variables, and lag specification �0 0�
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Example 6.26. (An extension of the VARmodel in figure 6.30) Refer to the VAR

model of {log(M1), log(GDP)} with exogenous variables in Figure 6.30, where the

cointegration test shows that it has one cointegrating equation between the endoge-

nous variables. For this reason, here the corresponding VEC model is applied as an

extension of the previous VAR model with additive exogenous variables.

Figure 6.56 presents the statistical results based on the corresponding VECmodel,

with its VAR stability condition check. Based on this output the following notes and

conclusions are made:

(1) The cointegrating equation �log(M1(�1))� 0.825 759 log(GDP(�1))�
0.860 631�has a significant negative effect onDlog(M1), but it has an insignificant

negative effect on Dlog(GDP).

(2) D(log(M1(�2))) has a significant positive effect on Dlog(M!).

(3) Each of D(log(M1(�2))) and D(log(GDP(�1))) has a significant positive effect

on Dlog(GDP).

(4) The VAR stability condition check does not present a root outside the unit circle,

besides the first unit root of 1 (one). Therefore, this VEC model should be

considered as an acceptable model, in a statistical sense. &

Figure 6.56 Statistical results based on a VEC model with exogenous variables, as an

extension of the VAR model in Figure 6.30
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Example 6.27. (A VECmodel with additive exogenous variables) By applying a

VECmodel with endogenous variables {Y1, Y2} and additive exogenous variablesX1,

X2, X1(�1) and X2(�1), the following regressions are obtained, with the t-statistics

in [. . .]:

DðY1Þ ¼ �0:006
½�6:288�

fY1ð�1Þþ 12:703
½6:532�

Y2ð�1Þ�8380:971g� 65:963
½�6:209�

þ 167:813
½0:524�

X1� 10:642
½�0:033�

X1ð�1Þ� 2:269X2
½�2:825�

þ 0:585X2
½0:732�

ð�1Þ
R-squared ¼ 0:511 072; and Adj: R-squared ¼ 0:499 832

DðY2Þ ¼ � 0:002
½�3:017�

fY1ð�1Þþ 12:703
½6:532�

Y2ð�1Þ�8380:971g� 22:331
½�3:394�

þ 622:421
½3:140�

X1� 558:983
½�2:790�

X1ð�1Þþ 2:827X2
½5:684�

� 3:364X2
½�6:799�

ð�1Þ
R-squared ¼ 0:651 347; and Adj: R-squared ¼ 0:643 332

ð6:15Þ

Based on these regressions the following notes and conclusions are made:

(1) The �cointegrating equation� has a significant adjusted effect on D(Y1) and D

(Y2).

(2) Each of the exogenous variables has a significant adjusted effect on D(Y2), but

only X2 has a significant adjusted effect on D(Y1). As a result, in a statistical

sense, a reduced VEC model cannot be obtained by deleting any one of the

exogenous variables, by using the VAR estimation method.

(3) Since this VECmodel is a stablemodel, it should be an acceptable VECmodel.&

Example 6.28. (A VEC model with interaction exogenous variable(s)) Even

though there is a note or message �Do NOT include C and Trend in VECs,�
an experimentation is carried out based on a VEC model with endogenous variables

{log(M1), log(GDP)} and exogenous variables �t log(pr) t�log(pr)� in order to explore
the output and its possible problem. Figure 6.57(a) presents statistical results based on

a special full VEC model with the lag specification �0 0,� and its reduced model is

given in Figure 6.57(b).

Based on this result, the following notes and conclusions are presented:

(1) The interaction t�lg(pr) has a significant (adjusted) effect on d(log(gdp)), but it

has an insignificant effect on d(log(m1)). In a statistical sense, this interaction

may be deleted from the first regression. However, it cannot be done by using the

VEC model. The system estimation should be used, which has been presented in

the previous chapters, as well as in the previous examples.

(2) This also applies for the main factor log(pr).

(3) Since the time t has an insignificant effect on both d(log(m1)) and d(log(gdp)),

then it may be deleted from both regressions, and a reduced VEC model can be

found having exogenous variables log(pr) and t�log(pr), presented also in

Figure 6.57(b).
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(4) The cointegrating equation has a significant effect on log(GDP) only, either based

on the full or reduced models. &

6.3.4 Some notes and comments

Based on the previous examples, the following notes and comments on the VEC

models are presented:

(1) By using the endogenous variables Y1 and Y2, the VEC estimation method will

present a model of the first differences of the endogenous variables, namely d(Y1)

and d(Y2).

Figure 6.57 A special full VEC model with trend and time-related effect, and its reduced

model
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(2) As a result, by using the endogenous variable log(Y1) and log(Y2), the model for

the return rates of Y1 and Y2 are obtained, since d(log(Y1t)¼ log(Y1t)�
log(Y1t�1)¼R1t and d(log(Y2t)¼ log(Y2t)� log(Y2t�1)¼R2t are the return

rates or the exponential growth rates of Y1t and Y2t. Similarly, by using or

entering the first difference of the natural logarithm of a multivariate endogenous

variables, multivariate models can be found of the return rates for the (original)

endogenous variables.

(3) Considering a multivariate return rate model, it is highly likely that alternative

time series models presented in the previous chapters could be applied, besides

the VAR and the VEC models. For illustration purposes note the following

examples.

Example 6.29. (Illustrative models for the return rates)

(a) Autoregressive Return Rate Classical Growth Models
Corresponding to the classical growth model in (2.3), illustrative examples of

autoregressive return rate models or functions may be presented, as follows:

(a.1) The return rate model of M1

The following return rate function or summary shows that the growth rate of

the return rate of M1 is 5.84E-05 and the exogenous variable t has a

significant effect, since the observed t-statistic is greater than two:

dðlogðm1ÞÞ ¼ 0:007 187
½2:676�

þ 5:84E�05*t
½2:293�

þ ½arð2Þ ¼ 0:140 870
½1:914�

�
R2 ¼ 0:071; Adjusted R2 ¼ 0:060; DW ¼ 2:120

ð6:16Þ

(a.2) The return rate model of GDP
The following return rate function or summary shows that the growth rate of

the return rate of GDP is 8.13E-06^ and the exogenous variable t has an

insignificant effect, since the absolute observed value of the t-statistic is

less than two:

dðlogðgdpÞÞ ¼ 0:016 688
½6:850�

þ 8:13E-06*t
½0:352�

þ ½arð1Þ ¼ 0:385 614
½0:000�

�
R2 ¼ 0:155; Adjusted R2 ¼ 0:145; DW ¼ 2:042

ð6:17Þ

(b) Autoregressive Return Rate Models With Time-Related Effect

Corresponding to the interaction models presented in Section 2.10.4, the follow-

ing examples of AR(1) return rate models with time-related effect(s) are

presented:
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b.1 The return rate model of M1 with time-related effect
The following return rate function or summary shows that the interaction

factor t�log(pr) has a significant negative effect on the return rate of M1,

since its t-statistic is less that �2.00 (or �1.96):

dðlogðm1ÞÞ ¼ 0:0541
½2:52�

� 0:0003
½�1:899�

*tþ 0:0325
½2:570�

*logðprÞ

� 0:0002
½�4:315�

*t*logðprÞþ ½ar ð1Þ ¼ �
½�2:003�

0:1474�
R2 ¼ 0:133; Adjusted R2 ¼ 0:113; DW ¼ 1:979

ð6:18Þ

Hence, this model shows that the effect of log(pr) on the return rate of M1,

namely d(log(M1)), is significantly dependent on the time t, specifically on

(0.0325� 0.0002�t), since this function can be presented as

dðlogðm1ÞÞ ¼ ð0:0541�0:0003*tÞþ ð0:0325�0:0002*tÞ*logðprÞ
þ ½arð1Þ ¼ �0:1474�

ð6:19Þ

b.2 The return rate model of GDP with time-related effect
The following return rate function or summary shows that the interaction

factor t�log(pr) has a significant negative effect on the return rate of GDP,

namely d(log(GDP)), since its t-statistic is less that �2.00 (or �1.96):

dðlogðgdpÞÞ ¼ 0:0376
½1:72�

� 0:0001
½�1:074�

*tþ 0:0183
½1:416�

*logðprÞ

� 0:0002
½�3:866�

*t*logðprÞþ ½arð1Þ
½3:866�

¼ 0:2762�
R2 ¼ 0:288; Adjusted R2 ¼ 0:210; DW ¼ 1:999

ð6:20Þ

By presenting this function as

dðlogðgdpÞÞ ¼ ð0:0376�0:0001*tÞþ ð0:0183�0:0002*tÞ*logðprÞ
ð6:21Þþ ½arð1Þ ¼ 0:2762�
ð6:21Þ

it can easily be seen that the effect of log(pr) on d(log(GDP)) is dependent on

the time t. However, it cannot directly be concluded that its effect is

significant, since log(pr) has an insignificant adjusted effect. A test should

bemade on the hypothesis on the joint effects log(pr) and t�log(pr), using the
Wald test. It was found that their joint effect is significant based on the

F-statistic of 8.440 72 with df¼ (2, 175) and a p-value¼ 0.0000. &

Example 6.30. (Additional experimentation with the VECmodels) Correspond-

ing to the VEC model with endogenous variables log(m1) and log(gdp) presented in

the previous examples, experimentation has been conducted by entering the endoge-

nous variables D(log(m1)) and D(log(gdp)) and exogenous variables t, log(pr(�1))

and t�log(pr(�1)). Finally, a good acceptable model was found having the exogenous
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variables log(pr(�1)) and t�log(pr(�1)), where each has a significant adjusted effect

on d(log(m1), 2) and d(log(gdp), 2), as presented by the following regression

functions with the t-statistics in [. . .]:

dðlogðm1Þ; 2Þ
¼ �0:319 *

½�5:389�
ðdðlogðm1ð�1ÞÞÞþ 2:573 *

½7:237�
dðlogðgdpð�1ÞÞÞ�0:0575Þ

� 0:634
½�8:301�

*dðlogðm1ð�1ÞÞ; 2Þ�0:301 *
½�4:395�

dðlogðm1ð�2ÞÞ; 2Þ
þ 0:514

½3:495�
*dðlogðgdpð�1ÞÞ; 2Þþ 0:463

½3:763�
*dðlogðgdpð�2ÞÞ; 2Þ� 0:0032

½�1:411�
þ 0:006 875

½2:522�
*logðprð�1ÞÞ� 0:000 184

½3:451�
*t*logðprð�1ÞÞ

R-squared ¼ 0:541 682; Adj: R-squared ¼ 0:522 585

dðlogðgdpÞ; 2Þ
¼ � 0:235

½�6:437�
*ðdðlogðm1ð�1ÞÞÞþ 2:573 *

½7:237�
dðlogðgdpð�1ÞÞÞ�0:0575Þ

þ 0:103
½2:187�

*dðlogðm1ð�1ÞÞ; 2Þþ 0:119 *
½2:817�

dðlogðm1ð�2ÞÞ; 2Þ
þ 0:002

½0:027�
*dðlogðgdpð�1ÞÞ; 2Þþ 0:025 *

½0:323�
dðlogðgdpð�2ÞÞ; 2Þ� 0:0020

½�1:465�
þ 0:005 735

½�3:452�
*logðprð�1ÞÞ� 0:000 141

½�4:274�
*t*logðprð�1ÞÞ

R-squared ¼ 0:368 261; Adj: R-squared ¼ 0:341 938 ð6:22Þ
&

Example 6.31. (A comparison between multivariate basic VEC and VAR

models) Figure 6.58 presents the roots of a characteristic polynomial based on a

basic VECmodel compared to a basic VARmodel with the endogenous variables log

(m1) log(gdp), log(pr) and rs, and the lag specification �1 2.�

Figure 6.58 The roots of a characteristic polynomial based on theVEC andVARmodels with

endogenous variables log(M1), log(GDP), log(PR) and RS
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Based on these outputs, the following notes are produced:

(1) The VEC model imposes three unit roots, compared to no unit root for the VAR

model. Imposing a unit root is a special characteristic of the VEC models, as

presented in the previous examples.

(2) It has been found that the number of unit roots imposed by the VECmodel equals

(k� 1), where k indicates the number of endogenous variables or the dimension

of the multivariate independent variables. Therefore, it could be said that both

models are acceptable time series models.

(3) On the other hand, was found that the cointegration test for both VEC and VAR

models will give the same set of three cointegrating equations, as presented in

Figure 6.59. The reason for this is that the cointegrating equations are defined or

constructed based on the same set of endogenous variables. Note that by inserting

the variables in a different order different forms of cointegrating equations can be

obtained.

(4) Furthermore, based on all of the cointegrating equations presented in Figure 6.59,

it is easy to generate new variables, such as those following:
. One Cointegrating Equation

Coint1 ¼ logðm1Þ�0:744 557*logðgdpÞ�0:105 846*logðprÞþ 0:021 429*rs

ð6:23Þ

. Two Cointegrating Equations

Coint2a ¼ logðm1Þ�1:405 418*logðprÞþ 0:090 379*rs
Coint2b ¼ logðgdpÞ�1:745 428*logðprÞþ 0:092 606*rs

ð6:24Þ

Figure 6.59 A part of the cointegration tests based on both the VEC and VARmodels of {log

(M1), log(GDP), log(PR), RS}
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. Three Cointegrating Equations:

Coint3a ¼ logðm1Þ� 2:289 708*rs
Coint3b ¼ logðgdpÞ� 2:863 291*rs
Coint3c ¼ logðm1Þ� 1:693 509*rs

ð6:25Þ

(5). For a comparison, an attempt has beenmade to obtain the cointegration equations

using another procedure, as follows:
. Present the variables log(M1), log(GDP), log(PR) and RS.
. Then by selecting View/Cointegration Tests . . . and using the defaults options
with the lag interval or specification �1 2,� exactly the same sets of cointegrating

equations would be obtained. Furthermore, by using other lag specifications,

different sets of cointegrating equations could be found. &

Example 6.32. (Characteristics of the cointegration series) Based on the six

cointegration series, namely Coint1 up to Coint3c, computed in the previous

Example 6.31, some of their characteristics are presented as follows:

(a) Correlation Matrix

Figure 6.60 presents the correlation matrix of the six Coint1 up to Coint3c. Based

on this correlation matrix, the following notes and conclusions are presented:

Figure 6.60 Correlationmatrix of a set of cointegration equations based on the variables {log

(M1), log(GDP), log(PR), RS}
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(a.1) Coint1 has significant negative correlations with each of Coint2a and

Coint2b, but it has significant positive correlations with each of Coint3a,

Coint3b and Coint3c.

(a.2) Coint2a and Coint2b has a significant positive correlation. However, each

of them has significant negative correlations with each ofCoint3a, Coint3b

and Coint3c.

(a.3) Each pair of Coint3a, Coint3b and Coint3c has a significant positive

correlation.

(a.4) These findings indicate that various time series models are presented based

on a selected set of the cointegration series. Do this as an exercise.

(b) The Growth Curves of Each Cointegration Series

Figure 6.61 presents the growth curves of each of the defined cointegration series.

Corresponding to the models presented in the previous chapters, similar models

based on these six cointegration series may be applied. However, here additional

examples based on this set of cointegration series will not be presented. Based on

this figure the following notes are derived:

(1) The growth curves of Coint2a and Coint2b are very similar.

(2) The growth curves of Coint3a and Coint3b could not be differentiated.

Figure 6.61 (a) Growth curve of Coint1, (b) growth curves of {Coint2a, Coint2b} and

(c) growth curves of {Coint3a, Coint3b, Coint3c}
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(c) Selected Bivariate Correlations

Table 6.2 shows that each of the variables log(M1), log(GDP), log(PR) and RS has

either positive or negative significant correlations with each of the cointegration

series Coint1 up to Coint3c.

These findings indicate that various time series models can be applied by using

each of the variables log(M1), log(GDP), log(PR) andRS as dependent variable(s)

and the cointegration series as independent variables, which will be presented in

the following examples. Do this as an additional exercise. &

Example 6.33. (Experimentation based on a set of cointegrating equations

using EViews 5) By using the trial-and-error methods, experimentation has been

carried out with multivariate models having the dependent variables log(m1), log

(gdp), log(pr) and rs. Some of the findings are as follows:

(1) By using the six cointegration seriesCoint1,Coint2a,Coint2b,Coint3a,Coint3b

and Coint3c as independent variables, the �Near Singular Error� error message is

obtained.

(2) By using a set of three cointegration series, such asCoint1,Coint2a andCoint3a,

the error message is also obtained.

(3) By using only two of the three cointegration series, e.g. Coint1 and Coint2a, as

independent variables, the fitted values are obtained, but with very low values of

Table 6.2 Pairwise correlations between the set of original variables and each of their

cointegrating equations

Correlation

t-statistic

Probability Coint1 Coint2A Coint2B Coint3A Coint3B Coint3C

log(M1) �0.293 296 0.245 274 0.297 988 �0.380 046 �0.352 059 �0.376 983

�4.093 059 3.375 475 4.164 869 �5.481 756 �5.018 344 �5.430 217

0.0001 0.0009 0.0000 0.0000 0.0000 0.0000

log(GDP) �0.394 715 0.328 743 0.399 868 �0.470 238 �0.442 667 �0.467 186

�5.731 531 4.644 107 5.820 486 �7.108 760 �6.586 381 �7.049 684

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

log(PR) �0.338 677 0.276 742 0.338 500 �0.445 466 �0.418 292 �0.441 561

�4.802 323 3.842 264 4.799 478 �6.638 290 �6.144 042 �6.565 931

0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

RS �0.478 081 0.902 102 0.919 245 �0.994 493 �0.990 823 �0.994 083

�7.262 070 27.890 92 31.152 34 �126.6061 �97.798 70 �122.1002

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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the DW-statistic. As a result, experimentation needs to be done with multivariate

autoregressivemodels (MARs), giving the following reasonableMARswith each

of the regressions having a DW-statistic of 1.592 776, 1.424 904, 0.935 076 and

1.618 244 respectively:

logðm1Þ ¼ cð11Þþ cð12Þ*Coint1þ cð13Þ*Coint2aþ ½arð1Þ ¼ cð14Þ�
logðgdpÞ¼ cð21Þþ cð22Þ*Coint1þ cð23Þ*Coint2aþ ½arð1Þ ¼ cð24Þ�
logðprÞ¼ cð31Þþ cð32Þ*Coint1þ cð33Þ*Coint2aþ ½arð1Þ ¼ cð34Þ;

arð3Þ ¼ cð36Þ; arð5Þ ¼ cð36Þ�
rs ¼cð41Þþ cð42Þ*Coint1þ cð43Þ*Coint2aþ ½arð1Þ ¼ cð34Þ;

arð2Þ ¼ cð35Þ; arð3Þ ¼ cð36Þ�

ð6:26Þ

Note that the third regression has unordered AR indicators, namely AR(1),

AR(3) and AR(5), in order to have a greater value of the DW-statistic.

(4) Fitted regressions have also been found based on twoMARs having independent

variables: (i) Coint1 and Coint2a and (ii) Coint2a and Coint3a.

(5) Furthermore, by observing three MARs each having independent variable(s),

(i) Coint1, (ii) Coint2a and Coint2b and (iii) Coint3a, Coint3b and Coint3c, the

following findings can be observed:
. By usingCoint1 as an independent variable, the following acceptableMARhas

been obtained with each of the regressions having a DW-statistic of 2.333 838,

1.734 037, 2.018 027 and 2.069 476 respectively:

logðm1Þ ¼ cð11Þþcð12Þ*Coint1þ½arð1Þ¼cð13Þ;arð2Þ¼cð14Þ�
logðgdpÞ¼ cð21Þþcð22Þ*Coint1þ½arð1Þ¼cð23Þ;arð2Þ¼cð24Þ;arð3Þ¼cð25Þ�
logðprÞ¼ cð31Þþcð32Þ*Coint1þ½arð1Þ¼cð33Þ;arð2Þ¼cð34Þ;arð3Þ¼cð35Þ�

rs ¼ cð41Þþcð42Þ*Coint1þ½arð1Þ¼cð43Þ;arð2Þ¼cð44Þ�
ð6:27Þ

. By using Coint2a and Coint2b as independent variables, the following accept-

ableMARhas been obtainedwith each of the regressions having aDW-statistic

of 2.728 314, 2.701 203, 1.962 607 and 2.515 312 respectively:

logðm1Þ ¼ cð11Þþ cð12Þ*Coint2aþ cð13Þ*Coint2b
þ ½arð1Þ ¼ cð14Þ; arð2Þ ¼ cð15Þ�

logðgdpÞ ¼ cð21Þþ cð22Þ*Coint2aþ cð23Þ*Coint2b
þ ½arð1Þ ¼ cð24Þ; arð2Þ ¼ cð25Þ�

logðprÞ¼ cð31Þþ cð32Þ*Coint2aþ cð33Þ*Coint2b
þ ½arð1Þ ¼ cð34Þ; arð2Þ ¼ cð35Þ; arð3Þ ¼ cð36Þ; arð4Þ ¼ cð37Þ�

rs ¼ cð41Þþ cð42Þ*Coint2aþ cð43Þ*Coint2b
þ ½arð1Þ ¼ cð44Þ; arð2Þ ¼ cð45Þ; arð3Þ ¼ cð46Þ�

(6.28)
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Note that by reducing the order of the autoregressives used in either one of the

regressions, the values of the DW-statistics will decrease. &

Example 6.34. (Further experimentation) After doing further experimentation an

acceptable MAR was found as follows:

logðm1Þ ¼ cð11Þþ cð12Þ*Coint1þ cð13Þ*Coint2aþ cð14Þ*Coint3a
þ ½arð1Þ ¼ cð15Þ; arð3Þ ¼ cð17Þ�

logðgdpÞ ¼ cð21Þþ cð22Þ*Coint1þ cð23Þ*Coint2aþ cð24Þ*Coint3a
þ ½arð1Þ ¼ cð25Þ; arð2Þ ¼ cð26Þ�

logðprÞ ¼ cð31Þþ cð32Þ*Coint1þ cð33Þ*Coint2aþ cð34Þ*Coint3a
þ ½arð1Þ ¼ cð35Þ; arð2Þ ¼ cð36Þ�

rs ¼ cð41Þþ cð42Þ*Coint1þ cð43Þ*Coint2aþ cð44Þ*Coint3a
þ ½arð1Þ ¼ cð45Þ; arð2Þ ¼ cð46Þ�

ð6:29Þ

During the experimentation,manyunexpected results or caseswere found. Some of

those are as follows:

(1) Each of the independent variables, as well as the AR indicators, has a significant

effect with a p-value of 0.000, by using the iterative least squares estimation

method.

(2) The intercepts are c(11)¼ 0.8836 and c(21)¼ c(22)¼ c(41)¼ 0.8036. If the

same AR(1) and AR(2) indicators are used in the first regression, then all

intercepts would be equal to 0.8036.

(3) The values of the DW-statistic are 1.970 145 for the first regression and 2.523 325

for the others. However, by using the sameAR(1) andAR(2) indicators in the first

Figure 6.62 Residual graphs of the multivariate models in (6.28)
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regression, then the value of the DW-statistic would be 2.523 325 for the four

regressions.

(4) On the other hand, by using an AR(1) multivariate model, where each regression

has the AR(1) indicator only, the DW-statistic would be 0.803 109 for the four

regressions.

(5) Figure 6.62 presents the residual graphs of the multivariate model in (6.29), with

very small values of R-squared of 0.002 457, 0.004 458, 0.001 669 and 0.000 544

respectively. For this reason, alternative models may be found by using the

lagged-variable autoregressive models, namely LVAR(p, q), in order to obtain a

model with sufficiently large values of the DW-statistic. Do this as an exercise.&

Example 6.35. (Three-way interactionVECmodel usingEViews 6) Correspond-

ing to the path diagram in Figure 6.3, by omitting the t-variable and using the trial-

and-error methods an acceptable three-way interaction model was obtained, with the

results presented in Figure 6.63. The following notes are presented:

(1) The characteristic roots indicate that the VECmodel is an acceptable model, in a

statistical sense.

(2) SinceD(Y1(�2) andD(Y2(�2) have insignificant effects in both regressions, a re-

ducedVECmodelcanbeobtainedbyusing the lag intervalD(Endogenous)¼ �1 1.�

Figure 6.63 AThree-way interaction VEC model and its characteristics roots
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In the reducedmodel, it was found thatD(Y2(�1) has a significant effect onD(Y2)

only, based on the t-statistic¼ 2.382.

(3) Each of the exogenous variables X2, X1�X3 and X1�X2�X3 has a significant

adjusted effect on D(Y1). By assuming that X1 is an important cause or source

variable, then it can be concluded that the effect of X1 on D(Y1) is significantly

dependent on X2 and X3, in the form of (3.82E-05X3� 2.01E-07X2�X3).
(4) By using the VAR estimation method, it was found that the joint effects of X2,

X1�X3 and X1�X2�X3 cannot be tested on both endogenous variables D(Y1) and
D(Y2). To test this multivariate hypothesis, the system estimation method should

be applied, as presented in the following example. &

Example 6.36. (The system estimation method for a VEC model) Figure 6.64

presents the statistical results based on theVECmodel in the previousExample 6.35,

but here the SUR estimation method is used. Note that this figure shows that the

cointegrationequation inFigure6.63,namelyCointEq1¼ (Y1(�1) þ 0.562 216�Y2
(�1)� 59.818 07), is used independentlyofboth regressions.Basedon thisfigure the

following notes and conclusions are presented:

(1) Corresponding to the parameter C(11), the CointEq1 has a significant negative

effect on D(Y1), based on t0¼�2.667 071 with a p-value¼ 0.0112, but it is

insignificant based on the VEC model in Figure 6.63. Therefore, the question

arises: �Why do these two estimation methods give contradictory conclusions?�
To date there has not been an explanation for this.

(2) Corresponding to the parameter C(21), the CointEq1 has a significant negative

effect on D(Y2), based on t0¼�5.985 590, and the VEC model presents t0¼
�4.857 02 in Figure 6.63. This also produces the question �Why do these two

estimation methods give contradictory conclusions?�

Figure 6.64 Statistical results based on the VEC model in Figure 6.63 using the SUR

estimation method
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(3) For illustration purposes, Figure 6.65 presents the Wald tests to show the joint

effect of the exogenous variables X1, X2 and X1�X2 on each of the endogenous

variables D(Y1) and D(Y2).

(4) By using the system equation, alternative reducedmodels can be obtained, where

each regression can have a different set of exogenous variables. Do this as an

exercise. &

Example 6.37. (The return rate models using VEC) By entering log(y1) and log

(y2) as the endogenous variables of a VEC model, regressions are produced having

dependent variablesD(log(y1)) andD(log(Y2)), which are the returns rate series of Y1

and Y2. For this reason, a title or statement �a VECmodel as the return rate model� has
been proposed.

Figure 6.66 presents a summary of the statistics of the model having exogenous

variables log(x1), log(x2) and log(x3), with the lag interval D(Endogenous)¼ �1 1,�
with the t-statistic in [�]. These statistics show:

Figure 6.65 The Wald tests for finding the joint effect of X1, X2 and X1�X2 on each of the

endogenous variables D(Y1) and D(Y2)

D(LOG(Y1)) =  - 0.101*( LOG(Y1(-1)) - 1.556*LOG(Y2(-1)) + 2.424) - 0.001*D(LOG(Y1(-1))) 
                           [-1.73]                          [-2.59]                                       [-0.01] 

                + 0.051*D(LOG(Y2(-1))) + 0.267 + 0.149*LOG(X1) - 0.577*LOG(X2) + 0.228*LOG(X3) 
                    [0.59]                             [0.87]      [1.87]                  [-3.28]                   [4.15] 

Adj. R-squared = 0.597313, F-stat =  7.674935 

D(LOG(Y2)) = 0.265*( LOG(Y1(-1)) - 1.556*LOG(Y2(-1)) + 2.424) - 0.769*D(LOG(Y1(-1))) 
                        [2.36]                           [-2.59]                                       [-2.40] 

               + 0.130*D(LOG(Y2(-1))) - 1.661 + 0.053*LOG(X1) - 0.281*LOG(X2) + 0.437*LOG(X3) 
                  [0.78]                             [-2.80]     [0.35]                   [-0.83]                  [4.14]   

Adj. R-squared =  0.559099, F-stat =   6.706371

Figure 6.66 Regression functions of the return rate model of (Y1, Y2) using the VEC model
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(1) The cointegration equation has a significant effect on the return rate ofY2, namely

D(log(Y2)).

(2) By taking the t-statistic critical value of |tc|¼ 2, it can be concluded that the

CointEq1 has an insignificant effect on D(log(Y1)), but a significant effect on

D(log(Y2)).

(3) Similar conclusions can easily be derived for each of the other exogenous

variables.

(4) Furthermore, the testing hypothesis can be used to find the joint effect of a selected

subset of the exogenousvariables using theWald test.Note that the systemestimation

method should be used, as demonstrated in the previous example. &

Example 6.38. (A special return rate model of five variables) By using log(y1),

log(y2), log(x1), log(x2) and log(x3) as the endogenous variables of a VECmodel, it

is possible to obtain various alternative VEC models corresponding to the use of

various lag intervalsD(Endogenous) and sets of exogenous variables. Since there are

only five variables in the US_DPOC (i.e. the US domestic price of copper) then the

exogenous variables should be the lagged endogenous variables.

This example presents a special case of the return ratemodel, by using aVECmodel

with the lag interval D(Endogenous)¼ �0 0,� with the statistical results presented in

Figure 6.67. Note that the regressions with dependent variablesD(log(Y2)) andD(log

(X1)) have negative adjusted R-squared, which indicate that the VECmodels are poor

VEC models.

For this reason the model needs to be modified using the trial-and-error methods.

By using the lag specification �1 1,� it has been found that the five regressions have

positive adjustedR-squared, butwith small values. By using the lag specifications �1 2�
or �2 2,� greater values of adjusted R-squared can be obtained.

Figure 6.67 A return rate VECmodel of log(Y1), log(Y2), log(X1), log(X2) and log(X3), with

lag specification �0 0�
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On the other hand, by using the lag specification �1 3,� an error message �insufficient
number of observations� is obtained.

Furthermore, the VEC model of log(Y1), log(Y2(�1)), log(X1(�1)), log(X2) and

log(X3), with the lag specification �0 0,� also gives a positive adjusted R-squared for

the five regressions.

Perform the residual analysis and other tests for each of the VEC models as an

exercise in order to explore the limitation of each model. Further analysis can also be

done using the system equation to develop alternative multivariate models where

regressions have different sets of exogenous or independent variables. &

6.4 Special notes and comments

Based on the previous illustrative examples in this chapter, as well as the previous

chapters, some special notes and comments are presented, as follows:

(1) Based on the previous illustrative examples, it was found that the VAR and VEC

models are special cases of the multivariate autoregressive models. Hence, the

acronymMAR (i.e.multivariate autoregressive) model should be used instead of

VAR, to represent a general time series model which is endogenous multivariate.

(2) All models presented in the previous chapters can bemodified to theVARorVEC

models. Therefore, there could be various additive, two-way and three-way

interaction VAR models, as well as the VAR model with dummy variables.

(3) TheVARmodel, aswell as theVECmodel, can be estimated by using the �system�
function or estimation method. This is more flexible to use in developing a

multivariate model, where the multiple regressions could have different sets of

exogenous variables.

(4) Since it is believed that a set of regressions in anymultivariate model should have

different types or sets of cause or source variables, then the system function

(estimation method) is the preferred method used to develop alternative multi-

variate time series models. It is accepted that there should be a good or special

reasonwhyVAR or VECmodels are applied where all multiple regressions in the

VAR model have the same set of independent variables.
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7

Instrumental variables models

7.1 Introduction

The application of (univariate) general linear models (GLMs) or multiple
regressions presented in the previous chapters uses a basic assumption that the
right-hand side variables in the models are uncorrelated with the disturbance
terms. If this assumption is violated, then in order to estimate the model
parameters an instrumental variables model should be used. The instrument
variables (or instruments in short) are a set of variables, that need to be selected
or defined such that they are both (i) correlated with the explanatory or
independent variables of the GLM and (ii) uncorrelated with the disturbance
or error terms.

When discussing a correlation between an exogenous variable and the error terms
of anymodels, as well as the correlation between any pairs of numerical variables, it
should always be noted that a pair of variables could have significant correlation,
even though they are not substantially correlated.On the other hand, the correlation
of a pair of variables could be insignificant based on a testing hypothesis, where they
are in fact substantially correlated or associated. Since in hypothesis testing a sample
data shouldbeused,which is consideredasa setof scores/measurements thathappen
to be selected or available for a researcher (Agung, 2004), the conclusion could be
reached that the hypothesis testing could contradict the theoretical base. In other
words, the data do not support a defined hypothesis.

Corresponding to the use of instrumental variables, it could said that there
should be complete dependence on the conclusion of the testing hypothesis. If at
least one of the exogenous variables of a model (or regression) has a significant
correlation with the residual, then using an instrumental model should be
considered. However, it has been found that there could be two possible types
of modified models. The first is a model that is modified without using the
instrumental variables and the second is one that is modified using instrumental
variables.

Time Series Data Analysis Using EViews IGN Agung
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However, by carrying out experimentation, it has been found that it is not easy
to find a good set of instrumental variables and, moreover, the best set of
instrumental variables for a basic model or regression. Refer to the special notes
and comments on the true population model presented in Section 2.14 and
observe the cases presented in the following examples.

In fact, there are at least two problems, namely two stages of problems (TSOP),
in demonstrating or developing an instrumental model. First, a model should be
developed having at least one exogenous variable that is significantly correlated
with the residual of the model. Second, the best possible set of instrumental
variables needs to be found. The second problem is exactly the same as the
problem defining the true population model presented in Section 2.14.1. For
these reasons, the TSLS estimationmethod could be considered as the process to
use in order to solve two stages of problems in developing an instrumentalmodel.
Corresponding to the selection of a set of instrumental variables, Gujarati (2003,
p. 527) stated: �This task is much easier said than done.�

Note the following subsections, notes and examples, which present our
experimentation in applying GLMs with instruments. For illustrative purposes,
Demo.wf1 will again be used, as well as the set of five X- and Y-variables, which
have been defined in the previous chapter based on the variables in the US
domestic price of copper (US_DPOC) data set. Since the time series data will be
used, the autoregressive models will be applied directly.

The steps of data analysis are as follows:

(1) By selecting Quicks/Estimation Equation . . . , the window on the left-hand
side inFigure 7.1will appear. Then by selecting the TSLS estimationmethod,
the window on the right-hand side will appear.

(2) The equation specification can be entered, as well as the list of instruments.
Then by clicking OK, the statistical results will be obtained.

(3) For other alternative estimation methods, such as the White, the Newey–
West and weighted LS/TLS estimation methods, click the Options.

Figure 7.1 Windows for conducting the TSLS estimation method
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7.2 Should we apply instrumental models?

The time seriesmodelspresented in theprevious chapters shouldbe consideredas the
basic time series models, since the instrumental model will be considered as an
advanced time series models. For this reason, it should be considered whether all
modelspresentedearlier shouldbe improvedormodified to the instrumentalmodels.

Since an instrumental model should be applied if and only if at least one of the
exogenous variables in a model is correlated with the error terms, then a further
residual analysis should be done for each model before it is modified to be an
instrumental model.

For this reason, further residual analysis has been conducted for selected
models that have been presented in the previous chapters. The statistical results
are presented in Table 7.1.

Table 7.1 Correlations between each exogenous variable of selected models with their
corresponding error terms, with its p-value in [�]

Dependent

Independent variables/Sig. p-value in [.]

Example variable 1 2 3 AR

2.8 log(m1) t [1.0000] log(m1(�1))
[1.0000]

log(m1(�2))
[1.0000]

—

2.16 log(m1) t [1.0000] log(gdp)
[1.0000]

log(pr)
[1.0000]

1

4.5 POLI_1 POLI_1(�12)

[0.3723]

1 and 2

4.12 log(m1) log(m1(�1))
[0.8526]

Log(m1(�2))
[0.8536]

Log(gdp)
[0.8259]

log(gdp(�1))
[0.8272]

RS [0.8733] 1

5.11 log(mmdep) log(mmdep(�1))
[0.9998]

log(ivmaut)
[0.9861]

1

5.15 log(P) log(A) [0.8071] log(G) [0.6635] log(L)
[0.6565]

1 and 2

5.17 log(P) log(I) [0.6238] log(A) [0.7421] (log(I))2

[0.6390]
log(I)�log(A)
[0.6801]

(log(A))2 [0.7544] 1 and 2

6.17 log(Y1),
log(Y2)

log(Y1(�1))
[1.0000],

log(Y2(�1))
[1.0000],

log(X1)
[1.0000]

log(X2) [1.0000] log(X3) [1.0000]

6.18 log(Y1),
log(Y2)

log(Y1(�1))
[1.0000],

log(Y2(�1))
[1.0000],

log(X1)
[1.0000],

X2 [1.0000] X1�X2 [1.0000] X1�X3
[1.0000]

X2�X3 [1.0000]
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ThisFigure shows that eachof the exogenous variables of the selectedmodels is
insignificantly correlated with their corresponding error terms with a large
p-value, where some of them have a p-value of 1.0000. Therefore, these models
do not need instrumental variables, and they should be considered as acceptable
or good models without using instrumental variables.

Finally, for illustration purposes, an unusual and unexpected time seriesmodel
was found with exogenous variables that are significantly correlated with the
residual. The model is one without an intercept or model through the origin, as
presented in Figure 7.2. This figure also presents the correlation matrix of the
residual, namely Resid01, and the exogenous variables, GDP and PR. Since the
exogenous variables have significant correlations with the residuals, this model
should be modified using instrumental variables.

However, it has been recognized that this type ofmodel can also bemodified or
improved by using additional exogenous variables instead of the instrumental
variables, as shown by the following example.

Example 7.1. (Modified models without instrumental variables) Table 7.2
presents alternative time series models, where the independent variables GDP
and PR have insignificant correlations with their corresponding residuals,
compared to the unusual model in Table 7.2 as the first model in Table 7.2.
Based on this Figure, the following notes are presented:

(1) Refer to the first two models inTable 7.2. The first model is a model without
intercept, where the exogenous variables are significantly correlated with the
residuals. By adding only the intercept parameter, the second model is
obtained where the exogenous variables are insignificantly correlated with
the residual, with the largest p-value of 1.0000.

(2) In fact,manyother time seriesmodels presented in the previous chapters have
been tried, but no one has found an exogenous variable that is significantly
correlated with its corresponding residuals.

Figure 7.2 Statistical results based on a time series model through the origin
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(3) For a comparison, Figure 7.3 presents a translog linear model without the
intercept of log(M1) on log(GDP) and log(PR), and the correlation matrix of
its residual and the exogenous variables. Note that the exogenous variables
are insignificantly correlated with the residual, namely Resid13.

(4) Based on themodels presented in Table 7.2 and the notes in points (1) and (2)
above, as well as the model in Figure 7.3, it can be said that it is very difficult
to find a common time series model, which should have an independent
variable that is significantly correlated with its residuals. For this reason, in
general, an instrumental variable model does not need to be applied, since
(i) there is no good guide as to how to select the best set of instrumental
variables and (ii) the model can be improved by using the additional
independent variables and lagged variables presented in Table 7.2, as well

Table 7.2 Modifiedmodels with endogenous variableM1 and selected sets of exogenous

variables

Probability(t-statistic) of

Number Exogenous variables r(Resid, gdp) r(Resid, pr)

1 gdp pr 0.0194 0.0004
2 C gdp pr 1.0000 1.0000

3 C gdp pr ar(1) 0.3305 0.2925
4 C gdp pr ar(1) ar(2) 0.4615 0.4401
5 C m1(�1) gdp pr 1.0000 1.0000

6 C m1(�1) gdp pr ar(1) 0.3322 0.2950
7 C m1(�1) m1(�2) gdp pr 1.0000 1.0000
8 C gdp pr rs ar(1) 0.5306 0.4548

9 C m1(�1) gdp pr rs 1.0000 1.0000
10 C gdp gdp(�1) pr pr(�1) 1.0000 1.0000

Figure 7.3 Statistical results based on a translog linear model of log(M1) on log(GDP)

and log(PR)
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as the transformed variables presented in Figure 7.3 andmodels with dummy
variables as presented in the following example. &

Example 7.2. (A modified model with a dummy variable) Corresponding to the
unusual model in Figure 7.2, Figure 7.4 presents the statistical results based on a
modified model with a dummy variable Drs1, where Drs1¼ 1 for t� 119 and
Drs1¼ 0 otherwise. The model can be considered as a two-way interaction
model, where each of the independent variables has an insignificant
correlation with the residual, namely Resid14. &

Example 7.3. (Modified models with instrumental variables) Table 7.2 presents
models with the endogenous variable M1 and alternative sets of exogenous and
instrumental variables, together with the Probability(t-statistic) in testing the
correlations between GDP and PR with the corresponding residuals:

(1) The instrumental variables for the models 2, 3 and 4 are not sufficient to
improve the first model in Table 7.2, since GDP is insignificantly correlated
with the residuals, but PR is significantly correlated with the residuals.

(2) For this reason an attempt is made to apply the default options by entering
only the exogenous variablesC,GDP and PR, as well as the indicator AR(1),
which gives the window in Figure 7.5. After entering the equation specifica-
tion, by clickingOK, the statistical results based on the instrumentalmodel 5a
is obtained, with a statement �Lagged dependent variable and regressors
added to instrument list.�

Figure 7.4 Statistical results based on a modified two-way interaction model with a
dummy variable Drs1 of the model in Figure 7.2
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(3) From this point of view, if there is not a good reason to select a set of
instrumental variables, it is suggested that a list of instruments should not be
inserted, but to use the default option, since it is stated that the default option
should be a good option.

(4) Note that the instrumental variable model 5b is in fact the same model as the
model 5a.

(5) On the other hand, an error message may be obtained as presented in
Figure 7.6, which indicates that additional instrumental variable(s) should
be entered. For example, for the exogenous C, GDP and PR, by entering
M1(�1) as an instrumental variable, the error message will be obtained, and
similarly if C and M1(�1) are entered.

(6) Furthermore, note that the main objective of the models presented in
Table 7.3 is to demonstrate that only various sets of instrumental variables
can be used to modify or improve the unusual model in Figure 7.2. Note the
following comparison:
. The exogenous variables of the instrumental models 5a, 5b and 6 in
Table 7.3 are exactly the same exogenous variables of model 3 without an
instrumental variable in Table 7.2, which is an acceptable model in a
statistical sense.

. Similarly, the exogenous variables of the instrumental models 7, 8 and 9 in
Table 7.3 are exactly the same exogenous variables of model 5 without an
instrumental variable in Table 7.2.

Figure 7.5 The default options for model 5a in Table 7.3
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. These findings indicate that instrumental variables may be used even
though the base model does not have an exogenous variable that is
significantly correlated with its residual. However, it is suggested that an
instrumental model should not be applied if an acceptable model could be
developed without the instrumental variable. &

7.3 Residual analysis in developing instrumental models

It has been recognized that in developing acceptable instrumentalmodels, a series
of residual analyses should be conducted. This series of residual analyses has four
specific main objectives, as follows:

Figure 7.6 The error message of insufficient instruments

Table 7.3 Illustrations of instrumental variable models corresponding to the model in

Figure 7.2

Dependent variable: M1 Probability (t-statistic) of

Number Ind. Variables Inst. Variables r(Resid, gdp) r(Resid, pr)

1 gdp pr Without instrument 0.0194 0.0004
2 gdp pr C m1(�1) 0.1944 0.0106

3 gdp pr C m1(�1) m1(�2) 0.1872 0.0097
4 C gdp pr C m1(�1) m1(�2) 0.1928 0.0139
5a C gdp pr ar(1) a 0.3300 0.2932

5b C gdp pr ar(1) C m1(�1) gdp(�1) pr(�1) 0.3300 0.2932
6 C gdp pr ar(1) C m1(�1) m1(�2)

gdp(�1) pr(�1)
0.5355 0.5493

7 C m1(�1) gdp pr C gdp(�1) pr(�1) rs 0.9973 0.9931
8 C m1(�1) gdp pr C gdp(�1) pr(�1)

rs rs(�1)
0.9944 0.9942

9 C m1(�1) gdp pr C gdp(�1) pr(�1)

rs Drs1 Drs1ars

0.9999 0.9975

aInstrument list: Lagged dependent variable and regressors added to the instrument list.
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(i) To test the correlation between the residuals and each independent variable
of the model without the instruments.

(ii) To test each of the instrumental variables, whether or not it is qualified to
become an instrumental variable. Note that this process is not done for the
instruments in Table 7.3.

(iii) To test the correlation between the residuals and an external variable, which
can be defined as an additional independent variable in order to improve the
model.

(iv) After obtaining an instrumental model, the residual analysis should be
conducted again to test whether or not each of the independent variables is
insignificantly correlated with the residuals, as presented in Table 7.3.

7.3.1 Testing an hypothesis corresponding
to the instrumental models

Based on the experimentation, it was found that a series of residual analyses
should be conducted in order to test whether or not each exogenous variable of
the basic model, as well as the instrumental model, has a significant (or
insignificant) correlation with the residual series. The stages of data analysis
should be done as follows:

(1) After defining a basic time series model, select Quick/Estimate Equation . . .
and then enter the corresponding equation specification. The OLS, the
White or the Newey–West estimation methods could be used.

(2) By clicking OK, the statistical results appear on the screen. Then click the
option �Name� in order to save the results.

(3) In order to make the residual series, click Proc/Make Residual Series . . . ,
which then directly gives additional variables in the workfile, namely
Resid ��.

(4) Then on the screen appear the variables Resid �� and the exogenous vari-
ables, either the exogenous variables in or out of the model.

(5) By selecting View/Covariance Analysis . . . the correlation matrix with the
t-statistic and its probability (two-tailed) can be obtained. If there is no
exogenous variable that has a significant correlation with the Resid ��, then
the process is stopped. In other words, a set of instrument variables does not
need to be found.

(6) Otherwise, two types of possible modifications could be done, asmentioned
above. However, the first method of modification that could be suggested is
to find additional exogenous variables, as presented in Examples 7.1
and 7.2.

(7) In fact, in developing an instrumental model two stages of problems (TSOP)
are faced. First, an appropriate basic model needs to be found that can be
modified or improved by using instrumental variables. The second problem
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is to select the best possible set of instrumental variables. The true popula-
tion model could never be known and nor could the true set of instrumental
variables (refer to Section 2.14).

(8) On the other hand, it has been found to be very difficult to obtain a basic
time series model that has at least one exogenous variable that is signifi-
cantly correlated with the residual series of the model. Note that Table 7.1
presents no model that can be used as the basic model for developing
instrumental models. For this reason, an unusual model is presented in
Figure 7.2 as a basic model for illustration purposes.

(9) There is a basic important question, namely �Can we directly apply an
instrumental model, without doing a series of residual analysis on the basic
model?�Weare very confident that the answer to this question is �We can�t!,�
since it is stated that the instrumental model should be applied if and only if
at least one of the independent variables of the basic model has a significant
correlation with its residual series.

(10) Finally, it is obvious that it is better to use or apply a time series model
without instrumental variables unless there is a very good reason for using
the instrumental model. This is because a more complex model, as well as a
model having a large number of parameters, is most likely to have more
uncertainty or unexpected estimates (refer to the multicollinearity problem
in Section 2.14.3). For illustration purposes, the following examples present
special instrumental models.

Example 7.4. (Special instrumental models) Figure 7.7(a) presents the statistical
results of anAR(1) instrumentalmodelwith the statement �EstimatedARProcess
is nonstationary,� so this model is not an acceptable time series model. For this

Figure 7.7 Statistical results based on (a) a special AR(1) instrumental model and (b) its
reduced model
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reason, its modified or reduced model is presented, which is an acceptable
instrumental model, presented in Figure 7.7(b). However, it may not be the
best instrumentalmodel.Doa further analysis to study the limitations of these two
models and their possible modifications.

Furthermore, note the lagged dependent variable and regressors added to the
instruments, so that themodel inFigure 7.17(a) has the instruments �CRSm1(�1)
gdp(�1) PR(�1)� and its reduced model has the instruments �m1(�1) gdp(�1)
PR(�1)�, which corresponds to theAR(1)model. If the option �Lagged dependent
variable and regressors added to the instruments� is not used, then the error
message presented in Figure 7.6 would be obtained.

Without doing preliminary tests on the status or condition of the exogenous
variables, various additional instrumental models could be developed by using
the variables M1, GDP, PR and RS, as well as their transformed variables. &

Example 7.5. (An extension of the CD model in Example 5.3) Without doing
preliminary tests corresponding to all SCMs (i.e. seemingly causal models) presented
in the previous chapters, instrumental methods can easily be constructed. Therefore,
many instrumental models could be obtained, since various sets of instrumental
variables could be selected for each SCM. As an illustration, Figure 7.8 presents two
instrumentalmodels that shouldbe consideredas anextensionof anSCM,namely the
Cobb–Douglas (translog linear) model in Example 5.3, based on POOL1.wf1.
Furthermore, various instrumental models could be obtained by using other
variables in the workfile as instrumental variables. &

7.3.2 Graphical representation of the residual series

Graphical representations of residual series can be used to perform an informal
or visual analysis to study the good fit model (or the aptness of a model) and to
decide whether or not an external variable should be used in the model.

Figure 7.8 Statistical results based on instrumental models as an extension of the
Cobb–Douglas model in Example 5.3
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Neter and Wasserman (1974, pp. 99–110) demonstrated the scatter graphs of
residual series of amodel against its fitted values, the exogenous variable(s) of the
model and also the external variables (i.e. the variables that were not in the
model). By observing this type of scatter graph, the following problems can
be identified:

(1) The outlier(s) of the observed values.
(2) Whether or not a linear regression function is appropriate for the data set,

since most of the time a researcher uses the first power of the variables as
independent variables.

(3) Whether or not the variance of the residual series is heterogenic or is
dependent on an exogenous variable; in general, whether or not the residual
series is a function of a variable in the data set being analyzed.

(4) Whether or not an external variable or a variable outside themodel should be
use as an additional independent variable.

7.4 System equation with instrumental variables

For illustration purposes, the testing would be conducted whether or not the
exogenous variables of the basic model used have significant correlations with
their corresponding residual series. Here, only the method used to apply the
system equation with the instrument variables will be presented, as shown in the
following examples. However, experimentation has been conducted in order to
present an instrumental model having acceptable or sound statistical results.

Example 7.6. (AnAR simultaneous causal effectsmodel) In this example a simple
autoregressive simultaneous causal effects model having instrument variables is
considered, with the following equations:

logðm1Þ ¼ cð11Þþ cð12Þ*logðgdpÞþ ½arð1Þ ¼ cð13Þ�@ c logðprÞ
logðgdpÞ ¼ cð21Þþ cð22Þ*logðm1Þþ ½arð1Þ ¼ cð23Þ; arð2Þ ¼ cð24Þ�@c rs

ð7:1Þ

where the symbol@ is used to indicate that c log(pr) and c rs are the instrumental
variables of the first and secong models respectively.

In fact, thismodel is the result of experimentation in order toobtain sufficiently
large values of the DW-statistic for each regression. Note that this model shows
that log(m1) and log(gdp) have simultaneous causal effects.

The steps of data analysis are as follows:

(1) Click Object/New Object . . ./System/OK. Then the equation specifica-
tion (7.1) can be entered, as presented in Figure 7.9.

(2) By clicking the option �Estimate�, the window in Figure 7.10 appears on the
screen.
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(3) The TSLS estimation method should be used together with the default
option �Add lagged regressors . . . .� By clicking OK, the statistical results in
Figure 7.11 are obtained. However, if this option is not used, the error
message �Near singular matrix� will be obtained.

(4) By using the option �Add lagged regressors . . . ,� the output shows the
following specific characteristics:
. For the first regression there are two additional instrument variables,
namely log(m1(�1)) and log(gdp(�1)), which correspond to the AR(1)
model, as well as the original instruments C and log(pr).

. For the second regression there are four additional instruments, namely
log(m1(�1)), log(m1(�2)), log(gdp(�1)) and log(gdp(�2)), which corre-
spond to the AR(2) model, as well as the original instruments C and RS.

Figure 7.9 Equation specification of the instrumental model in (7.1)

Figure 7.10 The estimation method, settings and options for the system estimation
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(5) Without using this option, the statistical results can be obtained as if the
lagged dependent variables were used as independent variables of the basic
models. One of the statistical results is presented in Figure 7.12. However, if
the option is used the statistical results are also obtained. Refer to the
following example, which shows contradictory results. &

Example 7.7. (A special case of the LVAR(1,1) instrumental models) By entering
the following system equation specification in (7.2) and using the option �Add
lagged regressors . . . ,� the statistical results in Figure 7.13 are obtained, which

Figure 7.11 Statistical results based on the model in (7.1) using (a) the TSLS and (b) the

WTSLS estimation methods

Figure 7.12 Statistical results of a system instrumental model without using the option

�add lagged regressors . . . .�
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shows additional instrumental lagged variables. On the other hand, if the
option is not used, the error message �Near singular matrix� is obtained. This
indicates that by using less instrumental variables, it is possible to obtain the
error message.

Compared to the model in (7.1), the following model also has the lagged
endogenous variables as the independent variables:

logðm1Þ ¼ cð11Þþ cð12Þ*logðm1ð�1ÞÞþ cð13Þ*logðgdpð�1ÞÞþ ½arð1Þ ¼ cð14Þ�
@ c logðprÞ logðprð�1ÞÞ

logðgdpÞ ¼ cð21Þþ cð22Þ*logðm1ð�1ÞÞþ cð23Þ*logðgdpð�1ÞÞþ ½arð1Þ ¼ cð24Þ�
@ c logðprÞ rs

ð7:2Þ

Without the instrumental variables, this model is a bivariate LVAR(1,1)
model, i.e. the lagged-variable autoregressive (1,1) translog linear model. There-
fore, this instrumental model is an extension of the LVAR(1,1) model. &

7.5 Selected cases based on the US_DPOC data

Similar to the instrumental models presented in the previous examples, based on
the US domestic price of copper data set, namely the US_DPOC data, some
selected instrumentalmodels are nowpresented. For general purposes theX- and
Y-variables, namely Y1, Y2, X1, X2 and X3, will again be used, which have been
defined and used in the previous chapter.

Note that most of the illustrative models are presented without testing the
correlation between an exogenous variable with the corresponding residual
series. However, it is assumed that at least one of the exogenous variables of
themodel is highly correlatedwith its residual series, although it was found that it
is very difficult to develop an acceptable time series model that has an exogenous
variable significantly correlated with its residual series.

Figure 7.13 A special case of the LVAR(1,1) instrumental models
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Example 7.8. (AnAR(1)model with trend) After conducting experime- ntation, a
simple first-order autoregressive model with trend was finally found, which has a
significant correlated exogenous variable with the error term. The equation of the
model is as follows:

Y1t ¼ Cð1Þ*X1t þCð2Þ*tþ ½ARð1Þ ¼ Cð3Þ� þ «t ð7:3Þ

Note that this model is amodel through the origin. If a model with an intercept is
used, then its error term and X1 are insignificantly correlated. Figure 7.14
presents the statistical results of this model and the significant correlation
of r(Resid21,X1) with a p-value¼ 0.0000. As a result this model should be
improved ormodified to be an instrumental model, whichwill be presented in the
following example. &

Example 7.9. (Simple instrumental models with trend) Corresponding to the
basic regression in (7.3), Table 7.4 presents simple instrumental models with
trend based on only three variablesY1,X1 and the time t. This table presents only
the summary of the Probability(t-statistic) for the null hypothesis r(t,Resid)¼ 0
and r(X1,Resid)¼ 0. Based on this summary the following notes are presented:

(1) The set instrumental variables C, Y1(�1) and X1(�1) is not sufficient or
effective enough to improve the basic model considered. In fact, other sets of
instrumental variables have been tried, but acceptable estimates could not be
obtained. For this reason the basic regressions have been modified, as
presented in Table 7.4.

(2) Byusing thefivevariablesX1,X2,X3,Y1andY2, aswell as the time t,manymore
instrumentalmodels couldeasilybedeveloped.Anyof themodelspresented in the

Figure 7.14 Statistical results based on a regression ofY1 on the time t andX1, as amean
model for developing instrumental models
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previous chapters could also be used as a basemodel. Do this as an exercise, since
thedataanalysis couldbedone inashort time.Theonlyproblemishowtodefinea
base model and then select the best possible set of instrumental variables. &

Example 7.10. (Instrumental interaction models with trend) Under the assump-
tion that the effect ofX2 onY1 depends onX1 or the effect ofX1 onY1 depends on
X2, then in amathematical sense the two-way interactionX1�X2 has to be used as
an independent variable of a defined model, which have been presented in the
previous chapters. However, here the instrumental interaction models are
considered.

As an illustration, Figure 7.15 presents the statistical results based on anAR(1)
instrumental two-way interaction model with trend and its reduced model, with
the lagged dependent variable and regressors added to the instrument list. For a

Table 7.4 Selected simple instrumental models based on the variables Y1, X1 and the

time t

Probability(t-statistic) of

Number Equation specification Inst. variables r(t, Resid) r(x1, Resid)

1 y1 t x1 C y1(�1) x1(�1) 0.0000 0.0013
2 y1 c t x1 C y1(�1) x1(�1) 0.1962 0.8197

3 y1 c t x1 ar(1) a 0.3661 0.9007
4 y1 c t x1 C y1(�1) x1(�1) t 1.0000 0.7096
5 log(y1) t x1 log(y1(�1)) x1(�1) 0.0076 0.6583

6 log(y1) c t x1 log(y1(�1)) x1(�1) 0.0503 0.9206
7 log(y1) c t x1 ar(1) a 0.2967 0.7556
8 log(y1) c t x1 log(y1(�1)) x1(�1) t 1.0000 0.8085

aInstrument list: lagged dependent variable and regressors added to the instrument list.

Figure 7.15 Statistical results based on an AR(1) instrumental interaction model with
trend and its reduced model, where all of the lagged variables are added to the instrument

list
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comparison,Figure 7.16 presents statistical results based on the samemodels, but
the lagged dependent variable and regressors are not added to the instrument list.

Based on the statistical results in both figures, the following notes and
conclusions are presented:

(1) Compared to the reduced model in Figure 7.15, the reduced model in
Figure 7.16 has a smaller set of instrumental variables, so has less parameters.
For this reason, the second reduced model is preferred.

(2) Furthermore, it has been found that each of the exogenous and instrumental
variables is insignificantly correlatedwith its residual, with aminimal p-value
of 0.6656 for X2(�1) and a sufficient value of the DW-statistic.

(3) Note thatX1 andX2 are not in the instrument list since it is assumed that they
are highly correlated with the residual of the basic model. Refer to the basic
model in Figure 7.15.

Figure 7.16 Statistical results based on an AR(1) instrumental interaction model with
trend and its reduced model, where no lagged variables are added to the instrument list

Figure 7.17 Unexpected statistical results based on an instrumental model and its
reduced model
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(4) Figure 7.17 presents unexpected statistical results based on the full AR(1)
basic model but using only the first lagged variable of all variables as the
instrumental variable. This instrumental model should be considered as the
worst model, since each of the exogenous variables has a p-value¼ 1.0000
andwould never be presented as an empiricalmodel, in practice.On the other
hand, its reduced model is a good fit AR(1) instrumental interaction
model.

(5) In this case, a problem should be considered that is related to the option
�Lagged dependent . . . ,� since the first lagged variables Y1(�1), X1�X2(�1)
and t(�1) will be additional instruments, whereX1�X2(�1) and t(�1) can be
considered as uncommon lagged variables in the time series data analysis,
especially the lagged variable t(�1). &

Example 7.11. (Instrumental translog linear models with trend) Figure 7.18(a)
presents the statistical results based on an AR(1) translog linear model with
trend, under the assumption that log(x1) and log(x2) are correlated with the
residual. Therefore, they cannot be used as instrumental variables. Since log(x2),
t and AR(1) are insignificant, several possible reduced models could be obtained
by deleting either one or two of these variables.

Figure 7.18(b) presents the statistical results based on a reduced model that is
an acceptable instrumental model, in a statistical sense. Try to apply other
possible reduced models as an exercise.

Note that bothmodels have constant elasticitywith respect to the exogenousor
input variable X1, which is equal to C(2) with positive values of 2.054 674 based
on the full model and 2.466 828 based on the reduced model, both of which are
significant with p-values of 0.0230 and 0.0017 respectively. &

Figure 7.18 Statistical results based on (a) an AR(1) instrumental translog linear model
and (b) its reduced model
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7.6 Instrumental models with time-related effects

In this section, examples of the GLMswith time-related effects will be presented,
under the assumption that the time t is uncorrelated with the disturbance term.

Example 7.12. (AR Instrumental models with time-related effects) Figure 7.19(a)
presents the statistical results based on an AR(2) instrumental model with time-
related effects, which is indicated by the interaction t�log(X1).Note that the set of
instrumental variables are selected using the trial-and-error methods in order to
obtain acceptable parameter estimates. Since log(X1) is insignificant with a large
p-value¼ 0.5378, this may be a reduced model. In general, a reduced model will
be obtained by deleting log(x1).

However, here a special or unexpected reducedmodel is presented, as shown in
Figure 7.19(b). This instrumental model is a good fit model with a time-related
effect, in a statistical sense, since it has aDW-statistic of 1.944 560, and eachof the
independent variables, as well as the indicator AR(1), is significant, at the 0.05
significant level.

Furthermore, based on the statistical results in this figure the following notes
apply:

(1) The interaction t�log(X1) has a significant effect on log(Y1) based on both
models.

(2) Based on the reducedmodel, themarginal elasticity ofY1 with respect toX1 is
a linear function of the time t, as follows:

qlogðY1Þ
qlogðX1Þ ¼

qY1
qX1

*
X1

Y1
¼ cð2Þþ cð3Þ*t ¼ 3:927þ 0:015*t ð7:4Þ

&

Figure 7.19 Statistical results based on (a) an AR(2) instrumental model with a time-
related effect and (b) its special or unexpected reduced model
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Example 7.13. (Other AR instrumental models with time-related effects) In this
example an attempt is made to develop an AR instrumental model with time-
related effects by using the five defined variables X1, X2, X3, Y1 and Y2, and the
time t, either as independent or instrumental variables. By using the trial-and-
errormethods theAR(1) instrumentalmodelwith time-related effects presented in
Figure 7.20(a) is obtained, as a fullmodel, and its reducedmodel inFigure 7.20(b).

At the 0.10 significant level, each of the independent variables, as well as the
indicator AR(1), is significant based on a one-sided hypothesis, andDW¼ 1.695.
This model can therefore be considered as a good fit model, in a statistical sense.

Based on the reduced model, the following regression function is obtained:

logðY1Þ ¼ 3:0862þ 0:0188*logðX3Þ
þ f�0:0208þ 0:0530 logðX1Þ�0:0724 logðX2Þg*t
þ ½ARð1Þ ¼ 0:507516495207�

ð7:5Þ

Note that this function shows that the effect of the time t is dependent on the
function {�0.0208 þ 0.0530 log(X1)� 0.0724 log(X2)}. This effect can be pre-
sented as the partial derivative:

qlogðy1Þ
qt

¼ �0:0208þ 0:0530logðx1Þ�0:0724logðx2Þ ð7:6Þ

Furthermore, in a two-dimensional space with t and log(y1) axes, this regre-
ssion function represents a set of lines with various slopes and intercepts. &

7.7 Instrumental seemingly causal models

This section will present examples of instrumental models without using the time
t as an independent variable, which will be called the instrumental seemingly
causal model(s), namely ISCM.

Figure 7.20 Statistical results based on (a) an AR(1) instrumental model with time-
related effects and (b) its reduced model

Instrumental Variables Models 401

www.trading-software-collection.com



Example 7.14. (ISCM with an exogenous variable) Figure 7.21 presents two
statistical results based on a basic model or an equation specification, but using
different methods of inserting the instrument list. However, Figure 7.21(a) and
(b) present equal statistical values.

Note that Figure 7.21(a) presents the statement �Instrument list C y1(�1) x1
(�1) and Lagged dependent variables and regressors added to instrument list,�
but Figure 7.21(b) presents only the statement �Lagged dependent variables and
regressors added to instrument list.� For these findings, it could be said that the
instrument list C, y1(�1) and x1(�1) should be considered as a useless list. In
other words, if the instrument list �C y1(�1) x1(�1)� is used, the statement
�Lagged dependent variables and regressors added to instrument list� does not
operate.

On the other hand, by using the �Instrument list C y1(�1) x1(�1) but Lagged
dependent variables and regressors not added to instrument list�, exactly the same
statistical output would be obtained. &

Example 7.15. (ISCM with two exogenous variables) Figure 7.22 presents
statistical results based on an AR(2) additive ISCM with two exogenous
variable X1 and X2, and its reduced model. In this model, it is assumed that
X2 is uncorrelated with the residual, so it can be in the instrument list.

As an extension, Figure 7.23(a) and (b) presents statistical results based on an
AR(1) interaction ISCM with exogenous variables X1, X2 and X1�X2 and its
reduced model respectively, using the same instrument list as the model in
Figure 7.22. This reduced model is a nonhierarchical model, since it has an
interactionX1�X2 as an independent variable, but themain factorX2 is not in the
model.

Figure 7.21 Statistical results basedonan equation specification, using differentmethods
for inserting the instrument list
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For further illustration, Figure 7.24 presents statistical results based on two
alternative reducedmodels. Figure 7.24(a) presents a note �EstimatedARprocess
is nonstationary,� so this model is not an appropriate time series model.

Since, based on the full model,X1�X2 is insignificant, then it may be deleted to
obtain a reduced model. In this case, an additive ISCM is obtained, as presented
in Figure 7.24(b), which is exactly the same as Figure 7.22(b). However, this
additive model cannot represent either the effect ofX1 onY1 which is dependent
on X2 or the effect of X2 on Y1 which is dependent on X1, which have been
theoretically defined. Therefore, the statistical results in Figure 7.24(a) should be
considered as an unacceptable estimate and the results in Figure 7.24(b) should
be considered as inappropriate to present the theoretical relationships between
the three variables X1, X2 and Y1. &

Figure 7.22 Statistical results based on (a) an AR(2) additive ISCM of Y1 on (X1, X2)

and (b) its reduced model

Figure 7.23 Statistical results based on (a) anAR(2) interaction ISCMofY1 on (X1,X2,

X1�X2) and (b) its reduced model
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Example 7.16. (Other two-way interaction ISCMs) Figure 7.25(a) presents an
LV(2) interactions ISCM and its three alternative reduced models in Figure 7.25
(b), (c) and (d). Based on these statistical results, it could be said that the two-way

Figure 7.24 Alternative reduced models of the model in Figure 7.23(a): (a) an AR(1)
interaction model and (b) an AR(1) additive model

Figure 7.25 Statistical results based on an LV(2) interaction ISCM of Y1 and its three
alternative reduced models
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interaction model in Figure 7.25(c) and the additive model in Figure 7.25(d) are
the acceptable models, in a statistical sense. &

Example 7.17. (Three-way interaction ISCM) Figure 7.26(a) presents a hiera-
rchical three-way interaction ISCM of Y1 with exogenous variables X1, X2 and
X3, with the instrument list the same as the model in the previous Example 7.16.
In order to operate the option �Lagged dependent variables and regressors added
to instrument list,� the model should be at least an AR(1) model. Without the
indicator AR(1), the error message �Insufficient instruments� would be as
presented in Figure 7.6.

After doing experimentation, an AR(1) nonhierarchical three-way interaction
ISCM is obtained, as presented in Figure 7.26(b), where the three-way interaction
X1�X2�X3 has a significant negative adjusted effect on Y1 with a p-value¼ 0.0152.
Note that the three-way interaction X1�X2�X3 can be used as an independent
variable if and only if the three main factors or variables X1, X2 and X3 have a
complete association or correlation. In practice, however, it is very difficult to
evaluate or identify whether or not a set of three variables have a complete
association.For this reason, it shouldbehighlydependenton the statistical test. &

7.7.1 Special notes and comments

In fact, many other alternative instrumental two-way or three-way interaction
models could be developed or defined based on only three variables X1, X2 and
Y1, or on models based on five variables X1, X2, X3, Y1 and Y2. In addition to
these variables using the time t-variable could also be considered.

Figure 7.26 Statistical results based on (a) an AR(1) hierarchical three-way ISCM ofY1

on (X1, X2, X3) and (b) its reduced ISCM
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Since their lags could be used, with orwithoutAR indicator(s), as well asmany
of the alternative sets of instrument variables demonstrated inTable 7.1, then it is
possible to have countless infinite alternative instrumental models based on only
a set of three or five variables. By having more variables, many more problems
would be faced in defining amodel, eitherwith orwithout instrumental variables,
since the use of selected two-way or higher interaction exogenous variables in the
model would need to be considered. Three-way or higher interaction should be
used in a model if there is confidence that there is a complete association.

In practice, however, it is very difficult or almost impossible to identify a
complete association between three or more variables. For this reason, there
should be great dependence on the statistical tests, as presented in Example 7.17
and other examples in the previous chapters.

It has been found thatmany alternative exogenous variables have to be tried, as
well as the sets of instrumental variables, either with or without AR indicator(s),
in order to obtain one or two acceptable models. For this reason, it could be said
that some of the findings can be unpredictable or unexpected models, since the
impact of a set of instrument variables cannot be predicted, as well as the impact
of multicollinearity between the exogenous variables (see Section 2.14.2). In
other words, an acceptable or a good model is in fact the result of experimenta-
tion by using the trial-and-error methods.

7.8 Multivariate instrumental models based on the US_DPOC

7.8.1 Simple multivariate instrumental models

In this subsection simplemultivariate instrumental models are presented, such as
the bivariate instrumental models, which are associated with the Cobb–Douglas
(CD) and constant elasticity of substitution (CES) models.

Example 7.18. (Bivariate translog linear instrumental models) Figure 7.27
presents statistical results based on a bivariate translog linear instrumental
model, using the following AR(1) model as a base model:

logðy1Þ ¼ cð11Þþ cð12Þ*logðx1Þþ ½arð1Þ ¼ cð13Þ�
logðy2Þ ¼ cð21Þþ cð22Þ*logðx1Þþ ½arð1Þ ¼ cð23Þ� ð7:7Þ

For illustration purposes, alternative instrumental variables are presented as
follows:

(a) Instrument C, with the option �Lagged dependent variable and regressors
added to instrument list.�

(b) Instrument C log(x2), with the option �Lagged dependent variable . . . .�

Therefore, the data analysis will use the first lags of the dependent and
regressors of each regression as additional instrumental variables. Find their
outputs in Figure 7.27.
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Furthermore,notethattheoutput inFigure7.27(a)canalsobeobtainedbyusing
the following equation specification, without the option �Lagged dependent . . . :�

logðy1Þ ¼ cð11Þþ cð12Þ*logðx1Þþ ½arð1Þ ¼ cð13Þ� @c logðy1ð�1Þ logðx1ð�1ÞÞ
logðy2Þ ¼ cð21Þþ cð22Þ*logðx1Þþ ½arð1Þ ¼ cð23Þ� @c logðy2ð�1Þ logðx1ð�1ÞÞ

ð7:8Þ

This equation specification can easily be modified by using various sets of
instrumental variables. For illustration purposes, Figure 7.28 presents statistical
results by using the following equation specifications:

logðy1Þ ¼ cð11Þþ cð12Þ*logðx1Þþ ½arð1Þ ¼ cð13Þ� @c logðy1ð�1Þ logðx2Þ
logðy2Þ ¼ cð21Þþ cð22Þ*logðx1Þþ ½arð1Þ ¼ cð23Þ� @c logðy2ð�1Þ logðx3Þ

ð7:9Þ

with and without the option �Lagged . . . .�However, by not using the option, the
error message �Near singular matrix� is obtained. For this reason, the instruments
are modified, giving the instrumental model in Figure 7.28(b), p. 408. &

Example 7.19. (Another bivariate translog linear instrumental Model)
Figure 7.29(a) presents statistical results based on a bivariate translog linear
instrumentalmodel having two exogenous variables, with the following equation

Figure 7.27 Statistical results based on the model in (7.7) with (a) instrument C and (b)
instrument C log(x2), with the option �lagged . . . .�
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Figure 7.28 Statistical results based on (a) the model in (7.9) with the option �lagged . . .�
and (b) modified instruments without the option

Figure 7.29 Statistical results based on (a) the instrumental model in (7.10) and (b) its

reduced model
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specification:

logðy1Þ ¼ cð11Þþ cð12Þ*logðx1Þþ cð13Þ*logðx2Þþ ½arð1Þ ¼ cð14Þ�
logðy2Þ ¼ cð21Þþ cð22Þ*logðx1Þþ cð13Þ*logðx2Þþ ½arð1Þ ¼ cð23Þ�

Instrument C

ð7:10Þ

Since log(x2) has an insignificant effect on log(y2), then a reduced model is
obtained, as presented in Figure 7.29(b).

For an extension of this instrumental model, a CES model and its modifica-
tion, presented in Chapter 2, can be considered as the base model. Furthermore,
using various sets of instrumental variables,many translog instrumental models
could be obtained. Do this as an exercise. &

7.8.2 Multivariate instrumental models

Corresponding to the path diagram in Figure 2.89, which has been modified to
the path diagram in Figure 6.31 for the VARmodel, it would be good to study a
causal relationship or effects between the five variablesX1,X2,X3,Y1 andY2, by
using instrumental variables, without using the time t. For illustration purposes,
the path diagram presented in Figure 7.30 should be considered.

Corresponding to this path diagram, alternative multivariate models could be
defined, such as additive, two-way and three-way interactionmodels, which have
been presented in the previous chapters. By using instrumental variables, various
additive, two-way or three-way interaction multivariate instrumental seemingly
causal models (ISCMs) could be obtained.

Example 7.20. (Additive multivariate ISCMs) Corresponding to the path
diagram in Figure 7.30, the following AR(1) additive ISCM is presented, with
an instrument list �y1(�1) y2(�1) x1(�1) x2(�1) x3(�1):�

y1 ¼ cð11Þþcð12Þ*y1ð�1Þþcð13Þ*y2ð�1Þþcð14Þ*x1þcð15Þ*x2þ½arð1Þ¼cð16Þ�
y2 ¼ cð21Þþcð22Þ*y1ð�1Þþcð23Þ*y2ð�1Þþcð24Þ*x1þ½arð1Þ¼cð25Þ�
x1 ¼ cð31Þþcð32Þ*x2þcð33Þ*x3þ½arð1Þ¼cð34Þ�
x2 ¼ cð41Þþcð44Þ*x3þ½arð1Þ¼cð43Þ�

Instrument y1ð�1Þy2ð�1Þx1ð�1Þx2ð�1Þx3ð�1Þ
ð7:11Þ

   X2

   X3

X1

Y1t

Y2t

Y1,t-1

Y2,t-1

Figure 7.30 A hypothetical path diagram of seemingly causal models
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The data analysis can be done by selecting Object/New Object . . ./System . . .
OK; then insert or copy (7.11) to the equation specification window. However, if
an equation specification needs to be copied to the system, then the equation
should be produced or typed by using Microsoft Word, instead of the Object/
Microsoft Equation 3.0.

Then by selecting the TSLS estimation method and clickingOK, the statistical
results in Figure 7.31 are obtained. By using the AR(1) model and the option
�Lagged dependent variable . . . ,� then additional instrumental variables will be
obtained for each regression.

It has been found that by using the option �Lagged dependent variable . . . ,� any
set of instrument list can be used to replaced the instrument list of the model
in (7.11), which has been demonstrated in Example 7.18 based on the simplest
multivariate instrumental model using only �C� or �C log(x3)� in the instrument
list.

In this example, in fact, it was found that by using only �C� as an instrument for
the model in (7.11) with the option �Lagged . . . ,� the statistical results could also
be obtained, but almost all of the independent variables, as well as the indicator
AR(1), are insignificant. Based on this experimentation, it is certain that various
or any sets of instrumental variables could be used in the instrument list if the
option �Lagged . . .� is used.Do this as an exercise using your owndata set, with �C�
or one external variable in the instrumental list with the option �Lagged . . . .�
However, in some cases, the error messages �Near singular matrix� may be
obtained.

The problem is that the true or the best instrumental variables are never known
for a particular basic model. For further illustration purposes, the following

Figure 7.31 Statistical results based on the additive ISCM in (7.11)
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model presents amultivariateAR(1)model,where eachof the regressions has one
or two instrumental variables:

y1 ¼ cð11Þþ cð12Þ*y1ð�1Þþ cð13Þ*y2ð�1Þþ cð14Þ*x1þ cð15Þ*x2
þ ½arð1Þ ¼ cð16Þ� @c

y2 ¼ cð21Þþ cð22Þ*y1ð�1Þþ cð23Þ*y2ð�1Þþ cð24Þ*x1
þ ½arð1Þ ¼ cð25Þ� @c x2ð�1Þ

x1 ¼ cð31Þþ cð32Þ*x2þ cð33Þ*x3þ ½arð1Þ ¼ cð34Þ� @c y1ð�1Þ
x2 ¼ cð41Þþ cð44Þ*x3þ ½arð1Þ ¼ cð43Þ� @c y1ð�1Þ

ð7:12Þ

By using the option �Lagged dependent variables . . . ,� the statistical results in
Figure 7.32 are obtained. However, without the option the error message
�Insufficient instrument� would appear. It has been found that it is not easy to
select the sets of instrument lists if the option is not being used. In many cases
several error messages have been obtained, either �Near singular matrix� or
�Insufficient instrument� or �Convergence not achieved after 500 or 1000
interactions.�

Since some of the independent variables are insignificant with large p-values,
alternative reduced models may be produced, as presented in the previous
examples. Do this as an exercise. &

Example 7.21. (An AR(1) two-way interaction model with instruments)
Corresponding to the path diagram in Figure 7.30, the following full or
complete multivariate AR(1) two-way interaction model with instruments can
be defined; its statistical results are presented in Figure 7.33.

Figure 7.32 Statistical results based on the additive ISCM in (7.12)
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y1 ¼ cð11Þþcð12Þ*y1ð�1Þþcð13Þ*y2ð�1Þþcð14Þ*x1þcð15Þ*x2þcð16Þ*x1*x2
þcð17Þ*x1*x3þcð18Þ*x2*x3þ½arð1Þ¼cð19Þ�

y2 ¼ cð21Þþcð22Þ*y1ð�1Þþcð23Þ*y2ð�1Þþcð24Þ*x1þcð25Þ*x1*x2
þcð26Þ*x1*x3þ½arð1Þ¼cð27Þ�

x1 ¼ cð31Þþcð32Þ*x2þcð33Þ*x3þcð34Þ*x2*x3þ½arð1Þ¼cð35Þ�
x2 ¼ cð41Þþcð42Þ*x3þ½arð1Þ¼cð43Þ�

Instrument c y1ð�1Þy2ð�1Þx1ð�1Þx2ð�1Þx3ð�1Þ
ð7:13Þ

This model has the following characteristics:

(1) The interactions X1�X2 and X1�X3 in the first regression indicate that the
effect ofX1onY1 is dependent onX2 andX3. In otherwords,X2andX3have
indirect effects onY1, throughX1. Similarly, the interactionX2�X3 indicates
that X3 also has an indirect effect on Y1, through X2.

(2) The interactionsX1�X2 andX1�X3 in the second regression indicate that the
effect of X1 on Y2 is dependent on X2 and X3.

(3) The interactions X2�X3 in the third regression indicate that the effect of X2
on X1 is dependent on X3.

(4) Sincemany independent variables are insignificant, alternative reducedmodels
could be developed, which can easily be done. Do this as an exercise. &

Figure 7.33 Statistical results based on a multivariate AR(1) two-way interaction model
with instruments
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Example 7.22. (An extension of the additive growth model in (2.83))
Corresponding to the additive growth model in (2.83), an instrumental model
needs to be found using this model as a base model. Therefore, the following
equation specification has been tried as the first trial model:

y1 ¼ cð11Þþ cð12Þ*tþ cð13Þ*y2þ cð14Þ*x1 @cð1Þ y1ð�1Þ y2ð�1Þ x1ð�1Þ t
y2 ¼ cð21Þþ cð22Þ*x1þ cð23Þ*x2 @cð2Þ y2ð�1Þ x1ð�1Þ x2 x2ð�1Þ
x1 ¼ cð31Þþ cð32Þ*x2þ cð33Þ*x3 @cð3Þ x1ð�1Þ x2ð�1Þ x3ð�1Þ
x3 ¼ cð41Þþ cð42Þ*x2 @cð4Þ x2ð�1Þ x3ð�1Þ

ð7:14Þ
Note that each of the regressions is a basicmultiple regression. Since time series

data are being used, these models would have small values of the DW-statistic
(the statistical results are not presented). Therefore, multivariate autoregressive
models and the same sets of instrumental variables are used, finally giving the
unexpected ARmodel in Figure 7.34, since the first regression uses the indicator
AR(2), which is insignificant, instead of AR(1). The reasons for this are as
follows:

(1) By using the indicator AR(1) in the first regression, an output would
be obtained with the statement �Convergence not achieved after 500
iterations.�

(2) By using both indicators AR(1) and AR(2), an output would be obtained
where all independent variables of the first regression are insignificant.

(3) Since the output presents so many insignificant independent variables, it is
suggested that the model should be modified, as well as using other sets of
instrumental variables. Do this as an exercise.

Figure 7.34 Statistical results based on an MAR growth model with instruments
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(4) On the other hand, you may try to use �C� or one external variable in the
instrument list with the option �Lagged . . . .� &

Example 7.23. (An extension of the interaction growth model in (2.84)) The two-
way interaction growth model in (2.84) could be used as a base model and
alternative multivariate autoregressive models could be applied directly. Finally,
an acceptable autoregressive instrumental model is obtained as follows:

y1 ¼ cð11Þþ cð12Þ*tþ cð13Þ*y2þ cð14Þ*x1þ cð15Þ*y2*x1þ ½arð2Þ ¼ cð16Þ�
@ cð1Þ y1ð�1Þy2ð�1Þ x1ð�1Þt

y2 ¼ cð21Þþ cð22Þ*x1þ cð23Þ*x2þ cð24Þx1*x2þ ½arð1Þ ¼ cð25Þ�
@ cð2Þ y2ð�1Þ x1ð�1Þ x2 x2ð�1ÞÞ

x1 ¼ cð31Þþ cð32Þ*x2þ cð33Þ*x3þ cð34Þ*x2*x3þ ½arð1Þ ¼ cð35Þ�
@ cð23Þ x1ð�1Þ x2ð�1Þ x3ð�1Þ

x3 ¼ cð41Þþ cð42Þ*x2þ ½arð1Þ ¼ cð43Þ�@ cð4Þx1ð�1Þ x3ð�1Þ
ð7:15Þ

However, the statistical results of this model are not presented. Only the
statistical results based on an autoregressive instrumental model in Figure 7.35
are presented. Corresponding to this model, the following notes are given:

(1) In this experimentation, several statistical results are obtained, but the
convergence was not achieved after 1000 or 500 iterations, as presented in
Figure 7.35. On the other hand, in some cases the �Near singular matrix�

Figure 7.35 Statistical results based on an instrumental two-way interactionmodel, as an

extension of the multivariate growth model in (2.84)

414 Time Series Data Analysis Using EViews

www.trading-software-collection.com



error message was obtained. Therefore, it could be said that the statistical
result in this figure should be considered as an unacceptable result.

(2) Then an attempt was made to use or enter �C� and one or two variables in the
instrument list and to use the option �Lagged dependent . . . .� Several
alternative instruments were found where convergence was achieved after
less than 100 iterations. One of the models with the least number of
instruments is presented in Figure 7.36, using the following equation:

y1¼cð11Þþcð12Þ*tþcð13Þ*y2þcð14Þ*x1þcð15Þ*x1*y2þ½arð2Þ ¼ cð16Þ�
y2¼cð21Þþcð22Þ*x1þcð23Þ*x2þcð24Þ*x1*x2þ½arð1Þ ¼ cð25Þ�
x1¼cð31Þþcð32Þ*x2þcð33Þ*x3þcð34Þ*x2*x3þ½arð1Þ ¼ cð35Þ�
x3¼cð41Þþcð42Þ*x2þ½arð1Þ ¼ cð43Þ�

Instrument C y1ð�1Þ
ð7:16Þ

(3) Corresponding to this result, the following notes are presented:
. The first regression uses the indicator AR(2) instead of AR(1), since by
using AR(1), the error message �Near singular matrix� is obtained.

. On the other hand, by using both AR(1) andAR(2), the indicator AR(1) is
insignificant with a large p-value¼ 0.7241.

. Convergence is achieved after 45 iterations. For this reason, the estimates
of parameters are acceptable statistical results, which can be considered as
unexpected estimates.

. The instrument list is very simple. By using �C� only in the instrument list,
statistical results would be obtained where the convergence was not
achieved after 500 iterations and many parameters are insignificant with
very large p-values. &

Figure 7.36 Statistical results based on the ISCM in (7.16)
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Example 7.24. (An extension of the three-way interaction model in (2.89))
Corresponding to the two-way interaction model in (2.89), it would be
desirable to develop an instrumental three-way interaction growth model. By
using the trial-and-error methods, the acceptable statistical results based on the
ISCMin the followingmodelwere found, using the generalizedmethodofmoment
(GMM) estimation method instead of the TSLS or WTSLS estimation methods:

y1 ¼ cð11Þþ cð12Þ*tþ cð13Þ*y2þ cð14Þ*x1þ cð15Þ*y2*x1
þ cð16Þ*y2*x2þ cð17Þ*x1þ cð17Þ*x1*x2þ cð18Þ*x1*x3
þ cð19Þ*y2*x1*x2þ cð100Þ*x1*x2*x3þ ½arð2Þ ¼ cð101Þ�

y2 ¼ cð21Þþ cð22Þ*x1þ cð23Þ*x2þ cð24Þ*x1*x2
þ cð25Þ*x1*x3þ cð26Þ*x1*x2*x3þ ½arð1Þ ¼ cð27Þ�

x1 ¼ cð31Þþ cð32Þ*x2þ cð33Þ*x3þ cð34Þ*x2*x3þ ½arð1Þ ¼ cð35Þ�
x3 ¼ cð41Þþ cð42Þ*x2þ ½arð1Þ ¼ cð43Þ�

Instrument c y1ð�1Þ x1ð�1Þ

ð7:17Þ

Corresponding to the statistical results in Figure 7.37, the following notes are
presented:

(1) By using theTSLS estimation method, convergence is not achieved after 500
iterations and by using the WTSLS estimation method, convergence is not
achieved after one weight matrix and 1000 total coefficient iterations.

Figure 7.37 Statistical results based on the ISCM in (7.16), using the generalized method

of moments
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(2) The first regression uses the indicator AR(2) instead of AR(1). By using
AR(1) the �Near singular matrix� error message is obtained.

(3) Only three out of 23 parameters are insignificant with large p-values, so these
estimates can be considered as acceptable or good statistics. On the other
hand, it is very easy to derive alternative reduced models.

(4) Convergence is achieved after one weight matrix and 508 total coefficient
iterations. By using only the instrument �C y1(�1)�, convergence is achieved
after one weight matrix and 127 total coefficient iterations, but eight para-
meters are insignificant with large p-values. &

7.9 Further extension of the instrumental models

Each of the instrumental models presented in the previous examples using the
(original) variablesX1,X2,X3,Y1 andY2 can easily be extended to the following
types of instrumental models. However, additional examples will not be pre-
sented. Refer to Chapters 2, 3 and 4 for the equation specification of each model.

(1) Semilog instrumental models, with or without lower and upper bounds, as
well as with or without trend and time-related effects.

(2) Translog linear instrumental models, namely the Cobb–Douglas models,
with or without lower and upper bounds.

(3) Translog quadratic instrumental models, namely the constant elasticity of
substitution (CES) models, with or without lower and upper bounds.

(4) By using the first- or higher-order lagged independent or dependent variables,
as well as the AR indicators, and other forms of transformation, such as the
exponential transformations, e.g. the Box–Cox model, using (Yl� 1)/l as an
endogenous variable.

(5) Finally, instrumental models with dummy variables should also be consid-
ered in order to represent different patterns of themultiple associations of the
components of amultivariate time series between defined time periods, as the
impact of an external or environmental factor(s) should be observed or
known in advance by a researcher.

Instrumental Variables Models 417

www.trading-software-collection.com



www.trading-software-collection.com



8

ARCH models

8.1 Introduction

Autoregressive conditional heteroskedasticity (ARCH) models are specifically

designed to model and forecast variance. The variance of a dependent variable is

defined as a function of exogenous variables, which consists of the lagged dependent

and independent variables and other pure exogenous variables. In the first stage,

ARCH models were introduced by Engle (1982) and then generalized as GARCH

(Generalized ARCH) by Bollerslev (1986) (see EViews 4 User�s Guide, 2001, p. 385,
or EViews 6 User�s Guide II, p. 185).

In presenting an ARCH model, there are two distinct equations or specifications,

the first for the conditional mean and the second for the conditional variance. A more

detail explanation of the ARCH model will be presented in the following sections by

using examples.

8.2 Options of ARCH models

After opening the workfile by selecting Quick/Estimate Equation . . . , the options or
window on the left-hand side appear as shown in Figure 8.1. Then by selecting the

estimation setting �ARCH- . . . ,� the window on the right-hand side appears.

This window presents four alternative ARCH models, namely the GARCH/

TARCH (General/Threshold ARCH), EGARCH (Exponential GARCH), PARCH

and Component ARCH(1,1) models, or CGARCH, and other options, such as three

options of restriction, four options for ARCH-M, various alternative variance

regressors and five options for error distributions. In addition to these options, there

are various or many alternative selections for the orders of ARCH, GARCH and

Threshold. Since EViews 6 provides three types of orders, then the symbol TGARCH

(a, b, c) will be used to the indicate the model where the first integer indicates the

ARCH order, the second indicates the GARCH order and the third indicates the

Threshold order (refer to Example 8.1).
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8.3 Simple ARCH models

Corresponding to the classical growth model in (2.3), this section will presents

examples of simple ARCH models, namely ARCH(1), GARCH(1), TGARCH(1),

and GARCH(1,1) models, as well as special notes on ARCH models.

8.3.1 Simple ARCH models

Example 8.1. (The simplest ARCH classical growth models) Corresponding to

the classical growth model of M1 in Example 2.1, here the two simplest alternative

ARCH CGM (classical growth models) are considered, with the following AR(1)

_GCM as a base model or the mean model;

logðm1Þ c t arð1Þ ð8:1Þ

By using the default options presented in Figure 8.1 and entering the orders of

ARCH¼ 1, GARCH¼ 0 and Threshold¼ 0, the statistical results based on an ARCH

(1) or TGARCH(1,0,0) are obtained, as presented in Figure 8.2(a). Then by entering

orders ofARCH¼ 0,GARCH¼ 1 andThreshold¼ 0, the statistical results based on a

GARCH(1) or TGARCH(0,1,0) are obtained, as presented in Figure 8.2(b). Based on

these results, the following notes and conclusions are made:

(1) Both models are acceptable models, corresponding to their values of the DW-

statistic, as well as other statistics, including the Z-statistics.

(2) The equation of the ARCH(1) model is

logðm1tÞ ¼ cð1Þþ cð2Þtþ cð3Þmt�1 þ «t
s2
t ¼ cð4Þþ cð5Þ«2t�1

ð8:2Þ

Figure 8.1 The windows and options for the ARCH estimation method
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This model shows that the variance or volatility model is a simple linear

regression of s2
t on «2t�1.

(3) The equation of the GARCH(1) model is

logðm1tÞ ¼ cð1Þþ cð2Þtþ cð3Þmt�1 þ «t

s2
t ¼ cð4Þþ cð5Þs2

t�1

ð8:3Þ

This model shows that the variance or volatility model is a simple linear

regression of s2
t on s2

t�1.

(4) Since the GARCH(1) model has smaller values of the AIC and SC statistics than

the ARCH(1) model, the GARCH(1) model is preferred.

(5) For a comparison, by enteringorders ofARCH¼ 0,GARCH¼ 0andThreshold¼ 1,

the TARCH(1) or TGARCH(0,0,1) model is obtained as follows:

logðm1tÞ ¼ cð1Þþ cð2Þtþ cð3Þmt�1 þ «t

s2
t ¼ cð4Þþ cð5Þ«2t�1 * ð«t�1 < 0Þ

ð8:4Þ

This model shows that the variance or volatility model is a simple linear

regression of s2
t on «2t�1*ð«t�1 < 0Þ. Note that the special interaction factor is

«2t�1*ð«t�1 < 0Þ, where («t�1< 0) is a dummy variable with «t�1¼ 1 if «t�1< 0

and «t�1¼ 0 otherwise.

(6) For other types of the simplest ARCH models, conduct the analysis using the

models EGARCH, PARCHandComponentARCH(1,1), using the same orders as

above. Based on each output, the equation of the model can easily bewritten. For

GARCH variance series, in general, refer to Section 8.5. &

Figure 8.2 Statistical results based on (a) ARCH(1) and (b) GARCH(1) models

ARCH Models 421

www.trading-software-collection.com



Example 8.2. (TheTGARCH(1,1,0) classical growthmodels) Figure 8.3 presents

statistical results based on four alternative ARCH models using the default options,

namely GARCH/TARCH, EGARCH, PARCH and Component ARCH(1,1), with the

orders of ARCH¼ 1, GARCH¼ 1 and Threshold¼ 1, which is associated with the

TGARCH(1,1,0) model. Based on these statistical results, the following notes and

conclusions are presented:

(1) In mathematical statistics, the four models should be good statistical models.

However, corresponding to each data used, the best fit model should be selected

out of the four ARCH models, based on specific criteria.

Figure 8.3 Statistical results based on four alternative GARCH(1,1) models using the AR(1)

classical growth model in (8.2) and the default options
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(2) Based on the largest adjusted R-squared, the GARCH/TARCH model would be

chosen as the best fit model, as presented in Figure 8.2(a). Compare them using

other measures or statistics (refer to Section 11.3). Furthermore, based on this

model, the following findings are made:
. The exponential growth rate ofM1 is 1.6754, which is also the largest growth

rate.
. Each of the dependent variables, as well as the indicator AR(1), has a

significant effect on its corresponding dependent variable, based on the

Z-statistic.

(3) The equation of the model in Figure 8.3(a) is

logðm1tÞ ¼ cð1Þþ cð2Þtþ cð3Þmt�1 þ «t
s2
t ¼ cð4Þþ cð5Þ«2t�1 þ cð6Þs2

t�1

ð8:5Þ

Compare this with the conditional variance equations of the ARCH(1) model

in (8.2) and the GARCH(1) model in (8.3). Note that, in a three-dimensional

space, the variance model in (8.5) could be considered as a simple linear

regression of s2
1 on two independent variables «2t�1 and s2

t�1.

(4) The equation of the EGARCH model in Figure 8.3(b) is

logðm1tÞ ¼ cð1Þþ cð2Þtþ cð3Þmt�1 þ «t

logðs2
t Þ ¼ cð4Þþ cð5Þ

��� «t�1

st�1

���þ cð6Þ «t�1

st�1

þ cð7Þlogðs2
t�1Þ ð8:6Þ

Compared to the previous models, this model is a complex model, in a

theoretical aspect, as well as various alternative EGARCH models. It would be

interesting to know its real advantages, and likewise for the following PARCH

and Component ARCH(1,1) models. Refer to the special notes presented in

Section 8.3.2.

(5) The equation of the PARCH model in Figure 8.3(c) is

logðm1tÞ ¼ cð1Þþ cð2Þtþ cð3Þmt�1 þ «t
ðstÞcð8Þ ¼ cð4Þþ cð5Þ½j«t�1j�cð6Þ«t�1�cð8Þ þ cð7Þðst�1Þcð8Þ ð8:7Þ

(6) The equation of the Component ARCH(1,1) model in Figure 8.3(d) is

logðm1tÞ ¼ cð1Þþ cð2Þtþ cð3Þmt�1 þ «t
Q ¼ cð4Þþ cð5Þ½Qð�1Þ � cð4Þ� þ cð6Þ½«2t�1 � st�1�
s2
t ¼ Qþ cð7Þ½«2t�1 �Qð�1Þ� þ cð8Þ½s2

t�1 �Qð�1Þ�
ð8:8Þ

(7) For the equations of additional simple ARCH models, conduct an analysis using

the orders of ARCH¼ 1, GARCH¼ 1 and Threshold¼ 1, which will be called

TGARCH(1,1,1) for eachmodel GARCH/TARCH, EGARCH and PARCH. This

gives the models E_TGARCH(1,1,1) and P_TGARCH(1,1,1). Then, based on

each output, the equation of each model can easily be written. &
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8.3.2 Special notes on the ARCH models

Corresponding to the simple ARCH models in the previous examples, the following

special notes apply:

(1) In statistical theory, all of the simple ARCHmodels presented in Example 8.1, as

well as more advanced ARCH models, namely theTGARCH(a, b, c) model, are

acceptable or goodmodels, in a theoretical sense.However, their statistical results

are highly dependent on the data available for a researcher. An error message,

such as �Near singular matrix� or �Convergence not achieved . . . ,� could be

obtained, based on any of those models.

(2) Moreover, for a more advanced or complex ARCH model with variance re-

gressors, refer to the GARCH variance series presented in Section 8.5.

(3) Corresponding to various options available for the ARCHmodels, as presented in

Figure 8.1, it would be very difficult or almost impossible to select or define the

best combination of such a large number of possible options, since the true

populationmodel is never known, and nor is the true populationTGARCH(a, b, c)

model (refer to Section 2.14.1).

(4) Furthermore, since there is only a single observation at one time t, then the

variance or volatility of the observation would be unrealistic, particularly when

testing residual tests (refer to the special notes in Section 2.14.3). Tsay (2002,

p. 86) presents several statements on the weaknesses of ARCH models. Some of

those weaknesses are as follows:

The ARCHmodel does not provide any new insight for understanding the source of variation

of a financial time series. They only provide a mechanical way to describe the behavior of

conditional variance. It gives no indication about what causes such behavior to occur.

(5) Even though, a good fit ARCH model or an acceptable estimate has been

obtained, it is suggested that various residual analyses should be conducted in

order to explore the limitation of the model. Refer to various analyses that have

been illustrated in previous examples. For this reason, the following examples

will not present the residual analysis.

8.4 ARCH models with exogenous variables

8.4.1 ARCH models with one exogenous variable

The ARCH growth models presented in the previous examples can be generalized to

the ARCH model, where the mean model has one exogenous variable, with the

equation specification of the mean model as follows:

y c x arð1Þ arð2Þ � � � arðpÞ ð8:9Þ

Since this model is an AR(p) model, then the ARCH model will be named the AR

(p)_TGARCH(a, b, c) model with one exogenous variable, where the AR(p) indicates

the pth order autoregressive mean model of the TGARCH(a, b, c) model.
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Example 8.3. (AR(2)_TGARCH(1,0,0) and AR(2)_TGARCH(0,1,0) models)

Corresponding to the two simplest models in Example 8.1, Figure 8.4 presents

statistical results based on the two simplest ARCH models in (8.8) for p¼ 2, namely

the AR(2)_TGARCH(1,0,0) and AR(2)_TGARCH(0,1,0) models.

Note that both models present different coefficients, which indicates the different

impacts of the conditional variance models. Furthermore, it could be said that the

impact of a conditional variance model on the coefficient of the corresponding mean

model is unpredictable. &

8.4.2 ARCH models with two exogenous variables

The models presented in the previous examples can be generalized to the AR(p)_

GARCH(a, b, c) model with two exogenous variables, with the equation specification

as follows:

y c x1 x2 arð1Þ arð2Þ � � � arðpÞ ð8:10Þ

Example 8.4. (AR(2)_TGARCH(1,1,0) model) In fact, here the use is explored of

AR(2) indicators as an extension of the AR(1)_TGARCH(1,0,0) model presented in

Example 8.2. For this reason, the statistical results in Figure 8.5 have been obtained

based on the following AR(2)_TGARCH(1,1,0) model:

Y1;t ¼ cð1Þþ cð2Þ * X1;t þ cð3Þ * X2;t þ ut
ut ¼ r1ut�1 þ r2ut�2 þ «t
s2
t ¼ a0 þa1«

2
t�1 þa2s

2
t�1

ð8:11Þ

Figure 8.4 Statistical results based on the AR(2)_TGARCH(1,0,0) and AR(2)_GARCH

(0,1,0) models of log(Y1) on X1
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Based on the results in Figure 8.5(a) and (b), the following notes and conclusions

are presented:

(1) Figure 8.5(a) presents a note �Estimated AR process is nonstationary,� so the data
does not support the model as a good time series model. Note that the results are

highly dependent on the data, whether or not the model is a good model.

(2) For a comparison, the samemodel is run using another data set, with the statistical

results presented in Figure 8.5(b). Based on the results, the following notes and

conclusions are presented:
. The data support the model as a good fit time series model, even though X2 and

the indicator AR(2) are insignificant.
. The two statistical results in Figure 8.5 have demonstrated that the good fit

model is highly dependent on the data.
. In a statistical sense, this model should be reduced. By deleting X2 and the

indicator AR(2), the AR(1)_GARCH(1,1,0) model with one exogenous vari-

able should have a good fit. Do this as an exercise.
. On the other hand, the Residð1Þ2 ¼ «2t�1 and GARCHð�1Þ ¼ s2

t�1 are insig-

nificant. Therefore, the variance model should also be modified. By deleting

either one of these variables, the statistical results in Figure 8.6 are obtained.

(3) The equation of the first reduced model, namely the AR(2)_TGARCH(1,0,0)

model, is

Y1;t ¼ cð1Þþ cð2Þ*X1;t þ cð3Þ*X2;t þ ut
ut ¼ r1ut�1 þ r2ut�2 þ «t
s2
t ¼ a0 þa1«

2
t�1

ð8:12Þ

Figure 8.5 Statistical results based on the A_GARCH(2,1,1) model using two data sets
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and the equation of the second reduced model, namely the AR(2)_TGARCH

(0,1,0) model, is

Y1;t ¼ cð1Þþ cð2Þ*X1;t þ cð3Þ*X2;t þ ut
ut ¼ r1ut�1 þ r2ut�2 þ «t
s2
t ¼ a0 þa1s

2
t�1

ð8:13Þ

(4) So far there have been three alternative acceptable statistical results having

endogenous Y1 and two exogenous variables X1 and X2. Considering only these

three results, which one do you think is the best model? Use your judgment to

select one, by using the values of any statistics available in the output. &

Example 8.5. (Alternative AR(2)_TGARCH(1,1,0) models) By using any AR(2)

time series models presented in the previous chapters, it is easy to derive or define

various alternative AR(2)_TGARCH(1,1,0) models. In this example, alternative

special models with the endogenous variable log(Y1) and two exogenous variables

X1 and X2 are presented, as follows:

(i) Semilogarithmic (Semilog) AR(2)_TGARCH(1,1,0) Model

logðYtÞ ¼ cð1Þþ cð2Þ * X1;t þ cð3Þ * X2;t þmt

mt ¼ r1mt�1 þ r2mt�2 þ «t
s2
t ¼ a0 þa1«

2
t�1 þa2s

2
t�1

ð8:14Þ

Figure 8.6 Statistical results based on two ARCH models, namely (a). AR(2)_GARCH

(1,0,0) and (b) AR(2)_TGARCH(0,1,0) models
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(ii) Cobb–Douglas (CD) or Translog Linear AR(2)_TGARCH(1,1,0) Model

logðYtÞ ¼ cð1Þþ cð2Þ * logðX1;tÞþ cð3Þ * logðX3;tÞþmt

mt ¼ r1mt�1 þ r2mt�2 þ «t

s2
t ¼ a0 þa1«

2
t�1 þa2s

2
t�1

ð8:15Þ

(iii) Mixed AR(2)_TGARCH(1,1,0) Model

logðYtÞ ¼ cð1Þþ cð2Þ * logðX1;tÞþ cð3Þ * X2;t þmt

mt ¼ r1mt�1 þ r2mt�2 þ «t

s2
t ¼ a0 þa1«

2
t�1 þa2s

2
t�1

ð8:16Þ

(iv) CES or Translog Quadratic AR(2)_TGARCH(1,1,0) Model

logðYtÞ ¼ cð1Þþ cð2Þ*logðX1;tÞþ cð3Þ*logðX2;tÞ
þ cð4ÞlogðX1;tÞ2 þ cð5ÞlogðX1;tÞlogðX2tÞþ cð6ÞlogðX2;tÞ2 þmt

mt ¼ r1mt�1 þ r2mt�2 þ «t

s2
t ¼ a0 þa1«

2
t�1 þa2s

2
t�1

ð8:17Þ

Note that this model is in fact an extension of the CES (constant elasticity of

substitution) production model in (4.103), which is a Taylor approximation of a

nonlinear production function:

Q ¼ QðK; LÞ ¼ A½aK�t þð1�aÞL�t�1=t ð8:18Þ

where A> 0 is an efficiency parameter, a is a distribution parameter with

0<a< 1 and t is a substitution parameter with t>�1 of the CES model.

Under the null hypothesis H0: c(4)¼ c(5)¼ c(6)¼ 0, the model in (8.15) will

become the CD model.

(v) A Modified Translog Quadratic AR(2)_TGARCH(1,1,0) Model

logðYtÞ ¼ cð1Þþ cð2Þ*logðX1;tÞþ cð3ÞlogðX2;tlogÞ
þ cð4ÞðlogðX1;tÞ�logðX2;tÞÞ2 þmt

mt ¼ r1mt�1 þ r2mt�2 þ «t

s2
t ¼ a0 þa1«

2
t�1 þa2s

2
t�1

ð8:19Þ

This model is an extension of the modified CES model in (4.104). &

Example 8.6. (An application of the AR(2)_TGARCH(1,1,0) model in

(8.19)) Figure 8.7 presents statistical results based on the model in (8.19) and a

correlation matrix of its residual, namely Resid01, with the three exogenous
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variables log(X1), log(X2) and (log(X1)� log(X2))2. Based on this figure the

following notes are presented:

(1) Each of the independent variables of the variance model is insignificant, so this

model should be modified. It has been found that the A_GARCH(2,0,1) model is

an acceptable model.

(2) On the other hand, each of the exogenous variables log(X1) and log(X2) is

significantly correlated with Resid01. For this reason, the instrumental mean

model should be used. However, since there is no ARCHmodel with instruments,

themeanmodel should bemodified byusing other additional exogenous variables

or other types of mean model. Do this as an exercise. &

8.4.3 Advanced ARCH models

By using a similar process or method presented in the previous examples, it is easy to

define various alternative ARCH models based on any models with multivariate

exogenous variables presented in the previous chapters, as the mean models. In

general, corresponding to the LVAR(p, q) models for various integers (p, q), including

the LVAR(p, q)_GM in (2.26) and LVAR(p, q)_SCM in (4.37), there can be advanced

ARCH models, namely LVAR(p, q)_TGARCH(a, b, c) models, with various multi-

variate variance regressors. For illustrative purposes, note the following examples.

Example 8.7. (Extension of the model in (2.38)) Based on the translog linear AR

(1)model in (2.38) presented in the previous Example 8.16, as shown by the following

equation, it is easy to derive various alternative ARCH models, as presented in the

Figure 8.7 Statistical results based on the A_GARCH(2,1,1) model in (8.19) and its

covariance analysis
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previous examples:

logðm1Þ ¼ Cð1ÞþCð2Þ*tþCð3Þ*logðgdpÞ
þCð4Þ*logðprÞþ ½ARð1Þ ¼ Cð5Þ� ð8:20Þ

However, here two alternative simple models, with and without a variance

regressor, will be presented, as follows.

(1) Models without a Variance Regressor

Figure 8.8 presents statistical results based on two models, namely AR(1)_

TGARCH(1,1,0) and AR(1)_TGARCH(1,1,1) models. Both variancemodels are

acceptablemodels, even though log(pr) is insignificantwith largep-values in both

mean models. Therefore, the mean models should be modified. Do this as an

exercise and compare with the results in Figure 8.9.

(2) Models with a Variance Regressor

Figure 8.9 presents statistical results based on two models, namely AR(1)_

TGARCH(1,1,0) and LV(1)_TGARCH(1,1,0) models with a variance regressor

log(RS). Based on this figure the following notes are presented:

(a) Thevariancemodel of theAR(1)_TGARCH(1,1,0) is an acceptablemodel, in

a statistical sense, since each of the independent variables is significant.

However, the variance model of the LV(1)_TGARCH(1,1,0) is an unaccept-

able model, since all independent variables are insignificant. Therefore, this

model should be modified.

(b) Compared to themodelswithout a variance regressor in Figure 8.9, where log

(PR) is insignificant, based on the model with the variance regressor log(RS),

log(PR) is significant in both models.

Figure 8.8 Statistical results based on (a) AR(1)_TGARCH(1,1,0) and (b) AR(1)_TGARCH

(1,1,1) models
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(c) The statistical results in Figures 8.8 and 8.9 have demonstrated unpredictable

impact(s) of the variance model on the parameter estimates of a certain or

specific mean model, which is highly dependent on the data set as well as the

variance model. &

Example 8.8. (Student�s t and GED error distributions) Figure 8.10 presents

statistical results based on the AR(1)_TGARCH(1,1,0) model in Figure 8.9(a), by

using the assumptions that the error terms have Student�s t or generalized error (GED)
distributions, instead of the normal (Gaussian) distribution. Based on these results the

following notes are derived:

1. Based on the results in Figure 8.10(a), the following notes and conclusions are

presented:

(a) It has been recognized that using Student�s t error distribution a better

parameter estimate can be obtained than the normal error distribution. Note

that Figure 8.10(a) shows that the T_DIST CDF is accepted based on the

Z-statistic, where Z0¼ 1.212 689 with a p-value¼ 0.2252.

(b) The R-squared, as well as the adjusted R-squared, are greater than using the

normal error distribution.

(c) The inverted AR roots¼ 0.98 compared with 0.99 based on the results using

the normal error distribution.

(d) On the other hand, log(pr) has an insignificant effect on log(m1) with a large

p-value¼ 0.3297> 0.20. For this reason, there may be a reduced model.

However, the results of the reduced model are not presented. Do this as an

exercise.

Figure 8.9 Statistical results based on (a) AR(1)_TGARCH(1,1,0) and (b) LV(1)_TGARCH

(1,1,0) models with a variance regressor
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2. Based on the GED error distribution in Figure 8.10(b), the following notes are

presented:

(a) Since the inverted AR roots¼ 1.00 with a message �Estimated AR process is

nonstationary,� the results are not acceptable or good estimates, in a statistical

sense. Furthermore, note that the GED parameter is rejected based on the

Z-statistic, where Z0¼ 5.933 707 with a p-value¼ 0.0000.

(b) Observing that the independent variable t has such a large p-value¼ 0.9934,

an attempt was made to apply the reduced model by deleting the independent

variable t. The inverted AR roots¼ 1.00 was obtained, but without the

message �Estimated AR process is nonstationary.� Therefore, this reduced

model should be considered as an acceptable model, based on the data set

used.

3. In fact, there are two other alternative assumptions of the error distributions,

namely the Student�s t with fixed df and the GED with fixed parameter. Do this to

provide a comparison. &

Example 8.9. (Extensions of the model in (2.59)) For more advanced ARCH

models, the TGARCH(a, b, c)model can be derived using theAR(1)modelwith time-

related effects in (2.59) as the mean model. In this case, the equation specification of

the mean model is

logðm1Þ c logðgdpÞ logðprÞ logðgdpÞ * logðprÞ
t t * logðgdpÞ t * logðprÞ t * logðgdpÞ * logðprÞ arð1Þ ð8:21Þ

Figure 8.10 Statistical results based on the AR(1)_TGARCH(1,1,0) model in Figure 8.9(a)

using (a) the Student�s t and (b) the GED error distributions
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As an illustration, statistical results are only presented based on two models, namely

the AR(1)_TGARCH(0,1,0) and AR(1)_TGARCH(0,1,1) models, with the variance

regressor log(RS ) (see Figure 8.11). &

Example 8.10. (Extensions of the LVAR(2,1)_SCM in (4.39)) As the extension of

the LVAR(2,1)_SCM in (4.39), the following mean model and TGARCH(a, b, c)

models will be presented:

logðm1Þ ¼ cð10Þþ cð11Þ * logðm1ð�1ÞÞþ cð12Þ * logðm1ð�2ÞÞ
þ cð20Þ * logðgdpÞþ cð21Þ * logðgdpð�1ÞÞþ ½arð1Þ ¼ cð1Þ� ð8:22Þ

By using trial-and-error methods, two acceptable statistical results or estimates

have finally been found, as presented in Figure 8.12. Figure 8.12(a) presents the

estimates based on an LV(2)_TGARCH(1,0,1) model with variance regressors log

(PR) and log(PR)�log(RS ), under the assumption of the Student�s t error distribution,
and Figure 8.12(b) presents the estimates based on an LVAR(1,1)_TGARCH(1,0,1)

model with variance regressors log(PR) and log(RS), under the assumption of the

GED error distribution.

Based on the results in this figure, the following notes are given:

(1) Figure 8.12(a) shows an interaction LV(2)_GARCH (1,0,1) model and Fig-

ure 8.12(b) shows an interaction LVAR(1,1)_GARCH(1,0,1) model, with the the

variance model as follows:

s2
t ¼ cð6Þþ cð7Þ«2t�1 þ cð8Þ«2t�1 * ð«t�1 < 0Þ

þ cð9ÞlogðPRÞþ cð10ÞlogðPRÞ * logðRSÞ ð8:23Þ

Figure 8.11 Statistical results based on (a) AR(1)_TGARCH(0,1,0) and (b) AR(1)

_TGARCH(0,1,1) models with a variance regressor

ARCH Models 433

www.trading-software-collection.com



(2) The development of this variance model is under the assumption that the

conditional variance s2
t is dependent on log(PR) and log(RS). Furthermore, it

is known that the effect of log(PR) on the variance s2
t is dependent on log(RS), so

that the model has the two-way interaction log(PR)�log(RS). Note that RS has a

positive growth rate for t< 119 and is negative otherwise.

(3) It has been found that it is not easy to obtain acceptable or good estimates as

presented in Figure 8.12. Trial-and-error methods have been used to select the

best fit for both the mean model in (8.22) and the variance model with the

exogenous variables log(PR), log(RS) and log(PR)�log(RS), as well as alternative
orders of the ARCH, GARCH and Threshold models and the error distribution.

Therefore, these statistical results should be considered as unexpected results,

which are highly dependent on the data, and they cannot be generalized. In some

cases, after having a large number of trials, there may not be success in getting

acceptable statistical results or estimates.

(4) Best judgment should be used to select a set of variance regressors, since the true

set of variance regressors may never be known, as well as the true (population)

variance model. &

Example 8.11. (Graphical representation of the GARCH variance series) This

example presents additional analyses based on the model in Figure 8.12(a). By

selecting Proc/Make GARCH variance series . . . , an additional variable, namely

Figure 8.12 Statistical results based on two LVAR(p, q)_TGARCH(a, b, c) models, under the

assumptions of (a) Student�s t and (b) GED error distributions
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GARCH01, can be placed in theworkfile. Then further data analysis can be conducted

on this series, such as its graphical representation.

Figure 8.13 presents two graphical representations of GARCH01, which is the

variance series of the LV(2)_TGARCH(1,0,1) model in Figure 8.12(a). This figure

clearly shows that there are several near and far outliers. Therefore, it should be

mentioned that this is a limitation of the defined model.

For a comparison, it was found that a GARCH variance series of the LV(2)

_TGARCH(0,0,1) model, namely the GARCH02 series, as presented in Figure 8.14,

shows no outlier. However, compared to the previous model, this variance model has

two insignificant independent variables, with the following regression function and

the t-statistics shown in [�], but the variance series tends to increase with time:

ŝ2
t ¼ 0:0003

½4:11�
þ 0:0358«2t

½4:11�
* ð«t�1 < 0Þ

þ 0:0001logðPRÞ
½2:72�

� 0:0001logðPRÞ
½�0:6196�

* logðRSÞ ð8:24Þ

Which model do you prefer?

Figure 8.14 Growth curve and box plot of the GARCH variance series of the LV(2)

_TGARCH(0,0,1) model as a modified model in Figure 8.12(a)

Figure 8.13 Growth curve and box plot of the GARCH variance series of the LV(2)_

TGARCH(1,0,1) model in Figure 8.12(a)
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Figure 8.15 presents an additional comparison between the empirical CDF

(cumulative distribution function) of the GARCH variance series. Since the condi-

tional variance model of the LV(2)_TGARCH(0,0,1) model has two insignificant

independent variables, then the LV(2)_TGARCH(1,0,1) model is preferred, in a

statistical sense.

However, at the significant level of 0.10, Figure 8.12(b) shows that log(PR) has a

significant positive adjusted effect ons2
t with a p-value¼ 0.1207/2¼ 0.06035 and log

(PR)�log(RS) has a significant negative adjusted effect ons2
t with a p-value¼ 0.1356/

2¼ 0.0678. Based on these conclusions, and since theGARCH03 series does not have

an outlier, this model should be considered as a good or best fit model. &

8.5 Alternative GARCH variance series

Corresponding to options of the orders ARCH¼ a, GARCH¼ b and Threshold/

Asymmetric¼ c, and alternative models GARCH/TARCH, EGARCH and PARCH,

other terminologies should be used, as follows.

8.5.1 General GARCH variance series for the GARCH/TARCHmodel

In this case, corresponding to the orders of ARCH¼ a, GARCH¼ b and TARCH¼ c,

the conditional variance model, namely TGARCH(a, b, c), has the following general

equation:

s2
t ¼ vþ

Xa
i¼1

ai«
2
t�1 þ

Xb
j¼1

bjs
2
t�j

Xc

k¼1

gk«
2
t�k * ð«t�k < 0Þþ

XK
l¼1

l1Xl;t ð8:25Þ

where the Xl,t�s are the variance regressors. However, the output of EViews 6 presents
different ordering of the independent variables. Then for selected integers of a, b and

c, the following special TGARCH models are obtained:

(1) For a „ 0, b¼ 0 and c¼ 0

In this case, the conditional variance model, namely TGARCH(a,0,0), has the

following general equation, which has been known as the ARCH(a) model with

Figure 8.15 Empirical CDF of the GARCH01 and GARCH03 variance series
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variance regressors:

s2
t ¼ vþ

Xa
i¼1

ai«
2
t�i þ

XK
l¼1

l1Xl;t ð8:26Þ

(2) For a¼ 0, b „ 0 and c¼ 0

In this case, the conditional variance model, namely TGARCH(0,b,0), has the

following general equation, which has been known as the GARCH(b) model with

variance regressors:

s2
t ¼ vþ

Xb
j¼1

bjs
2
t�j þ

XK
l¼1

l1Xl;t ð8:27Þ

(3) For a¼ 0, b¼ 0 and c „ 0
In this case, the conditional variance model, namely TGARCH(0,0,c), has the

following general equation, which has been known as the TARCH(c) model with

variance regressors:

s2
t ¼ vþ

Xc

k¼1

gk«
2
t�k * ð«t�k < 0Þþ

XK
l¼1

l1Xl;t ð8:28Þ

8.5.2 General GARCH variance series for the EGARCH model

In this case, corresponding to the orders of ARCH¼ a, GARCH¼ b and Asym-

metric¼ c, the conditional variance model, namely EGARCH(a, b, c), has the

following general equation:

logðs2
t Þ ¼ vþ

Xa
i¼1

ai

���� «t�1

st�1

����þXb
j¼1

bilogðs2
t�jÞ

þ
Xc

k¼1

gk

���� «t�k

st�1

����þXK
l¼1

l1Xl;t

ð8:29Þ

where the Xl,t�s are the variance regressors. However, the output of EViews 6

presents different ordering of the independent variables. For selected integers of a, b

and c, the following special EGARCHmodels are obtained, but if c „ 0, then a „ 0 or
b „ 0:

(1) For a „ 0, b¼ 0 and c¼ 0

In this case, the conditional variance model, namely EGARCH(a,0,0), has the

following general equation, which has been known as the EARCH(a) model with

variance regressors

logðs2
t Þ ¼ vþ

Xa
i¼1

ai

���� «t�1

st�1

����þ XK
l¼1

l1Xl;t ð8:30Þ
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(2) For a¼ 0, b „ 0 and c¼ 0

In this case, the conditional variance model, namely EGARCH(0,b,0), has the

following general equation, which has been known as the EGARCH(b) model

with variance regressors:

logðs2
t Þ ¼ vþ

Xb
j¼1

bjlogðs2
t�jÞþ

XK
l¼1

l1Xl;t ð8:31Þ

8.5.3 General GARCH variance series for the PARCH model

In this case, corresponding to the orders of ARCH¼ a, GARCH¼ b and Asym-

metric¼ c, the conditional variance model, namely PARCH(a, b, c), has the

following general equation. However, note that the following error message in

Figure 8.16 can be obtained for some selected integers a, b and c, which indicates

that the model has been using a variable having negative values to a noninteger

power. Refer to the power to C(8) in the variance model in (8.7), where C(8) will, in

general, be a noninteger power.

For this reason, only selected PARCH(a, b, c) models are presented, which are

estimable models, as follows:

(1) PARCH(a,0,0) Models

This model has the following general equation:

ðstÞu ¼ vþ
Xa
j¼1

aij«t�iju þ
XK
l¼1

l1Xl;t ð8:32Þ

(2) PARCH(0,b,0) Models

This model has the following general equation:

ðstÞu ¼ vþ
Xb
j¼1

bjjst�iju þ
XK
l¼1

l1Xl;t ð8:33Þ

Figure 8.16 An error message for selected integers a, b and c
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(3) A PARCH(3,1,2) Model

Based on the output, this model has the following equation, where the mean

model has five parameters, namely C(1) up to C(5):

@SQRTðGARCHÞCð15Þ ¼ ðstÞCð15Þ
¼ Cð6ÞþCð7Þ * fABSðRESIDð�1ÞÞ�Cð8Þ * RESIDð�1ÞgCð15Þ
þCð9Þ * fABSðRESIDð�2ÞÞ�Cð10Þ * RESIDð�2ÞgCð15Þ
þCð11Þ * ABSðRESIDð�3ÞÞCð15Þ
þCð12Þ * @SQRTðGARCHð�1ÞÞCð15Þ

ð8:34Þ

Note that the first integer in PARCH(3,1,2) indicates that the variancemodel has

three independent variables ABS(RESID(�1))¼ |«t�1|, ABS(RESID(�2))¼ |«t�2|

and ABS(RESID(�3))¼ |«t�3|, which in general can be presented as |«t�i|, i¼ 1,2

and 3; the second integer indicates an independent variable SQRT(GARCH

(�1))¼st�1 and the third integer indicates the two independent variables

Resid(1)¼ «t�1 and Resid(�2)¼ «t�1, which in general can be presented as «t�j,

j¼ 1 and 2. This model can easily be extended by using the variance regressors.

8.5.4 General GARCH variance series for
the component ARCH(1,1) model

This model has the options in Figure 8.17, so there are two alternative conditional

variance models corresponding to the threshold term.

Based on the default options, namely the model without the threshold term, the

conditional variance model has the following equation, if and only if the mean model

Figure 8.17 The options for the component ARCH(1,1) model
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has five parameters C(1) to C(5):

Qt ¼ Cð6ÞþCð7Þ * fQt�1�Cð6ÞgþCð8Þ * ð«2t�1�s2
t�1Þ

s2
t ¼ QtþCð9Þ * ð«2t�1�s2

t�1ÞþCð10Þ * ð«2t�1�s2
t�1Þ

ð8:35Þ

The equation of the conditional variance model with the threshold term is as follows:

Qt ¼ Cð6ÞþCð7Þ * fQt�1 � Cð6ÞgþCð8Þ * ð«2t�1�s2
t�1Þ

s2
t ¼ Qt þfCð9ÞþCð10Þ * ð«t�1 < 0Þg * ð«2t�1�Qt�1ÞþCð11Þ * ðs2

t�1�Qt�1Þ
ð8:36Þ

The extension of these models are the condition variance Component ARCH(1,1)

models with variance regressors.

8.5.5 Special notes on the GARCH variance series

Corresponding to the GARCH variance series with general equations in (8.25) up

to (8.36), there is every confidence that an infinite number of alternative ARCH models

could be obtained by using any univariate time series models presented in the previous

chapters, as well as other univariate models or multiple regressions, as the mean models.

However, in this experimentation, many of the conditional variance models have been

found to have insignificant independent variables with large p-values. Refer to themodel

in (8.24) and conduct additional data analysis using various integers a, b and c.

Based on the rule of thumb, if a conditional variance model has an insignificant

independent variable with a p-value �0.20, then the conditional variance model

should bemodified. Corresponding to a p-value<0.20, a conclusion can bemade that

the corresponding independent variable has a significant effect, either positive or

negative, on the dependent variable at the 0.10 significant level. In other words, if all

independent variables of any model have p-values <0.20, then the models should be

considered as acceptable or good models.
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9

Additional testing hypotheses

9.1 Introduction

This chapter presents specific testing hypotheses, such as the unit root test,
omitted and redundant variable tests and Ramsey�s RESET test, in addition to
the testing hypotheses, which have been presented in the previous chapters.

Previous chapters show that an analyst can have a very large number of
alternative linearmodels, evenones based ononly three or four time series.Hence
there is uncertainty regarding the appropriateness or goodness of fit of all models
presented or specified by a researcher. EViews provides an excellent interactive
procedure or process for evaluating the equation specifications. However, it
should be remembered or realized that any statistic, including the conclusion of a
testing hypothesis, that is based only on sampled data should be used empirically
with care. Considering the truth of any populationmodel, aswell as the true set of
instrumental variables, the truemean and variance equations, note the statement
�In data analysis we must look on a very heavy emphasis on judgment� (Tukey,
1962, quoted byGifi, 1990, p.23). Corresponding to this statement, it is suggested
that there should be a good or strong theoretical and substantial base for any
proposed model specification.

Furthermore, also note that the conclusion of a testing hypothesis to omit or
delete an exogenous variable from the model cannot be taken absolutely or for
granted. Corresponding to a testing hypothesis, Hample (1973, quoted by Gifi,
1990, p. 27) stated: �Often in statistics one is using parametric models. . . .
Classical (parametric) statistics derives results under the assumption that these
models are strictly true. However, apart from simple discrete models perhaps,
suchmodels are never exactly true.�Therefore, it could be said that the conclusion
of a testing hypothesis based on a model could not represent the true value(s) of
the population parameters, especially if the model has a large number of
independent variables.

Time Series Data Analysis Using EViews IGN Agung
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Corresponding to the simple linear models, Agung (2006) has presented the
application of linear models, either univariate or multivariate, starting from the
simplest linearmodel, i.e. the cell-meansmodels, based on either a single factor or
multifactors. Refer to the cell-means models presented in Section 4.2.2. Even
though this cell-means model could easily be justified as the true population
model, the corresponding estimated regression function is highly dependent on
the sampled data.

9.2 The unit root tests

9.2.1 Simple unit root test

Note that the simple unit root test described in this subsection is valid only if
the series {Yt} is an AR(1) process. If the process {Yt} has a unit root, then the
following first differencemodel should be applied, which can be considered as the
simplest first difference time series model.

Yt ¼ Yt�1 þ ut ð9:1Þ
or

dðYtÞ ¼ Yt � Yt�1 ¼ ut ð9:2Þ
In practice, in order to test the unit root of a stochastic process {Yt}, the

following equation should be considered:

dðYtÞ ¼ dYt�1 þ ut ð9:3Þ
If the null hypothesisH0: d¼ 0 (or the first autocorrelation r1¼ 1) is true, then a unit
root is obtained, which indicates that the time series under consideration is
nonstationary. Dickey and Fuller have computed the critical values of the t-statistic
on the basis of Monte Carlo simulations. This t-statistic or test is known as the
Dickey–Fuller (DF) test, which does not follow the usual t-distribution. TheDF test
is estimatedbyusing three different equations, as presented inEViews.The three test
equations are

dðYtÞ ¼ cð1ÞYt�1 þ cð2Þþ ut ð9:4Þ
dðYtÞ ¼ cð1ÞYt�1 þ cð2Þþ cð3Þ@TRENDþ ut ð9:5Þ

dðYtÞ ¼ cð1ÞYt�1 þ ut ð9:6Þ

Themodel in (9.4) with an intercept, indicated by the parameter c(2), represents
a random walk with drift, the model in (9.5) with a trend and an intercept
represents a random walk with drift around a stochastic trend and the model
in (9.6) represents a random walk.

In each case, the null hypothesis is c(1)¼ d¼ 0, which indicates that there is a
unit root or the time series is nonstationary. The alternative hypothesis is
c(1)¼ d< 0, which indicates that the time series is stationary. Therefore, if the
null hypothesis is rejected, it means thatYt is a stationary time series with amean
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of c(2)/c(1) in the case of a random walk with drift (9.4), that Yt is a stationary
time series around a deterministic trend in the case of a random walk with drift
around a stochastic trend (9.5) and that Yt is a stationary time series with zero
mean in the case of a random walk (9.6).

The data analysis for testing the unit root can be done as follows:

(1) ClickView/Show . . . and then enter the name of a defined or selected variable.
By clicking OK, the values of the variables will be seen on the screen.

(2) Click View/Unit Root Test. . . and the window or options, as presented in
Figure 9.1will be seen.By clickingOK, it is easy to obtain the statistical results
using the default option.

(3) Figure 9.2 presents the type test and criterion alternative options, so that
alternativeunitroottestscaneasilybeconducted.Findthefollowingexamples.

Example 9.1. (Regression with a unit root) Figure 9.3 presents statistical results
for testing that log(p) has a unit root. Based on this figure, the following notes and
conclusions can be obtained:

(1) The null hypothesis of log(p) that has a unit root is accepted, that isH0: d¼ 0,
either using the intercept model in (9.4) or the trend and intercept model

Figure 9.1 The default options for the unit root test
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in (9.5). In fact, H0: d¼ 0 is also accepted based on the random walk model
in (9.6).

(2) Based on the intercept model, log(p(�1)) has an insignificant adjusted effect
on the first difference, d log(p), at a significant level of a¼ 0.05. Hence, using
the usual or common t-test, the null hypothesis, H0: d¼ 0, is also accepted,
based on t0¼�0.307 405 with a p-value¼ 0.7609. However, based on the
trend and intercept model, the null hypothesis is rejected, based on the usual
t-statistic of t0¼�2.757 71 with a p-value¼ 0.0105. Based on these findings,
the following notes are presented:
. The contradictory results occur because of the very high correlation
between the trend variable, t, and log(p(�1)). Figure 9.4 presents the
statistical results based on a simple linear regression of log(p(�1)) on the
time t, with its scatter graph in Figure 9.5.

Figure 9.2 Test type and criterion options for the unit root test

Figure 9.3 The unit root tests of log(P), using the models in (9.4) and (9.5)
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. The results can raise some questions, such as (i) should only the augmented
Dickey–Fuller (ADF) test be obeyed and (ii) could the unit root problembe
ignored when doing further data analysis, because theH0: d¼ 0 is rejected
based on the usual t-test? Note the following example.

(3) Considering the contradictory conclusions, based on the two linear models
above, the problem can be generalized to a multiple regression with three or
more exogenous variables. The adjusted effect of each independent or
exogenous variable on the dependent or endogenous variable is unpredict-
able, because of the multicollinearity between the exogenous variables. Note
that even though a pair of variables is not correlated substantively,
the coefficient of correlation always has a quantitative value, and it is counted
in the estimation of the model parameters. Refer to the special notes in
Section 2.14. &

Figure 9.4 Simple linear regression of log(P(�1)) on the time t

Figure 9.5 Scatter graph of (t, log(P(�1)) with the regression line
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Example 9.2. (The White estimation methods) For a comparison, Figure 9.6
presents the statistical results based on twomodels of the first difference of log(p),
that is dlog(p), by using the Newey–West HAC. . . estimation method. Note the
following conclusions and comments:

(1) Both models show that log(P(�1)) has a significant effect on Dlog(P1) with
the p-values of 0.0010 and 0.0102 respectively. Based on these findings, itmay
be concluded that log(P1) does not have a unit root, which is contradictory to
the DF test presented in Example 9.1.

(2) Based on the model in (9.5), log(P(�1)) has a significant negative effect on
Dlog(P1), but it has a significant positive effect based on the model
in (9.6). &

Example 9.3. (Additional alternative models for Dlog(p)) Figure 9.7 presents
statistical results based on the US domestic price of copper data using two
alternative models, which show that log(p(�1)) has a significant adjusted effect
on d log(p(�1)) using the standard t-test or the null hypothesis H0: d¼ 0 is
rejected. In addition to this conclusion, both models have lower values of AIC
and SC statistics compared to the previous models, and the AR model, on the
right-hand side in Figure 9.7, should be the best statistical results or estimates
with aDW-statistic of 2.031. However, this model is an unusual ARmodel, since
it has the indicator AR(2) without the indicator AR(1). &

9.2.2 Unit root test for higher-order serial correlation

The ADF approach controls for higher-order correlation by adding lagged
difference terms of the dependent variable Y to the right-hand side of the

Figure 9.6 Statistical results based on two models in (a) (9.5) and (b) (9.6) of d log(P)
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regression. The general form of the equation can be written as

DYt ¼ mþ dYt�1 þb1DYt�1 þb2DYt�2 þ � � � þbpDYt�p þ «t ð9:7Þ

Thenull hypothesis of the series {Yt} has a unit root andwill be the same as above,
that is H0: d¼ 0. On the other hand, other alternative tests for higher serial
correlations also exist, as presented in Figures 9.1 and 9.2.

Example 9.4. (An application of a model in (9.7) and alternatives) Figure 9.8(a)
presents statistical results based on the model in (9.7) for p¼ 2, which show that
the null hypothesisH0: d¼ 0 is accepted, based on theMacKenon critical criteria.
Therefore, these results show that the series {Yt} is nonstationary.

For a comparison, Figure 9.8(b) presents an alternative test, namely the
Phillips–Perron (PP) test with bandwidth 2 (fixed using the Barlett kernel), which
also shows that the series is nonstationary. Other alternative tests could be
conducted easily. If at least three test statistics show that a series is nonstationary,
then the conclusions could be given with confidence. &

9.2.3 Comments on the unit root tests

If the unit root test is conducted for any single endogenous variables, say Y, in
the previous examples, as well as the previous chapters, the conclusion may
be assumed that the series Yt is nonstationary. Based on those findings, should
the models presented in this chapter, as well as all the models presented in the
previous chapters, be modified? This would be the same for other single time
series, such as the first- or higher-order differences of any endogenous variables
Y and log(Y). However, note that the first difference dlog(yt) has quite a

Figure 9.7 Statistical results based on twomultiple linear regressions ofD(log(p)), based
on the US_DPOC
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different meaning from log(yt). Refer to the return rate models presented in
Section 5.6.

If it is absolutely certain that stationary variables should always be used in a
time seriesmodel, then all other variables should also be tested before developing
a model. Afterwards, a defined model could use only stationary variables, either
dependent or independent variables. If this is the case, then the original variables
will not be modeled, only other types of variables.

Furthermore, in many cases it has been recognized that researchers were not
following thisprocess, butkeptusing theoriginal timeseries variables.Ontheother
hand, a defined (population) model could never represent what really happens in
the corresponding population. Hence, it is suggested that best knowledge and
judgment should be used to define several alternative models, not only one.

In this experimentation, it was found that EViews will directly provide a
statement of the nonstationary condition if a model should be modified. For this
reason, it could be said that all models presented in this book should be
acceptable time series models, as long as there are no �Nonstationary� or
�Convergence not achieved after . . . iterations� messages.

9.3 The omitted variables tests

Suppose the following initial regression is given:

y c x1 t arð1Þ ð9:8Þ

Figure 9.8 The unit root tests based on (a) ADF and (b) PP test statistics
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As an example to test for the omitted variables x2 and x3, two nested models are
in fact compared, the model in (9.8) and the following model:

y c x1 x2 x3 t arð1Þ ð9:9Þ

In this test, in fact, two regressions are considered with the following explicit
equations:

Full model : Y ¼ cð11Þþ cð12ÞX1þ cð13ÞX2þ cð14ÞX3þ cð15Þ*tþ½arð1Þ ¼ cð16Þ�
Reducedmodel : Y ¼ cð21Þþ cð22ÞX1þ cð23Þ*tþ½arð1Þ ¼ cð24Þ�

ð9:10Þ

The hypothesis can be written as

H0 : Reducedmodel orH0 : Cð13Þ ¼ Cð14Þ ¼ 0

H1 : Full model or H1 : Otherwise
ð9:11Þ

After obtaining the result of the reducedmodel on the screen, this hypothesis can
be tested by selecting View/Coefficient/Omitted Variables – Likelihood Ratio. . .
and then entering the list �x2 x3� in the dialog. Note the following example.

Example 9.5. (Omitted variables and joint effects tests) By using the six variables
P, A, G, H, I and L in the US_DPOC data, consider the equation specification

logðpÞ c logðaÞ logðlÞ arð1Þ arð2Þ ð9:12Þ

for conducting an omitted variable test of the three variables log(g), log(h) and
log(i). The process of the analysis is as follows:

(1) Conduct the regression analysis by using the equation specification in (9.12).
(2) Having the statistical results on the screen, select View/Coefficient Tests/

Omitted Variables –Likelihood Ratio. . ..
(3) Then enter the variables list, log(g) log(h) log(i), and by clicking OK, the

statistical results inFigure 9.9will be obtained. Based on theLR chi-squared-
statistic of 6.152 392 with df¼ 3 and a p-value¼ 0.1044, it can be concluded
that the three omitted variables have an insignificant effect on log(p), at the
0.10 significant level. Therefore, in a statistical sense, there is noneed to use all
of the three variables as additional independent variables of the model.
However, one or two of these variables may be used.

(4) In fact, by testing each of these variables using the omitted variables test, it
was found that log(g) and log(i) are significant, based on the chi-squared-
statistic with p-values of 0.0274 and 0.0131 respectively.
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(5) For a comparison, the joint effects will be found of the three variables log(g),
log(h) and log(i) on log(p), based on an AR(2) translog linear model as
follows:

logðPÞ ¼ cð1Þþ cð2ÞlogðAÞþ cð3ÞlogðLÞþ cð4ÞlogðGÞþ cð5ÞlogðHÞ
þ cð6ÞlogðIÞþ ½arð1Þ ¼ cð7Þ; arð2Þ ¼ cð8Þ�

ð9:13Þ

In this case, the following hypothesis using theWald test will be tested, which
has been demonstrated in the previous examples:

H0 : Cð4Þ ¼ Cð5Þ ¼ Cð6Þ ¼ 0

H1 : Otherwise
ð9:14Þ

It was found that, at a significant level of 0.10, the null hypothesis is accepted
based on the F-statistic of 2.295 127 with df¼ (3, 20) and a p-value¼ 0.1088,
but it is rejected based on the chi-squared-statistic of 6.885 382 with df¼ 3
and a p-value¼ 0.0756, as presented in Figure 9.10.

Figure 9.9 An omitted variables test based on the model in (9.12)

450 Time Series Data Analysis Using EViews

www.trading-software-collection.com



(6) Looking at the contradictory conclusions based on the chi-squared test
presented in Figures 9.9 and 9.10 raises a question: What are their cause
factors? From the present point of view, the hypothesis considered represents
different statuses, based on the omitted variables test and the Wald test.
Corresponding to the omitted variables test, the hypothesis could be consid-
ered as an external hypothesis, since the tested variables are not in themodel.
This questions whether all external variables considered should be used as
additional independent variables of the model or not.

On the other hand, corresponding to the Wald test, the tested variables are in
themodel, so the hypothesis could be considered as an internal hypothesis, which
indicates whether or not all tested variables can be deleted in order to obtain a
reducedmodel. In this case, the conclusion of theWald test indicates that atmost
two out of the three tested variables may be deleted. Therefore, the trial-and-
error methods should be used to obtain alternative reducedmodels, as well as the
best reduced model. Do this as an exercise. &

Example 9.6. (Omitted variables test in the instrumental models) For any
instrumental models, with or without trend, the omitted variables tests can
also be conducted. As an illustration, the following instrumental model with
trend is considered, which has been presented in Figure 7.15:

Y1 ¼ cð1Þþ cð2ÞX1 þ cð3Þ*tþ cð4Þ*X2 þ cð4ÞX1*X2 þ ½arð1Þ ¼ cð6Þ�
Instrument list c y1ð�1Þx1ð�1Þx2ð�1Þx3 x3ð�1Þ t ð9:15Þ

Figure 9.10 A joint effects test based on the model in (9.13)

Additional Testing Hypotheses 451

www.trading-software-collection.com



In this case, the list of omitted variables considered is �X2 X1*X2.� Hence, using
the omitted variables test, the following steps should be applied:

(1) Select Quick/Estimates Equation/TSLS Method. . . and then enter the fol-
lowing equation specifications:

y1 c x1 t arð1Þ
Instrument list : c y1ð�1Þx1ð�1Þx2ð�1Þx3 x3ð�1Þt ð9:16Þ

(2) With the statistical results on the screen, select View/Coefficient Tests/
Omitted Variables –Likelihood Ratio. . .

(3) Then enter the two variables x2, x1*x2 in the window and click OK. The
results with the option �Include lagged . . .� appear as in Figure 9.11(a) and
without the option as in Figure 9.11(b).

(4) Corresponding to the number of instrumental variables, the model in
Figure 9.11(b) has less instrumental variables, so is a simple model. For
this reason this model is preferred.

(5) Corresponding to the other variables in US_DPOC, the omitted variables
tests could also be conducted for each of the main factors, as well as the two-
way and three-way interaction factors. Table 9.1 presents the p-values of the
omitted variables tests (or the F-test) for each of the variables considered.
Based on this table the following notes and conclusions are made:
. Each of the variables with a p-value< 0.20 (by rule of thumb) should be
considered as a candidate for an additional variable of the main model

Figure 9.11 The omitted variables tests based on the models in (9.16), (a) with and (b)
without the option �lagged . . .�
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in (9.16), since the corresponding variable has a significant positive or
negative effect on the independent variable, at the 0.10 significant level.

. Therefore, in this case, there are one main factor, seven two-way interac-
tion factors and one three-way interaction factors, as presented using bold
italic in Table 9.1. Either one or two of these variables may be used as
additional independent variable(s) of the main model in (9.16). However,
the choice is a matter of personal judgment.

. By using lagged variables, as well as transformed variables, many more
alternative models and omitted variables tests could be obtained. &

Example 9.7. (Omitted variables test and correlation analysis) Corresponding to
the results of the omitted tests presented in Table 9.2, as an illustration Table 9.2
presents a correlation matrix between the independent variable y1 with selected
omitted variables in Table 9.1. Based on the p-values of the correlations in
Table 9.2, it can be concluded that each of the variables x2, x3, t�x2, t�x3,
t�x2�x3 and x2�x3�y2 is significantly positive correlated with the dependent
variable y1.

In fact, it was found that all of the omitted variables in Figure 9.11 are
significantly correlated with y1. This indicates that there could be an acceptable

Table 9.1 The p-values of the omitted variable tests (F-statistic) for the instrumental

model in Figure 9.11(b)

Number Omitted variable p-value Number Omitted variable p-value

1 x2 0.0141 13 x3�y2 0.1496
2 x3 0.5575 14 t�x1�x2 0.3751
3 y2 1.0000 15 t�x1�x3 1.0000

4 t�x1 0.0145 16 t�x1�y2 0.5575
5 t�x2 0.0264 17 t�x2�x3 0.2789
6 t�x3 0.1632 18 t�x2�y2 0.1396

7 t�y2 0.3119 19 t�x3�y2 0.3852
8 x1�x2 0.0520 20 x1�x2�x3 1.0000
9 x1�x3 0.3322 21 x1�x2�y2 0.3503
10 x1�y2 0.4068 22 x1�x3�y2 0.3914

11 x2�x3 0.0989 23 x2�x3�y2 0.2414
12 x2�y2 0.1473

Table 9.2 The p-values of the correlation tests between Y1 in model (9.16) with selected

omitted variables in Figure 9.11

Y1 X2 X3 T�X2 T�X3 T�X2�Y2 X2�X3�Y2

Correlation 1 0.768 719 0.782 616 0.844 775 0.868 539 0.928 601 0.903 109
p-value — 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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simple linear regression (SLR) of Y1 on each of the omitted variables. However,
the SLR is not an acceptable model for the time series data set. As an illustration,
Figure 9.12 presents statistical results based on an SLRofY1 onT�X2�X3 and its
corresponding AR(1) model.

Note that T�X2�Y2 has a significant effect on Y1, based on the standard t-test
in Figure 9.12(a), as presented in Table 9.2, but it is insignificant when based on
the AR(1) model in Figure 9.12(b). However, at a significant level of 0.10,
T�X2�Y2 has a significant positive effect on Y1, with a p-value¼ 0.1641/
2¼ 0.082 05.

Furthermore, also note that the standard t-test is valid under the assumption that
the sample is a random sample. For this reason, it could be said that the omitted
variables test isquitedifferent fromthecorrelation testbasedonanytimeseriesdata.

As an exploration study, it was found that the residual of the model in
Figure 9.11(b), namely RESID01, has an insignificant correlation with each of
the omitted variables in Table 9.1, with such a large p-value. Table 9.3 presents
some of the correlation tests. Based on this finding, each of the omitted variables
could be considered as a candidate for an instrumental variable of the mean
model in (9.16). &

9.4 Redundant variables test (RV-test)

This test can be done by selecting View/Coefficient Tests/Redundant Variables-
Likelihood Ratio . . . . In this test, a full model and its reduced model are

Figure 9.12 Statistical results based on (a) an SLR of Y1 on t�X2�Y2 and (b) an AR(1)
model of Y1 on t�X2�Y2

Table 9.3 The p-values of the correlation tests between Y1 in model (9.16) with selected

omitted variables in Figure 9.11

RESID01 X2 X3 T�X2 T�X3 T�X2�Y2 X2�X3�Y2

Correlation 1 0.061 492 0.071 344 0.064 717 0.085 968 0.050 197 0.042 194
Probability — 0.7468 0.7079 0.734 0.6515 0.7922 0.8248
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considered. Hence, they are nested models. Note the following examples, which
are associated with the models presented in the previous examples.

Example 9.8. (An RV-test for an AR(2) translog linear model) Corresponding to
the model in Example 9.5, the following list of variables is used as the initial
equation specification, which is the same as the model in (9.13):

logðpÞ c logðlÞ logðaÞ logðgÞ logðhÞ logðiÞ arð1Þ arð2Þ ð9:17Þ

Then by entering the list

logðgÞ logðhÞ logðiÞ

in the dialog, the output in Figure 9.13 is obtained.

Note that this output, the F-statistic and LR chi-squared-statistic of the
redundant variables test in particular, is exactly the same as the output of the

Figure 9.13 A redundant variable test based on the model in (9.17)
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same model in Example 9.5, specifically the p-values of the F-statistic, as well as
the log likelihood ratio and chi-squared-statistic in Figure 9.9. Furthermore, here
a full model is used as the initial regression, but in the previous example a reduced
model was used as the initial regression. &

9.5 Nonnested test (NN-test)

All of the testing hypotheses based on the F-statistic, t-statistic or Wald statistic
are related to nested models, namely a full model and its reduced model. In this
section a pair of nonnested models having the same dependent variable are
considered. For the testing, Davidson andMacKenon (1993, in EViews 6 User�s
Guide II, p. 179) proposed the J-test. In this case, anhypothesis is consideredwith
a general form as follows:

H1 : Model-1 : y ¼ f ðx1; x2; . . . ; xpÞ
H2 : Model-2 : y ¼ gðz1; z2; . . . ; zqÞ ð9:18Þ

where both models are nonnested and some or all of the X-variables should be
unequal to the Z-variable.

To test the hypothesis, the statistical results are studied or observed based on
the following two models:

Model-1a : y ¼ f ðx1; x2; . . . ; xp; ĝÞ
Model-2a : y ¼ gðz1; z2; . . . ; zq; f̂ Þ ð9:19Þ

where f̂ and ĝ are the fitted values variables of the model-1 and model-2
respectively. Note that each of the fitted values f̂ and ĝ become independent
variables of the new models, namely the model-2a and model-1a in (9.19)
respectively.

The conclusion of the testing hypothesis is completely dependent on whether
the fitted values f̂ or ĝ have an insignificant effect or not. If f̂ has a significant
adjusted effect on the dependent variable of model-2a, then model-2 is accepted
or model-1 is rejected, and if ĝ has a significant adjusted effect on the dependent
variable of model-1a, then model-1 is accepted or model-2 is rejected. For
illustrative purposes, find the following examples.

Example 9.9. (Nonnested basic regression models) Here, the following pair of
nonnested basic regression models with an endogenous variable, Y1, or
hypotheses are considered:

H1 : y1t ¼ cð11Þþ cð12Þ*x1t þ cð13Þ*x1t�1 þm1t
H2 : y1t ¼ cð21Þþ cð22Þ*x1t þ c3ð23Þ*x2t þm2t

ð9:20Þ
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The processes for selecting one of the two models are as follows:

(1) By applying each of the models, the corresponding fitted value variables
could be produced or generated, namely F_head¼Fh¼ y1h1 and G_head¼
Gh¼ y1h2 respectively. For example, to generate Fh¼ y1h1, the dialogs are
as follows:
. Select Quick/Estimation Equation . . .OK; then enter the list �y1 c x1 x1
(�1) . . . � and click OK. . ., giving the output of the regression analysis.

. Click Generate Series . . . or Genr and then enter the equation

Fh ¼ cð1Þþ cð2Þ*x1Þþ cð3Þ*x1ð�1Þ ð9:21Þ

. Similarly, the fitted values Gh can be obtained.
(2) Do a data analysis using each of the nonnested models with the additional

independent variable Gh for the first model and Fh for the second model.
(3) As usual, by selecting Quick/Estimation Equation . . . and entering the list

y1 c x1 x1ð�1ÞGh ð9:22Þ

the result in Figure 9.14 is obtained.
(4) By selecting Quick/Estimation Equation. . . and entering the list.

y1 c x1 x2 Fh ð9:23Þ

the result in Figure 9.15 is obtained.
(5) SinceGh¼ y1h2 has a significant effect on the dependent variable ofmodel-1,

then model-1 is rejected. Similarly, since Fh¼ y1h1 has a significant effect on
the dependent variable of model-2, then model-2 is rejected.

Figure 9.14 Statistical results based on the model in (9.22)
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(6) Since both model-1 and model-2 are rejected, it can be concluded that the
data does not support both models in the hypothesis. &

Example 9.10. (Nonnested AR(1) models) As a modification of the nonnested
models in (9.20), here nonnested AR(1) models are considered in the following
hypothesis:

H1 : y1t ¼ cð11Þþ cð12Þ*x1t þ cð13Þ*x1t�1 þ cð14Þ*m1t�1 þ «1t
H2 : y1t ¼ cð21Þþ cð22Þ*x1t þ cð23Þ*x2t þ cð14Þ*m2t�1 þ «2t

ð9:24Þ

By using the same process as above new variables of their fitted values can be
generated, namely GH_AR¼ y1h1 and FH_AR¼ y1h2. Finally, the statistical
results based on twoAR(1)models are obtained, as inFigure 9.16. Based on these
results, we can conclude that the data does not support both models. &

Figure 9.15 Statistical results based on the model in (9.23)

Figure 9.16 Statistical results for testing the hypothesis in (9.24)
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Example 9.11. (Nonnested translog linear model) In this example the following
hypothesis is considered:

H1 : logðy1tÞ ¼ cð11Þþ cð12Þ*logðx1tÞþ cð13Þ*logðx2tÞþm1t
H2 : logðy1tÞ ¼ cð21Þþ cð22Þ*logðy2tÞþ cð23Þ*logðx3tÞþm2t

ð9:25Þ

By using the same process as in Example 9.9, finally the statistical Figure 9.17 is
obtained,where the independent variables ly1h1 and ly1h2 are the variables of the
fitted values of model-1 and model-2 (H1 and H2) respectively.
Since ly1h2 has an insignificant adjusted effect, but ly1h1, thenmodel-1 (orH1)

is accepted with a p-value¼ 0.1323, at a significant level of a¼ 0.10. Therefore, it
can be concluded that the data supports model-1 in (9.25). &

9.6 The Ramsey RESET test

The main objective of the Ramsey RESET test is to test or select an additive
model and a multiplicative model, such as follows:

Additive model : y ¼ b0 þb1X1 þb2X2 þ «
Multiplicative model : y ¼ l0X

l1
1 Xl2

2 þ «
ð9:26Þ

By using a Taylor approximation, the multiplicative function will yield an
expression involving powers and cross-products of the explanatory variables.
Ramsey suggested including powers of the predicted values of the dependent
variable as additional independent variables of the model. A set of the predicted
values could be presented as

fŷ2; ŷ3; . . . ; ŷk; . . .g ð9:27Þ

To apply the test, select View/Stability Tests/Ramsey Test . . . and specify the
number of fitted terms to include in the test regression. The number of fitted terms

Figure 9.17 Statistical results for testing the hypothesis (9.25)
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represents the powers of the fitted values from the original regression, starting
with the square or the second power. The first power is not included because it is
perfectly collinear with the X matrix. On the other hand, if a large number of
fitted terms are specified, EViews may report a near singular matrix error
message.

Note that the Ramsey RESET test is applicable only to an equation estimated
by least squares.

Example 9.12. (Ramsey�s test on a seemingly causal model) The list of variables
entered as an initial regression or at the first stage of the data analysis is

y1 c x1 x2 arð1Þ arð2Þ ð9:28Þ

with the statistical results in Figure 9.18(a). Note that the X and Y variables are
derived from Demo.wf1, in order to present a more general model presentation.
Therefore, a researcher could apply similarmodels byusing his/her owndata sets.

After having the output on the screen, click View/Stability Tests/Ramsey
Test . . . . Then by using the default option, which is an integer �1� in the window,
and clicking OK, the statistical results in Figure 9.18(b) are obtained.

Based on these results, the following notes and conclusions are produced:

(1) The additive model is rejected based on the F-statistic, with a p-value
0.0002. Hence, the data support the multiplicative model.

Figure 9.18 Statistical results of a Ramsey RESET test based on the AR(2) model
in (9.28), using the default option
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(2) In the process of experimentation, the following cases are found:
. Without the AR indicators, a very small value of the DW-statistic is
obtained, since the time series data are used. For this reason, statistical
results based on an autoregressive model are presented directly.

. By entering a �2� in the window, the error message in Figure 9.19 is
obtained. This indicates that the corresponding series has at least one
negative argument. &

Example 9.13. (Unexpected results of theRamsey tests) The list of variables used
in the initial regression or at the first stage of the data analysis is �y c x1 x2 y(�1).�
After some experimentation, the statistical results in Figure 9.20(a) are obtained,
with each of the independent variables, specifically the fitted terms, having a
significant adjusted effect.

It was found that by using a lower power of the fitted terms, models were
obtained where each of the fitted terms are insignificant, as presented in
Figure 9.20(b). For this reason, the models presented in Figure 9.20 should be
considered as unexpectedmodels. It could be said that these statistical results also
show or demonstrate the unpredictable impact of the multicollinearity of the
independent variables of a model. &

9.7 Illustrative examples based on the Demo.wf1

The main objective of this section is to demonstrate that, based on a data set,
namelyDemo.wf1,manymore alternativemodels could be developed, or it could
be an infinite number of models, as well as the testing hypotheses, by only using
the four variables in the workfile. Find some selected models presented in the
following examples, which can easily be extended to additional time series
models, aside from the models presented in the previous chapters.

Figure 9.19 An error message in conducting the Ramsey test
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Example 9.14. (Omitted variables test, based on themodel in (4.39)) Corresponding
to the LVAR(2,1)_SCM in (4.39) presented in Example 4.12, an omitted
variables test will be conducted. The base model considered is an additive
model as follows:

logðm1Þ ¼ cð1Þþ cð2Þ*logðm1ð�1ÞÞþ cð3Þ*logðm1ð�2ÞÞ
þ cð4Þ*logðgdpÞþ cð5Þ*logðgdpð�1ÞÞþ ½arð1Þ ¼ cð6Þ� ð9:29Þ

Figure 9.21(a) presents the statistical results for testing the omitted variables
log(rs) and log(rs(�1)). These results show that the joint effects of log(rs) and
log(rs(�1)) are significant based on the F-statistic, as well as the LR chi-squared-
statistic, with a p-value¼ 0.0000. As a result, both variables should be used in the
model, in a statistical sense.

However, note that log(RS) has an insignificant adjusted effect on log(m1)with
a p-value¼ 0.2361. As a comparison, Figure 9.21(b) presents the statistical
results for testing the omitted variables with a dummy variable Drs1, which has
been defined asDrs1¼ 1 if t� 119 andDrs1¼ 0 otherwise. This figure shows that
log(RS) has a significant negative effect on log(m1) for t� 119. &

Example 9.15. (Redundant variables tests) Based on the full model presented in
the previous example, namely the model in Figure 9.21(a), several redundant

Figure 9.20 Unexpected statistical results of two Ramsey tests based on an additive
LV(1)_SCM of Y1 on X1 and X2

462 Time Series Data Analysis Using EViews

www.trading-software-collection.com



variables tests can be conducted, since there are three insignificant independent
variables with p-values> 0.2, namely log(gdp), log(gdp(�1)) and log(rs).

Figure 9.22 presents two alternative redundant variables test of three and two
independent variables of the model in Figure 9.21(a). &

Figure 9.21 Two omitted variables tests based on the models in (a) (9.29) and (b) (4.39)

Figure 9.22 Two redundant variables tests based on the full model in Figure 9.21(a)
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Example 9.16. (Nonnested LVAR(2,1)_SCMs) In this example, the following
nonnested LVAR(2,1)_SCMs are considered, where the first model is the full
model in Figure 9.21(a):

logðm1Þ¼cð11Þþcð12Þlogðm1ð�1ÞÞþcð13Þlogðm1ð�2ÞÞþcð14ÞlogðgdpÞ
þcð15Þlogðgdpð�1ÞÞþcð16ÞlogðrsÞþcð17Þlogðrsð�1ÞÞþ½arð1Þ¼cð18Þ�

ð9:30Þ

logðm1Þ¼cð21Þþcð22Þlogðm1ð�1ÞÞþcð23Þlogðm1ð�2ÞÞþcð24ÞlogðgdpÞ
þcð25Þlogðgdpð�1ÞÞþcð26ÞlogðprÞþcð27Þlogðprð�1ÞÞþ½arð1Þ¼cð28Þ�

ð9:31Þ
This gives an hypothesis as follows:

H1 : Model-1 ¼ Model in ð9:30Þ
H2 : Model-2 ¼ Model in ð9:31Þ ð9:32Þ

By using the same process as in Example 9.9, the variables Fh andGh of the fitted
values of the models in (9.30) and (9.31) respectively can be generated. Finally,
the statistical results for testing the hypothesis (9.32) in Figure 9.23 is obtained.
Since Gh is insignificant and Fh is significant, it can be concluded that the data
supports model-1 or the LVAR(2,1)_SCM in (9.30). &

Example 9.17. (RamseyRESET tests) Thebasicmodel considered is this example
has the following equation specification:

m1 c gdp p ð9:33Þ

Figure 9.23 Statistical results for testing the hypothesis in (9.32)
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Figure 9.24 presents the statistical results of a Ramsey RESET test based on this
model. At a significant level of 0.10, it can be concluded that the data supports the
additive model based on the F-statistic, as well as the LR chi-squared-statistic, with
p-values> 0.20.

However, since the test equation has a small value ofDW¼ 0.139 148, then an
attempt is made to apply autoregressive models. Finally, an acceptable statistical
result was found with DW¼ 1.950 819, as presented in Figure 9.25, based on an
AR(2) model with the following equation specification:

m1 c gdp pr arð1Þ arð2Þ ð9:34Þ

Figure 9.24 A Ramsey RESET test based on the model in (9.33)

Figure 9.25 A Ramsey RESET test based on the AR(2) model in (9.34)
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Based on the F-statistic with a p-value¼ 0.0048, as well as the LR chi-squared-
statistic with a p-value¼ 0.0040, it can be concluded that the data supports the
multiplicative model.

As a comparison, Figure 9.26 presents the statistical results of a Ramsey
RESET test, based on an LV(2) model as follows:

m1 c m1ð�1Þm1ð�2Þ gdp pr ð9:35Þ

Figure 9.27 A Ramsey RESET test based on the LVAR(1,1) model in (9.36)

Figure 9.26 A Ramsey RESET test based on the LV(2) model in (9.35)
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These statistical results also show that the data support the multiplicative
model based on the F-statistic, as well as the LR chi-squared-statistic, with
p-values< 0.02.

Finally, Figure 9.27 presents the statistical results of a Ramsey RESET test,
based on an LVAR(1,1) model as follows:

m1 c m1ð�1Þ gdp pr arð1Þ ð9:36Þ

These statistical results also show that the data support the multiplicative
model. &
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10

Nonlinear least squares
models

10.1 Introduction

The nonlinear least squares (NLS) model could be presented as

Yt ¼ f ðXt; t; uÞþmt ð10:1Þ

whereYt is an endogenous variable andXt is a vector exogenous variable, t is the
time variable, u is a vector or a finite set of nonlinear parameters and ut is a vector
of the error terms. As usual, the least squares estimation chooses the parameter
values that minimize the sum of the squared residuals:

SðuÞ ¼
X

ðYt�f ðXt; t; uÞÞ2 ð10:2Þ

Note that the function f(Xt, t, u) can be all types of models presented in the
previous chapters. As a review, note the following general equations, which are
included in (10.1):

(a) Model with a Trend

Yt ¼ f ðXt; uÞþ d*tþ ut ð10:3Þ

note that, for a multivariate model, d is a vector of trend parameters.
(b) Model with Time-Related Effects

Yt ¼ f1ðXt; uÞþ f2ðXt; dÞ*tþ ut ð10:4Þ
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Note that the effect of each X-variable in f2(Xt, d) depends on t. Hence this
model is called the model with time-related effects. For example, the follow-
ing equation presents a general univariate model:

Yt ¼
X
i¼0

biXi;t þ
X
j¼0

djXj;t*tþ ut ð10:5Þ

(c) Model with Dummy Variables

Yt ¼ f1ðXt; t; uÞ*D1 þ f2ðXt; t; uÞ*D2 þ ut ð10:6Þ

where D1 and D2 are the zero-one or dummy variables of a defined dichoto-
mous variable. However, for the time series data, the dichotomous variable
(dummy variables) should probably be defined based on the time-variable, as
presented in Chapter 3. This model could be presented as the following two
alternative general models:

Yt ¼ f1ðXt; t; uÞ*D1 þ f2ðXt; t; uÞþ ut ð10:7Þ

Yt ¼ f1ðXt; t; uÞþ f2ðXt; t; uÞ*D2 þ ut ð10:8Þ

(d) Model without the Time t-Variable
The model without the time t-variable could be written easily based on the
model in (9.11), as follows:

Yt ¼ f ðXt; uÞþ ut ð10:9Þ

Furthermore, note that the components of the exogenous variables (or the
X-variables) in all models presented above could include some of the
endogenous variables, the lags of independent as well as dependent variables
and their selected interaction factors and powers. Each of the models
presented above should be extended to the ARmodels, ARCH andGARCH
models, as well as the system equation and instrumental variable models.

At the first stage, examples based on the three basicNLSmodels are presented,
namely the classical growth models, translog linear models or Cobb–Douglas
production functions and the quadratic translog models or the CES (constant
elasticity of substitution) production functions.

By using the same process as presented in the previous chapters, in fact it is
expected that the statistical results could easily be obtained based on any nonlinear
models.However, inmany cases, the �Overflow� errormessage or �Warning: Singular
covariance – coefficients are not unique� have been found. On the other hand, it was
also found that EViews 5 and EViews 6 do not give consistent statistical results. For
this reason, some of the examples using EViews 5 are presented. Corresponding to
these problems, refer to the notes presented in Section 10.5.
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Finally, an attempt should be made to develop alternative NLS models. By
using the trial-and-error methods, uncommon or unexpected NLS models have
been found, as presented in Section 10.6.

10.2 Classical growth models

This section presents statistical results based on NLS models compared to their
corresponding (linear) LS models, based on the Demo.wf1, starting with the
classical growth model in (2.3).

Example 10.1. (The classical exponential growth model) Corresponding to the
classical growth model in (2.3), Figure 10.1 presents statistical results based on
LS and NLS growth models of the endogenous variableM1, using the following
equation specifications:

logðm1Þ c t ð10:10Þ
m1 ¼ Cð1Þ*expðCð2Þ*tÞ ð10:11Þ

&

Example 10.2. (NLS growth model with intercept) Figure 10.2 presents
statistical results based on the following NLS growth model, with its residual
graph presented in Figure 10.3:

m1 ¼ cð1Þþ cð2Þ*expðcð3Þ*tÞ ð10:12Þ
Compare these statistical results and residual graphs with Figures 2.2 and 2.3.
Based on these results, especially the residual graph and a very smallDW-statistic,
it could be stated that the NLS model is a poor time series model, in a statistical
sense, and similarly for the NLS model in (10.12). Therefore, an autoregressive
model or a lagged-variable model should be found. For this reason experimenta-
tion is carried out as presented in the following example. &

Figure 10.1 Statistical results based on the classical growth model of M1, using (a) LS
and (b) NLS models
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Example 10.3. (Experimentation on autoregressive NLS models) Figure 10.4
presents statistical results based on the following AR(1) NLS model:

logðm1Þ ¼ cð1Þ*expðcð2Þ*tÞþ ½arð1Þ ¼ cð3Þ� ð10:13Þ

In fact, analyses have been conducted based on the following NLS models, but
the �Near singular matrix� error messages have been obtained:

m1 ¼ cð1Þþ cð2Þ*expðcð3Þ*tÞþ ½arð1Þ ¼ cð4Þ� ð10:14Þ
m1 ¼ cð1Þ*expðcð2Þ*tÞþ ½arð1Þ ¼ cð4Þ� ð10:15Þ

Figure 10.3 Residual graphs of the model in (10.3)

Figure 10.2 Statistical results based on the model in (10.3)
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Note that the model in (10.15) can be transformed to the following model, with
the statistical results presented in Figure 2.4:

logðm1Þ ¼ cð1Þþ cð2Þ*tþ ½arð1Þ ¼ cð3Þ� ð10:16Þ

This raises the question �Why do we have an error message based on the NLS
model in (10.15).� In order to answer this question, refer to the notes presented in
Section 10.5. &

10.3 Generalized Cobb–Douglas models

The basic Cobb–Douglas production function can be presented as

Q ¼ AKaLb ð10:17Þ

Figure 10.4 Statistical results based on the NLS AR(1) model in (10.4)

Figure 10.5 Residual graph of the model in Figure 10.4
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where Q is an output variable or factor, and K and L are two input variables or
factors,Capital andLabor. The generalized CD (GCD)model, in EViews, can be
presented as follows:

Yt ¼ cð1Þ*Xcð2Þ
1 *X

cð3Þ
2 � � � *Xcðkþ 1Þ

k þ ut ð10:18Þ

where Y is an endogenous variable and X1, X2, . . ., Xk are the exogenous
variables. Note that this model is without the time t as an independent variable.

10.3.1 Cases based on the Demo.wf1

Example 10.4. (NLS corresponding to the model in (4.39)) Corresponding to the
additive model in (4.39), namely the following model:

logðm1Þ ¼ cð10Þþ cð11Þ*logðm1ð�1ÞÞþ cð12Þ*logðm1ð�2ÞÞ
þ cð20Þ*logðgdpÞþ cð21Þ*logðgdpð�1ÞÞþ ½arð1Þ ¼ cð31Þ� ð10:19Þ

an NLS model needs to be considered with the following equation:

m1 ¼ cð1Þ*m1ð�1Þcð2Þ*m1ð�2Þcð3Þ*gdpcð4Þ*gdpð�1Þcð5Þ ð10:20Þ

By using EViews 5, the statistical results in Figure 10.6 are obtained, together
with its reduced model, since by using EViews 6 the �Overflow� error message is
found. Based onDW¼ 2.062 611, it can be concluded that this reduced model is
an acceptable NLS model. In fact, if gdp(�1) is deleted from the full model,
instead of gdp, another acceptable model would be obtained. Which one would
you prefer?

Figure 10.6 Statistical results based on the NLS model in (10.9), and its reduced model,
by using EViews 5
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Furthermore, by using the trial-and-errormethods, the statistical results based
on two AR(1) NLS models presented in Figure 10.7 are found, using EViews 5,
since EViews 6 also presents the �Overflow� error messages. &

Example 10.5. (NLS interaction models) Corresponding to the interaction
model presented in Example 4.18, an NLS interaction model will be
considered, as follows:

m1 ¼ cð1Þ*gdpcð2Þ*prcð3Þ*expðcð4Þ*logðgdpÞ*logðprÞÞ ð10:21Þ
Figure 10.8(a) presents the statistical results using EViews 5 and Figure 10.8(b)
presents the results using EViews 6, which demonstrates that EViews 5 and 6 do
not give consistent statistical results. For this reason, experimentation based on
simple models are presented in the following example. &

Figure 10.7 Statistical results based on two AR(1) NLS models, using EViews 5

Figure 10.8 Statistical results based on the NLSmodel in (10.21) using (a) EViews 5 and

(b) EViews 6
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Example 10.6. (Experimentation with simple NLS models) Table 10.1 presents
the status or outputs of selected simple NLS models, with the following general
equation, using EViews 5 and 6:

Y ¼ cð1Þ*Xcð2Þ þ « ð10:22Þ

Note that for the NLS models with independent variables PR and PR(�1),
EViews 6 presents another type of error message, as in Figure 10.9. For the other
models, EViews 5 and 6 present consistent results. In fact, simple NLS models
have also been applied using log(m1) and d log(m1). Do this as an exercise.

It is really unexpected errormessages that are obtained based on a very simpleNLS
model, since based on its corresponding translog linear models, namely log(y)¼
c(1) þ c(2)log(x) þ «, in general acceptable statistical results would be obtained.

Compared to the LS models, error messages based on many alternative NLS
models have been found or obtained, specifically the Cobb–Douglas (CD) and
the constant elasticity of substitution (CES) models, some of which will be
presented as illustrations in the following examples.

Table 10.1 Status of simple NLS models using EViews 5 and 6.

Output using

Number Dependent variable Independent variable EViews 6 EViews 5

1 M1 GDP Warning Warning
2 M1 GDP(�1) Warning Warning
3 M1 PR (�) Overflow

4 M1 PR(�1) (�) Overflow
5 M1 RS Warning Warning
6 M1 RS(�1) Warning Warning

7 M1 M1(�1) Warning Warning
8 M1 T Estimable Estimable
9 GDP T Estimable Estimable

10 PR T Estimable Estimable
11 RS T Estimable Estimable

Figure 10.9 An error message in EViews 6 for estimating NLS models
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For a more advanced NLS model, Figure 10.10(a) presents statistical results, using
EViews 5, based on a GCD model using the equation specification in (9.14), and
Figure 10.10(b) presents the statistical results basedon theAR(1)GCDmodel in (9.15):

m1 ¼ cð1Þ*ðgdpcð2ÞÞ*ðprcð3ÞÞ*ðrscð4ÞÞ ð10:23Þ
m1 ¼ cð1Þ*ðgdpcð2ÞÞ*ðprcð3ÞÞ*ðrscð4ÞÞ þ ½arð1Þ ¼ cð5Þ� ð10:24Þ

&

10.3.2 Cases based on the BASIC.wf1

Example 10.7. (Simple NLS models) Figure 10.11 presents statistical results
based on an NLS model of the endogenous variable Y on X, in BASIC.wf1, and

Figure 10.10 Statistical results based on (a) NLS model in (10.23) and (b) AR(1) NLS

model in (10.24), using EViews 5

Figure 10.11 Statistical results based on an NLS model, using EViews 6
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Figure 10.12 presents its residual graphs. These results should be acceptable
estimates, since DW¼ 1.966 090. Compared to the results in Table 10.1, this
finding has demonstrated that the statistical results are highly dependent on the
data used, and are not dependent on the model(s). &

Example 10.8. (Unexpected statistical results based on an NLS model) By using
the trial-and-errormethods, finally the statistical results are obtained based on an
NLS model having three independent variables, as presented in Figure 10.13,
with its residual graphs in Figure 10.14. However, each of the t-statistics has a
very large p-value, and the DW- statistic is very close to zero. This also
demonstrates that the statistical results are highly dependent on the data
used; there is nothing wrong with the model.

Figure 10.12 Residual graphs of the model in Figure 10.11

Figure 10.13 Unexpected results based on an NLS model
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Furthermore, it has been recognized that many other NLS models with an
alternative dependent variable and two or three independent variables present the
�Overflow� errormessages. Once again there is nothingwrongwith theNLSmodels,
but the estimation process cannot provide estimates of the parameters. &

10.3.3 Cases based on the US_DPOC data

As presented in the previous chapters, in this section limited examples of NLS
models will be given using selected subsets of the five variablesX1,X2,X3,Y1 and
Y2. Since several statistical results using EViews 5 have been found, those results
will be presented if the results using EViews 6 does not present output with
statistically acceptable estimates, such as those given in the previous examples.
Otherwise, only the statistical results using EViews 6 will be presented.

Example 10.9. (GCD model with one input variable and trend) Figure 10.15
presents statistical results based on the following GCD model with trend, using
EViews 5 and 6 with the default options:

Y ¼ cð1Þþ cð2Þ*X1cð3Þ þ cð4Þ*t ð10:25Þ

Figure 10.14 Residual graphs of the model in Figure 10.13

Figure 10.15 Statistical results based on the model in (10.25)
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whereY is in fact equal toY2. Based on the results using EViews 6, the following
notes are given:

(1) By replacing X1 with X2 and X3, similar results are obtained, and by
replacing it with X4, EViews 6 presents the �Overflow� error message.

(2) Data analysis has been based on alternative NLS models with one or two
exogenous variables, giving the �Overflow� or the �Warning� errormessages.&

Example 10.10. (GCD models with trend) Figure 10.16(a) and (b) presents
statistical results based on GCD models with trend, using EViews 5 with the
default options, since EViews 6 presents the �Overflow� errormessage. The results
are obtained by using or entering the following equation specifications
respectively:

Y ¼ cð1Þ*X1cð2Þ*X3cð3Þ*X4cð4Þ þ cð5Þ*t ð10:26Þ
Y ¼ cð1Þ*X1cð2Þ*X3cð3Þ*X4cð4Þ þ cð5Þ*tþ ½arð1Þ ¼ cð6Þ� ð10:27Þ

&

Example 10.11. (GCDmodels with the time t as an input variable) Figure 10.17(a)
and (b) presents statistical results based on two GCDmodels, where the time t is
considered as one of the input variables, using EViews 5. The equation
specifications are as follows:

Y ¼ cð1Þ*X1cð2Þ*X3cð3Þ*X4cð4Þ*tcð5Þ
Y ¼ cð1Þ*X1cð2Þ*X3cð3Þ*X4cð4Þ*tcð5Þ þ ½arð1Þ ¼ cð6Þ� ð10:28Þ

&

Figure 10.16 Statistical results using EViews 5, based on the NLS models in (10.26) and

(10.27)
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Example 10.12. (GCD model with dummy variables) For illustration purposes,
Figure 10.18 presents statistical results based on a GCDmodel, with its residual
graph presented in Figure 10.20, using the following equation specification:

Y ¼ ðcð11Þ*X1cð12Þ*X3cð13ÞÞ*DV1þðcð21Þ*X1cð22Þ*X3cð23ÞÞ*DV2 ð10:29Þ
whereDV1 andDV2 are the two dummy variables defined for two time periods,
namely for t� 15 and t> 15.

Based on these statistical results, the following notes and conclusions are
presented:

(1) The model in (10.30) in fact represents a pair of models, as follows:

Yt ¼ ðcð11Þ*X1cð12Þ*X3cð13ÞÞ þ ut for t � 15

Yt ¼ ðcð21Þ*X1cð22Þ*X3cð23ÞÞ þ ut for t > 15
ð10:30Þ

Figure 10.17 Statistical results based on the two GCD models in (10.28)

Figure 10.18 Statistical results based on the GCD model in (10.29) and the Wald test,

using EViews 6
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and the output represents a pair of NLS regression functions as follows:

Yt ¼ 0:746 749*X10:372 866 *X30:245 787 for t � 15

Yt ¼ 0:128 061*X10:441 343 *X30:459 341 for t > 15
ð10:31Þ

(2) Based on theWald test, namely the chi-squared-statistics, the null hypothesis
H0: c(12)¼ c(22), c(13)¼ c(23) is accepted, with a p-value¼ 0.5202.

(3) Furthermore, the hypotheses on the �return to scales of the function� can also
be tested, in each time period, by entering c(12) þ c(13)¼ 1 or c(22) þ
c(23)¼ 1. Do this as an exercise. &

Figure 10.19 Statistical results based on the AR(2) GCD model in (10.32)

Figure 10.20 Residual graph of the AR GCD model in (10.30)
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Example 10.13. (AR(2) GCD model with dummy variables) As an extension of
the GCD model in (10.29), Figure 10.19 presents statistical results, and Figure
10.20 shows the residual graph, based on an AR(2) GCD model, using the
following equation specification:

Y ¼ ðcð11Þ*X1cð12Þ*X3cð13ÞÞ*DV1þðcð21Þ*X1cð22Þ*X3cð23ÞÞ*DV2
þ ½arð1Þ ¼ cð1Þ; arð2Þ ¼ cð2Þ� ð10:32Þ

&

Example 10.14. (Autoregressive bivariate GCD models) The following equation
specifications represent a bivariate AR(1) GCD model, but the �Overflow� error
message was obtained:

Y1 ¼ cð11Þ*X1cð12Þ*X3cð13Þ*X4cð14Þ þ ½arð1Þ ¼ cð15Þ�
Y2 ¼ cð21Þ*X1cð22Þ*X3cð23Þ þ ½arð1Þ ¼ cð24Þ� ð10:33Þ

After doing experimentation, the statistical results based on amodifiedmodel are
finally obtained, as presented in Figure 10.21, with its residual graphs in
Figure 10.22, using EViews 6 with the default options. The equation specifica-
tions used are as follows:

Y1 ¼ Cð11Þ*X1Cð12Þ*X3Cð13Þ*Y1ð�1ÞCð14Þ
Y2 ¼ Cð21Þ*X1Cð22Þ*X2Cð23Þ*Y2ð�1ÞCð24Þ ð10:34Þ

Figure 10.21 Statistical results based on the GCD model in (10.34)
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Corresponding to these results the following notes and additional findings are
observed:

(1) Since both regressions in the model (10.34) have DW < 1.70, the trial-and-
error methods are used in order to obtain better models. Finally, a full
GCD model is obtained, as given in Figure 10.23(a), with the following
equation:

y1 ¼ cð11Þ*x1cð12Þ*x3cð13Þ*y1ð�1Þcð14Þ*y1ð�2Þcð15Þ
y2 ¼ cð21Þ*x1cð22Þ*x3cð23Þ*y2ð�1Þcð24Þ þ ½arð1Þ ¼ cð25Þ; arð2Þ ¼ Cð26Þ�

ð10:35Þ

(2) Furthermore, since y2(�1) is insignificant with a large p-value¼ 0.7716, the
reduced model in Figure 10.23(b) is obtained, which could be considered as
the best fit GCD model and therefore the final acceptable model.

(3) The first regression in (10.35) can be presented as follows:

logðy1Þ ¼ logðcð11ÞÞþ cð12ÞlogðX1Þþ cð13Þlogðx3Þ
þ cð14Þlogðy1ð�1ÞÞþ cð15Þlogðy1ð�2ÞÞ ð10:36Þ

Figure 10.22 Residual graphs of the GCD model in (10.34)
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Since this model is an LV(2) translog linear model, then the first
regression in (10.35) will be named using the terminology the LV(2)_GCD
model. Furthermore, the second regression in (10.35) will be called the
LVAR(1,2)_GCD model. Transform the second model to a translog
model.

(4) By selecting Quick/Estimate Equations and then entering the first regression
in (10.35) as the equation specification, the �Overflow� error message is
obtained. However, by selecting Object/New Object/System and entering
the same equation, the results presented in Figure 10.24(a) are obtained.
These are really unexpected findings. They suggest that the system estimation
methodmay need to be tried if the quick estimationmethod presents an error
message. For this reason, it is proposed that readers should apply the system
estimation method for all the GCD models presented in the previous
examples as an exercise.

(5) For the secondGCDmodel in (10.35), however, the results inFigure 10.24(b)
are obtained by using theQuick/Estimate Equations. Compare the estimates
in this figure with the estimates in Figure 10.23(a).

(6) Based on each GCD model in the multivariate GCD model in (10.35),
various alternative GCD models could be derived. Some selected models
are presented in the following examples. &

Figure 10.23 Statistical results based on (a) the LVARGCDmodel in (10.35) and (b) its
reduced model
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Example 10.15. (VAR GCDmodels) Figure 10.25 presents the statistical results
based on the GCD model, which should be considered as a VAR GCD model,
since the GCD model

y1 ¼ cð11Þ*x1cð12Þ*x3cð13Þ*y1ð�1Þcð14Þ*y2ð�1Þcð15Þ
y2 ¼ cð21Þ*x1cð22Þ*x3cð23Þ*y1ð�1Þcð24Þ*y2ð�1Þcð25Þ ð10:37Þ

Figure 10.24 Statistical results based on eachGCDmodel in (10.35), using (a) the system
equation estimates and (b) the quick equation estimates

Figure 10.25 Statistical results based on the VAR GCD model in (10.37)
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in this figure can be presented as the following translog LS VAR model:

logðY1Þ ¼ logðcð11ÞÞþ cð12ÞlogðX1Þþ cð13ÞlogðX3Þ
þ cð14ÞlogðY1ð�1ÞÞþ cð15ÞlogðY2ð�1ÞÞ

logðY2Þ ¼ logðcð21ÞÞþ cð22ÞlogðX1Þþ cð23ÞlogðX3Þ
þ cð24ÞlogðY1ð�1ÞÞþ cð25ÞlogðY2ð�1ÞÞ

ð10:38Þ

As a further study, an attempt has been made to apply a similar NLS model
based on the Demo.wf1, namely

m1¼ cð11Þ*prcð12Þ*rscð13Þ*m1ð�1Þcð14Þ*gdpð�1Þcð15Þ
gdp ¼ cð21Þ*prcð22Þ*rscð23Þ*m1ð�1Þcð24Þ*gdpð�1Þcð25Þ ð10:39Þ

However, the error message presented in Figure 10.26 is obtained. This finding
again proves the statement that the statistical result, using the defaults options,
is highly dependent on the data that happen to be selected by the researchers, as
well as the starting values of parameters. Refer to the special notes in
Section 10.5. &

Example 10.16. (GCD models with trend) Corresponding to the first model
in (10.35), Figure 10.27 presents the statistical results based on the GCD
model with trend, as follows:

y1 ¼ cð11Þ*x1cð12Þ*x3cð13Þ*y1ð�1Þcð14Þ*y2ð�1Þcð15Þ þ ð16Þ*tÞ ð10:40Þ

However, by using the following two modified models:

y1 ¼ cð11Þ*x1cð12Þ*x3cð13Þ*y1ð�1Þcð14Þ*y2ð�1Þcð15Þ*expðcð16Þ*tÞ
y1 ¼ cð11Þ*x1cð12Þ*x3cð13Þ*y1ð�1Þcð14Þ*y2ð�1Þcð15Þ*tcð16Þ ð10:41Þ

Figure 10.26 An error message using Demo.wf1
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the �overflow�error message is obtained. On the other hand, by using the second
model in (10.35) with trend, the error message presented in Figure 10.28 is
obtained. &

Example 10.17. (AVARGCDmodel with trend) Based on theVARGCDmodel
in (10.37), a VARmodel with trend as presented in Figure 10.29 is applied, with
an error message. &

Figure 10.27 Statistical results based on the GCD model in (10.40)

Figure 10.28 An error message using the second model in (10.35) with trend
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Example 10.18. (Instrumental variable GCD models) As an extension of the
model in (10.37), Figure 10.30 presents the statistical results based on an
instrumental GCD model in (10.42), using the Quick/Estimate Equations in
EViews 5, since EViews 6 presents unexpected results, as in Figure 10.31:

Y ¼ cð1Þ*X1cð2Þ*X3cð3Þ*X4cð4Þ
Instrument Yð�1Þ X1 X1ð�1Þ X3ð�1Þ ð10:42Þ

Note that no good guide exists on how to select a set of instrumental variables, as
already mentioned in Chapter 7. In this case, it is assumed that X4 is correlated
with the residual series, so X4 is not in the instrumental list.

Figure 10.29 A VAR GCD model with trend based on the model in (10.37)

Figure 10.30 Statistical results using EViews 5, based on the model in (10.42)
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Based on this model, further analyses have been done, producing the statistical
results presented in Figure 10.32. Based on these results, the following notes and
conclusions are presented:

(1) The null hypothesisH0:C(2) þ C(3) þ C(4)¼ 1 is accepted based on the chi-
squared-statistic with df¼ 1 and a p–value¼ 0.6513. Note that the results
show a negative estimate of C(2). Hence, this model does not meet the basic
requirement of the CD production function.

(2) The null hypothesis of no serial correlation of the error terms is accepted,
based on the Breusch–Godfrey serial correlation test with a p-value¼
0.286 780, even though the residual graph represents something different.

(3) The null hypothesis H0: C(2)¼C(3)¼C(4)¼ 0 is accepted based on the
chi-squared-statistic with df¼ 3 and a p–value¼ 0.6651. The null hypothesis
H0: C(1)¼ 0 is also accepted, based on the t-statistic with a large p-value¼
0.9871. Based on these findings, in addition to the residual graph, it could be
said that this model is an unacceptable or a bad model, in a statistical sense.
However, how could this model be improved? Experimentation should be
done to find several or as many as possible acceptable models and then

Figure 10.31 An error message in the system equation method of EViews 6

Figure 10.32 Statistical results for testing selected hypotheses
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someof themcould be presented for a comparative study. Finally, one should
be selected that could be judged or considered as the best. Do not worry too
much on your findings, since the true populationmodel is never known (refer
to Section 2.14.1).

(4) On the other hand, using the Quick/Estimate Equations of EViews 6,
unexpected estimates were obtained, as presented in Figure 10.33, where
all probabilities of the t-statistic are equal to one. By using the system
estimation method, the error message in Figure 10.31 is obtained. Refer to
the special notes in Section 10.5. &

10.4 Generalized CES models

The basic constant elasticity of substitution (CES) production function has the
following form:

Q ¼ A½aK�t þð1�aÞL�t��r=t ð10:43Þ

whereQ is an output factor,K andL are two input variables or factors,A,a and t
are model parameters and r> 0 is the scale of production (homogeneity degree).
This CES function is considered as an homogenous function with r degrees. For
data analysis using EViews, the model in (10.38) would have the following form:

Y ¼ cð1Þ*ðcð2Þ*X�cð3Þ
1 þð1�cð2Þ*X�cð3Þ

2 Þ�r=cð3Þ þ u ð10:44Þ

Note that the coefficients of the exogenous variables have a total of one. A
more general model with multivariate exogenous variables could be considered,
as follows:

Y ¼ cð1Þ*ðcð2Þ*X�cð3Þ
1 þ cð4Þ*X�cð3Þ

2 þ � � �Þ�r=cð3Þ þ u ð10:45Þ

Figure 10.33 Statistical results using EViews 6
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Then the following hypothesis could be tested:

H0 : Cð2ÞþCð4Þþ � � � þCðkþ 2Þ ¼ 1

H0 : Otherwise
ð10:46Þ

Example 10.19. (Simple CES models) Figure 10.34 presents statistical results
using EViews 5 based on the models in (10.44) with r¼ 1 and r¼ 2 respectively,
since EViews 6 presents the �Overflow� error message. Note that the message
�Convergence not achieved after 500 iterations� is given for the first model (r¼ 1),
but for the second model (r¼ 2) the message is �Convergence achieved after 35
iterations.� For the other cases, using the same model may give the �Overflow� or
other error massages, which is highly dependent on the data sets. &

Example 10.20. (CES models having three exogenous variables) By entering the
following equation specification, an error message using EViews 5 and the
�Warning� error message using EViews 6 are obtained:

Y1 ¼ cð1Þ*ðcð2Þ*X1ð�cð5ÞÞ þ cð3Þ*X2ð�cð5ÞÞ þ cð4Þ*X3ð�cð5ÞÞÞ �1

cð5Þ
� �

ð10:47Þ

Then by replacing C(4) with (1�C(2)�C(3)), the statistical results in Fig-
ure 10.35(a) are obtained using EViews 5 and using EViews 6 in Figure 10.35(b)
with the �Warning� error message. Since both results present very small DW-
statistics, an attempt should be made to apply autoregressive models.

However, by using the corresponding AR(1) model the �Near singular matrix�
error message using EViews 6 and �Attempt to raise a negative number to a non
integer power� using EViews 5 will be obtained. &

Figure 10.34 Statistical results based on two basic CES models in (10.38), for r¼ 1 and
r¼ 2 respectively
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10.5 Special notes and comments

(1) Experimentation with LS and NLS models proved that their statistical
results are highly dependent on the data set that happens to be selected by
the researchers. Therefore, in fact, models have been found that fit the data.
In other words, these are models that can give acceptable results in a
statistical sense. Refer to the VAR models in Examples 10.15 and 10.17.

(2) However, corresponding to the NLS models, the statistical results also
greatly depend on the starting coefficient values of the iterative estimation.
Corresponding to the starting values, Eviews 6 User�s Guide II (2007,
pp. 625–627) presents several notes. Some of them are as follows:
. There are no general rules for selecting starting values for parameters.
. For nonlinear least squares type problems, EViews uses the values in the
coefficient vector at the time the estimation procedure begins as starting
values.

. For system estimators and ARCH, EViews uses the starting values based
upon the preliminary single equation OLS or TSLS estimation.

. A poor choice of starting values may cause the nonlinear least squares
algorithm to fail. EViews begins nonlinear estimation by taking derivatives
of the objective function with respect to the parameters, evaluated at these
values.

(3) Since the starting coefficient values are highly dependent on the coefficient
vector at the time the estimation procedure begins, different estimates could
be obtained by using or entering the same objective function at several time
points. In some cases, there could also be an error message.

(4) The starting values can be changed, but it is not easy to select a good set of
starting values. For this reason, the default starting values have been used for
all GCD and GCES models presented in the previous examples.

Figure 10.35 Statistical results using (a) EViews 5 and (b) EViews 6, based on a CES

model with three exogenous variables
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10.6 Other NLS models

Since we have so many error messages based on the GCD and GCES models,
then we have been doing experimentation with quadratic and higher degree
polynomial objective functions. The main reason in using a quadratic objective
function, since we know that a quadratic function should have either a minimum
or maximum value. So that we can expect that the iterative procedure gives a
globalminimumormaximumvalue.However, we have found unexpected results
or error messages based on selected quadratic NLS models. In the following
examples, we only present the estimable NLS models, even though most of the
regressors are insignificant, based on selected data sets.

10.6.1 Cases based on Demo.wf1

Example 10.21. (Quadratic NLS models) Figure 10.36 presents statistical
results based on a quadratic NLS objective function as follows:

M1 ¼ cð1Þþ ð1þ cð3Þ*GDPþ cð4Þ*PRcð5ÞÞ2 ð10:48Þ

By using the following objective function, the �Overflow� error message is
obtained:

M1 ¼ cð1Þþ cð2Þ*ð1þ cð3Þ*GDPþ cð4Þ*PRcð5ÞÞ2 ð10:49Þ

In fact, error messages based on several other objective functions are also
obtained. &

Figure 10.36 Statistical results based on the NLS model in (10.38)
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Example 10.22. (Third-degree objective function) Figure 10.37 presents statistical
results based on the following third-degree objective function:

M1B ¼ cð1Þþ ð1þ cð2Þ*GDPcð3Þ þ cð4Þ*PRÞ3 ð10:50Þ

whereM1B¼ (M1� 100)/(1300�M1)> 0 for all observed values ofM1,with the
lower andupperbounds subjectively selected for illustrationpurposes. Thismodel
corresponds to the bounded objective function as follows:

log
m1�100

1300�m1

� �
¼ log cð1Þþ f1þ cð2Þ*gdpcð3Þ þ cð4Þ*prg3

h i
ð10:51Þ

&

Example 10.23. (Other NLS models) Figure 10.38, p. 496, presents statistical
results based on the following NLS model and its reduced model:

M1 ¼ cð1Þþ ð1þC92Þ*PRþCð3Þ*RSCð4ÞÞ þCð5Þ*RS ð10:52Þ
&

Example 10.24. (Other NLS models based on Demo.wf1) By making an error in
typing a parameter, the statistical results in Figure 10.39, with its residual graph
in Figure 10.40, are obtained using the following objective function:

M1 ¼ cð1Þþ ð1þ cð2Þ*PRþ cð3Þ*RScð4ÞÞ2 þRScð3Þ ð10:53Þ

Note the position of the parameterC(3), which is the coefficient ofRSc(4) and the
power of RS. Furthermore, based on the following objective functions, the
statistical results in Figure 10.41 are obtained:

M1 ¼ cð1Þþ ð1þ cð2Þ*PRþ cð3Þ*RSÞ2 þRScð4ÞÞ ð10:54Þ
&

Figure 10.37 Statistical results based on the NLS model in (10.50)
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Figure 10.38 Statistical results based on the NLSmodel in (10.52) and its reduced model

Figure 10.39 Statistical results based on the NLS model in (10.53)

Figure 10.40 Residual graph of the model in Figure 10.39
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10.6.2 Cases based on the US_DPOC data

By applying similar models to the NLS models with acceptable statistical results
based onDemo.wf1, acceptable statistical resultsmight also be expectedbasedon
theUS_DPOCdata. In fact, it is recognized that there could be an errormessage.
Do this as an exercise and find alternativeNLSmodels in the following examples.

Example 10.25. (Quadratic objective function) Figure 10.42 presents statistical
results based on a common quadratic function and its reduced model, with the
objective function as follows:

P ¼ cð1Þþ ð1þ cð2Þ*Aþ cð3Þ*GÞ2 þ cð4Þ*I ð10:55Þ
&

Figure 10.42 Statistical results based on the model in (10.55) and its acceptable reduced
model

Figure 10.41 Statistical results based on the NLS model in (10.54)
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Example 10.26. (Quadratic NLS model) Figure 10.43 presents statistical results
based on the following quadratic NLS model, with its residual graphs in
Figure 10.44:

P ¼ ðcð1Þþ cð2Þ*Gð�cð3ÞÞ þ cð4Þ*AÞ2 ð10:56Þ
These residual graphs, as well as the DW-statistic, show the limitation of the
model, since themodel does not take into account the autocorrelation of the error
terms. On the other hand, two out of four parameters have very large p-values.
Try to modify this model as an exercise. &

Example 10.27. (Fifth-degree NLS model) Figure 10.45 presents statistical
results based on a fifth-degree NLS model, with its residual graph in
Figure 10.46. In a statistical sense, this model should be considered as a good

Figure 10.43 Statistical results based on the NLS model in (10.56)

Figure 10.44 Residual graphs of the NLS model in (10.56)

498 Time Series Data Analysis Using EViews

www.trading-software-collection.com



fit model, even though its DW¼ 1.06, since three out of four parameters are
significant at the level of 0.01 or 0.10, except the intercept C(1). The objective
function is

P ¼ Cð1Þþ ð1þCð2Þ*Gð�Cð3ÞÞ þCð4Þ*LÞ5 þCð4Þ*L ð10:57Þ
&

Example 10.28. (TGARCH(1,1,0) NLS model) As an extension of the NLS
model in (10.57), Figure 10.47 presents the statistical results based on the
TGARCH(1,1,0) NLS model as follows:

P ¼ Cð1Þþ ð1þCð2Þ*Gð�Cð3ÞÞ þCð4Þ*LÞ5 þCð4Þ*L ð10:58Þ

Figure 10.45 Statistical results based on the NLS model in (10.57)

Figure 10.46 Residual graphs of the NLS model in (10.57)
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Figure 10.47 Statistical results based on the TGARCH(1,1,0) NLS model in (10.58)

Figure 10.48 Statistical results based on the TGARCH(0,1,1) NLS model in (10.59)
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Furthermore, Figure 10.48 presents the statistical results based on theTGARCH
(0,1,1) NLS model with variance regressors, as follows:

P ¼ Cð1Þþ ð1þCð2Þ*Gð�Cð3ÞÞ þCð4Þ*LÞ5 þCð4Þ*L
GARCH ¼ Cð5ÞþCð6Þ*RESIDð�1Þ2*ðRESIDð�1Þ < 0Þ

þCð7Þ*GARCHð�1ÞþCð8Þ*AþCð9Þ*HþCð10Þ*I
ð10:59Þ

Since, all of the variance regressors are insignificant, modified models need to be
found inorder toproduce anacceptableTGARCHNLSmodel.However, further
modification will not be done. Do this as an exercise, since the author is very
confident that readers can easily developmany alternativeTGARCH(a, b, c)NLS
models, as well as EGARCH, PARCH and CGARCH, based on the NLSmodel
in (10.57). Likewise, a lot of ARCHmodels also can esily be developed based on
any other NLS models. &
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11

Nonparametric estimation
methods

11.1 What is the nonparametric data analysis

Byusing thename �distribution free statistics� insteadofnonparametric estimation
methods, it may be thought that there is no need for a distribution probability or
density functions in testing hypotheses. In fact, any testing hypotheses should
always be dependent on a specific probability distribution. The two simplest
probability distributions, in nonparametric statistics, are the binomial and chi-
squared distributions, which are widely used or applied in elementary data
analysis. For this reason, it is suggested that the name �distribution free statistics�
should not be used for the nonparametric statistics.

When talking about the nonparametric statistics, Conover (1980, pp. 2–3)
stated:

The nonparametric approach involved making and using simple and unsophisticated

methods to find desired probabilities, or at least a good approximation to those probabili-
ties, and the methods often involve less computational work, and therefore are easier and
quicker to apply than other statistical methods.

On the other hand, Hardle (1999, pp. 6–7) stated four main purposes for the
nonparametric approach:

First, it provides a versatile method of exploring a general relationship between two

variables. Second, it gives predictions of observations yet to bemadewithout reference to a
fixed parametric model. Third, it provides a tool for finding spurious observations by
studying the influence of isolated points. Fourth, it constitutes a flexible method of

substituting for missing values or interpolating between adjacent X-values.

The nonparametric procedure or data analysis was introduced in the late
1930s, such as the Kendall t, or Kendall-tau, index (1938), as a measure of
nonparametric correlation, as well as the Spearman rank correlation. There is no

Time Series Data Analysis Using EViews IGN Agung

� 2009 John Wiley & Sons (Asia) Pte Ltd

www.trading-software-collection.com



record of the binomial and chi-squared-statistics. Then nonparametric proce-
dures were developed to nonparametric regression (Hardle, 1999) and nonpara-
metric methods in multivariate analysis (Puri and Sen, 1993). Hardle presents
smoothing techniques, which should be considered as sophisticated nonpara-
metric estimation methods. The simplest one is the kth nearest neighbor estima-
tion method, namely the k-NN estimate, which should be considered as an
extension of the (very) basic moving average method, based on uncensored data
sets. Three important theorems presented by Puri and Sen are the nonparametric
multivariate central limit theorems, or NM_CTL, as an extension of the impor-
tant central limit theorem (CTL). Since theCTL is considered as the base theorem
for inferential statistical analysis of the parametric procedure, then the
NM_CLTs should be considered as the important base theorems of the non-
parametric statistical methods.

Furthermore, the nonparametric procedure has been extended to the analysis
based on censored data sets, such as theKendall-tau index has been extended to a
generalized-Kendall-tau (GKT) or Agung-Kendall-tau (AKT), based on general
right censored data. ThisAKT index andother nonparametric procedures for the
general right censored data, such as the AKT in multivariate problems and
alternative presentation of themultivariate Simon statistics, have been presented
in the author�s dissertation with a copyright (Agung, 1981).

This chapter presents the application of the nonparametric estimation meth-
ods provided by EViews 6.However, the presentation will begin with the basic or
classical moving average, as presented in the following subsection. The theore-
tical concept of the moving average (MA) models are presented in Appendix A.

11.2 Basic moving average estimates

Alternative basic or classical moving average estimation methods based on the
observed values of a time series {Yt}, t¼ 1, 2, . . ., T, will be presented in the
following subsections. The estimate(s) based on these estimation methods can
easily be done or computed manually using Excel.

11.2.1 Simple moving average estimates

Basically, amoving average estimationmethod is to compute an average value of
a set of observations at two time points or more. Corresponding to this idea, the
following simple moving average estimation methods or nonparametric models
are proposed:

(a) The 2K Nearest Time Points (2K_NT)

NTðYtÞ ¼
Xk¼þK

k¼�K

Ytþ k

2K þ 1
þmt ð11:1Þ
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Note that by using this estimation method, there will only be (T� 2K) point
estimates. As a result, there will not be estimates for the first K time points
and the last K time points.

(b) The K Previous Time Points (K_PT)
As a modification of the model in (11.1), the following model is presented,
namely the K previous time points (K-PT):

PTðYtÞ ¼
Xk¼K

k¼0

Yt�k

Kþ 1
þmt ð11:2Þ

Note that this model, in fact, represents the average of Yt at K þ 1 time
points (i.e. the current time and the kth previous time points). Based on this
model, the estimates from t¼K þ 1 up to t¼T can be obtained.

(c) The K Nearest Time Forecast (K_NTF)
Since the moving average estimation methods in (11.1) and (11.2) lack
forecasting ability, such that the value of Yt for t¼T þ 1 cannot be
estimated, the following estimation method, namely the K nearest time
forecast (K-NTF), is proposed:

NTFðYtÞ ¼
Xk¼K

k¼1

Yt�k

K
þmt ð11:3Þ

Based on this method, the following estimate at the time (T þ 1), or one
period ahead forecast, is found as follows:

NTFðYTÞ ¼
Xk¼K

k¼1

YT�kþ 1

K
þmt

¼ ðYT þ YT þ 1 þ � � � þ YT�K þ 1Þ
K

þmt

ð11:4Þ

Then the time (T þ i), for i > 1, can be estimated recursively. For example,
for K¼ 3:

NTFT þ 1 ¼ NTFðYT þ 1Þ ¼ YT þ YT�1 þ YT�2

3

NTFT þ 2 ¼ NTFT þ 1 þ YT þ YT�1

3

NTFT þ 3 ¼ NTFT þ 2 þNTFT þ 1 þ YT

3

NTFT þ 4 ¼ NTFT þ 3 þNTFT þ 2 þNTFT þ 1

3
. . .

NTFT þ n ¼ NTFT þ n�1 þNTFT þ n�2 þNTFT þ n�3

3

ð11:5Þ
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The computation based on this model can easily be done manually or using
Excel, as presented in the following example.

Example 11.1. (Classical moving average) Table 11.1 presents the basic moving
average ofYt¼M1t, based on a subsample ofDemo.wf1, having 24 observations
from 1990Q1 (t¼ 1) up to 1996Q4 (t¼ 24). This table presents the basic moving
average estimation methods or nonparametric models in (11.1) to (11.3) for
K¼ 2. Based on the basic statistics, namely the mean, SD, max and min, it could
be said that the 2K-NT estimate is the best fit.

The computation can easily be done using Excel. However, for a comparison,
the moving average estimation method provided by Eviews will be considered in
Section 11.4. Based on Table 11.1, note the following estimates:

(a) The 2K-NT Moving Average or Estimate for K¼ 2

MA3¼maðY3Þ¼863:09þ875:83þ882:55þ887:74þ900:90

5
¼882:02 ð11:6Þ

(b) The K-PT Moving Average or Estimate, for K¼ 2

MA3 ¼ maðY3Þ ¼ 863:09þ 875:83þ 882:55

3
¼ 873:82 ð11:7Þ

(c) The K-NTF Estimate or Moving Average for K¼ 2

MATþ1 ¼ MA29¼Y28þY27

2
¼1202:15þ1218:99

2
¼1210:57

MATþ2 ¼ MA30¼ðMA29þY28Þ¼1210:57þ1202:15

2
¼1206:36

MATþ3 ¼ MA31¼ðMA30þMA29Þ¼1206:36þ1210:57

2
¼1208:465

ð11:8Þ

&

11.2.2 The weighted moving average estimates

Corresponding to the K-NTF in (11.3), a weighted moving average estimate can
be considered, as follows:

wmaðYtÞ ¼
XK
k¼1

NðkÞ*Yt�k þmt ð11:9Þ

where N(1)¼N1¼ 1�K(K þ 1)a/2 and N(k)¼Nk¼ (k� 1)a, for all k > 1.
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Table 11.1 Illustration of the classical moving average estimates

Year/Q t Yt 2k_NT Error1 k_PT Error2 Modk_PT Error3

1990Q1 1 863.09
1990Q2 2 875.83

1990Q3 3 882.55 882.02 0.53 873.82 8.73 869.46 13.09
1990Q4 4 887.74 892.27 �4.53 882.04 5.70 879.19 8.55
1991Q1 5 900.90 905.22 �4.33 890.40 10.50 885.15 15.75
1991Q2 6 914.36 920.66 �6.30 901.00 13.36 894.32 20.04

1991Q3 7 940.57 943.64 �3.08 918.61 21.96 907.63 32.94
1991Q4 8 959.75 966.46 �6.71 938.23 21.53 927.46 32.29
1992Q1 9 1002.64 993.77 8.87 967.65 34.99 950.16 52.48

1992Q2 10 1014.98 1023.55 �8.57 992.46 22.52 981.20 33.78
1992Q3 11 1050.91 1051.25 �0.33 1022.84 28.07 1008.81 42.10
1992Q4 12 1089.48 1077.86 11.62 1051.79 37.69 1032.94 56.53

1993Q1 13 1098.22 1108.59 �10.37 1079.54 18.69 1070.19 28.03
1993Q2 14 1135.69 1135.90 �0.21 1107.80 27.89 1093.85 41.84
1993Q3 15 1168.66 1160.06 8.60 1134.19 34.47 1116.96 51.70

1993Q4 16 1187.48 1182.72 4.75 1163.94 23.53 1152.17 35.30
1994Q1 17 1210.24 1197.78 12.46 1188.79 21.45 1178.07 32.17
1994Q2 18 1211.56 1204.92 6.64 1203.09 8.47 1198.86 12.70
1994Q3 19 1210.96 1209.27 1.69 1210.92 0.04 1210.90 0.06

1994Q4 20 1204.37 1211.11 �6.74 1208.96 �4.60 1211.26 �6.90
1995Q1 21 1209.24 1209.70 �0.47 1208.19 1.05 1207.66 1.57
1995Q2 22 1219.42 1207.03 12.39 1211.01 8.41 1206.80 12.62

1995Q3 23 1204.52 1205.32 �0.80 1211.06 �6.54 1214.33 �9.81
1995Q4 24 1197.61 1205.08 �7.47 1207.18 �9.57 1211.97 �14.36
1996Q1 25 1195.81 1204.99 �9.18 1199.31 �3.50 1201.06 �5.26

1996Q2 26 1208.03 1204.52 3.51 1200.48 7.54 1196.71 11.32
1996Q3 27 1218.99 1207.61 11.38 1201.92 17.07
1996Q4 28 1202.15 1209.72 �7.57 1213.51 �11.36

T þ 1 — 1210.57

Mean 0.082 12.930 19.395
SD 7.161 13.885 20.828
Max 12.459 37.687 56.530

Min �10.370 �9.574 �14.361

In order to obtain the best estimate or the best fit, the trial-and-error methods
should be used. Under the assumption (or a rule of thumb) that Yt�1 should
contribute at least 90% to the estimate of wma(Yt), then a should be selected in
the range of 0 up to K(K þ 1)a/2 < 0.10 or a < 0.2/(K(K þ 1)). For example, for
K¼ 4, the values of a should be in the interval (0, 0.01].

For K¼ 2:

wmaðYtÞ ¼ ð1�aÞYt�1 þaYt�2 þmt ð11:10Þ

Nonparametric Estimation Methods 507

www.trading-software-collection.com



Then the estimated or fitted values will be as follows:

Ŷ t ¼ ð1�aÞYt�1 þaYt�2 ¼ WMAt

WMAtþ 1 ¼ ð1�aÞŶ t þaYt�1 ¼ ð1�aÞWMAt þaYt�1

ð11:11Þ

For K¼ 3:

wmaðYtÞ ¼ ð1�3aÞYt�1 þ 2aYt�2 þaYt�3 þmt ð11:12Þ

with the estimated or fitted values as follows:

Ŷ t ¼ ð1�3aÞYt�1 þ 2aYt�2 þaYt�3 ¼ WMAt

WMAtþ 1 ¼ ð1�3aÞWMAt þ 2aYt�1 þaYt�2

ð11:13Þ

For a¼ 0:

wmaðYtÞ ¼ EðYtÞ ¼ Yt�1 þmt ð11:14Þ

which indicates that the expected value of Yt is equal to the observed value of
Yt�1. This model or process could be extended to the conditional expectation as
follows:

EðYtjYt�1; Yt�2; . . . ; Yt�kÞ ¼ Yt�1 þmt ð11:15Þ

11.3 Measuring the best fit model

In the basic regression, the best fit regression or curve should have the smallest
mean squared error (MSE), which is measured as

MSE ¼
XT
t¼1

e2t
T�k

ð11:16Þ

where T¼ total number of observations and k¼ number of parameters.
Since, corresponding to nonparametric curves, the number of the parameters is

not known, then it is suggested that themean absolute error (MAE) or the sum of
squared error (SSE) should be used, which are computed as follows:

MAE ¼
XT
t¼1

jetj
T

ð11:17Þ

SSE ¼
XT
t¼1

e2t ð11:18Þ
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On the other hand, Yaffee andMcGee (2000, p. 17) proposed other measures
of fit in comparing the fits of different time series models, namely the average
percentage error in the entire series (MPE) and the mean absolute percentage
error (MAPE), which are computed as follows:

MPE ¼
XT
t¼1

PEt

T
ð11:19Þ

MAPE ¼
XT
t¼1

jPEtj
T

ð11:20Þ

where

PEt ¼ 100*etPT
t¼1 et

ð11:21Þ

indicates the percentage error at each time t.

11.4 Advanced moving average models

Corresponding to the basicmoving average estimationmethods based on a single
time series {Yt}, t¼ 1, 2, . . ., T, presented in the previous subsections, in the
following subsections the moving average models, the autoregressive moving
average models, as well as the moving average models with covariates, will be
presented using EViews 6.

11.4.1 The moving average models

EViews defines a moving average model by using the following equation
specification.

Y C MAð1ÞMAð2Þ � � �MAðkÞ ð11:22Þ

The corresponding model will be called the kth order or level moving average
model, namely the MA(k) model. Experimentation has been done in order to
study the characteristics of this model, with some of the results presented in the
following examples.

Yaffee andMcGee (2000, p. 137) stated that the corresponding functions of the
moving average models are functions of the error terms. For example, the first-
order moving average process, namely the MA(1) process, is a function of the
current error and the previous error. Hence, the function corresponding to the
model in (11.22) is a function of the current error and (k� 1) previous errors.

Note that, if the equation specification is used or entered in the form of an
explicit equation, such asY¼C(1) þ [MA(1)¼C(2)], then the error message, as
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presented in Figure 11.1, will be obtained. As a result, the MA model cannot be
applied using the system estimation method (or the system function).

Example 11.2. (MA(k) for the endogenous variable M1) Table 11.2 presents a
summary of statistical results based on anMA(5) model having the endogenous
variableM1, its reduced model, namely anMA(4) model, and theMA(6) model.

Figure 11.1 An error message for the MA models

Table 11.2 Statistical results summary based on an MA(5) model and its modified
models

Dependent variable: M1

Method: least squares
Date: 01/12/08 Time: 17:02
Sample: 1952Q1 1996Q4
Included observations: 180

Convergence achieved after 33 iterations
MA backcast: 1950Q4 1951Q4

Variable Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic

C 458.7634 14.699 27 455.9422 14.680 83 461.2874 14.026 02
MA(1) 2.277 701 51.157 81 2.549 964 60.553 64 2.336 831 54.878 96
MA(2) 3.214 210 38.928 13 3.238 417 41.470 32 3.549 493 45.449 91
MA(3) 3.117 261 33.267 36 2.347 540 30.899 98 3.980 295 37.562 08

MA(4) 2.030 308 25.590 73 0.810 940 20.222 06 3.349 814 32.598 63
MA(5) 0.790 707 18.593 27 — — 2.098 819 29.981 29
MA(6) — — — — 0.805 527 21.203 13

R-squared 0.990 717 0.985 566 0.994 599
Adjusted R2 0.990 450 0.985 236 0.994 412
SSR 197 587.3 307 221.8 114 948.5

F-statistic 3713.956 2987.299 5310.147
Prob(F-statistic) 0.000 000 0.000 000 0.000 000
AIC 9.905 523 10.335 80 9.374 938

SC 10.011 95 10.424 49 9.499 108
HQC 9.948 676 10.371 76 9.425 284
DW- statistic 0.895 234 0.995 158 1.102 522

510 Time Series Data Analysis Using EViews

www.trading-software-collection.com



Based on this table the following notes and comments are presented:

(1) This table shows statistical results, which should be considered as unexpected
results, since the indicatorMA(5) is insignificant based on theMA(5) model,
but it is significant based on theMA(6) model. In fact, it has also been found
that it is significant based on the MA(7) and MA(8) models, with all MA(k)
models being significant.

(2) The SSR (sum squared residual) decreases with increasing k of the MA(k)
model. Should amodel with the smallest value of SSEbe used, as presented in
Section 11.4? Corresponding to the results in Table 11.2, theMA(6) model is
chosen as an acceptable or a good fitmodel, if it is based on the smallest SSR.
Then if this is compared to theMA(8)model, theMA(8)model will be chosen
as the best fit model.

(3) Corresponding to the DW-statistic, the MA(5) model has the greatest value.
For this reason, should this model be chosen as a good fit model?

(4) These findings also show that (refer to the Section 2.14) a conclusion or decision
should not be made that is highly dependent on only the sample statistics.

(5) For a comparison, Figure 11.2 presents the residual graphs of the MA(5)
model and the 2K-NT moving average estimate with K¼ 2 presented in
Example 11.1. Based on these graphs, it could be concluded that the 2K-NT
moving average estimate is better than theMA(5) model. This finding shows
that the simple or classical moving average estimate could have a better
estimate than complex estimation methods. &

Example 11.3. (Alternative simpleMAmodels based onM1) Table 11.3 presents
a summary of statistical results by using or entering the following equation
specifications, based on the whole sample in Demo.wf1:

M1 C MAð1Þ ð11:23Þ
logðM1Þ C MAð1Þ ð11:24Þ

Figure 11.2 Residual graphs of (a) theMA(5) model and (b) the 2K-NTmoving average
estimate for K¼ 2, based on the subsample 1990Q1 1996Q4
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DðlogðM1ÞÞ C MAð1ÞMAð2Þ ð11:25Þ

DðlogðM1Þ C MAð2Þ ð11:26Þ

Based on this summary, the DW-statistics and the SSE in particular, it could be
said that the model in (11.26) has the best fit. Note that theMAmodel having the
endogenous variable D(log(M1)) is a return rate model (RRM) of the endoge-
nous variable M1. Figure 11.3 presents its residual, actual and fitted graphs.
Further residual analysis for this model can easily be done, as it has been
presented in the previous chapter. Please do it for exercises.

However, corresponding to theR2, as well the AdjustedR-squared, it is found
that the model in (9.20) is the best one, since it has the largestR2. For illustration
purposes, Figure 11.3 presents the residuals graphs of the models in (9.20) and
(9.23). Which one do you think is a better time series model? &

Table 11.3 Statistical results summary based on the four models

M1 log(M1) D(log(M1)) D(log(M1))

Variable Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

C 448.3 17.23 5.817 101.608 0.0126 10.131 0.0125 9.681
MA(1) 0.984 131.49 0.980 63.910 �0.0594 �0.790
MA(2) — — — — 0.1501 1.997 0.1423 1.896
R-squared 0.741 0.737 0.034 0.031

Adjusted R-squared 0.740 0.736 0.023 0.026
SSR 175.922 26.804 0.041 0.041
F-statistic 509.742 498.97 3.123 5.712

Prob(F-statistic) 0.000 00 0.0000 0.046 0.018
AIC 13.189 0.956 �5.515 �5.523
SC 13.224 0.991 �5.462 �5.487

HQC 13.203 0.970 �5.493 �5.509
DW- statistic 0.034 0.098 1.947 2.062

Figure 11.3 Residual graphs of the models in (a) (9.20) and (b) (9.23)
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11.4.2 The autoregressive moving average models

Based on a single time series {Yt}, t¼ 1, 2, . . ., T, presented in the previous
subsection, an autoregressive moving average model is defined by using the
following equation specification:

Y C ARð1Þ � � �ARðpÞMAð1Þ � � �MAðqÞ ð11:27Þ

This model will be called the (p, q) autoregressive moving average model,
namely the ARMA(p, q) model. In order to study the characteristics of this
model, experimentation has been performed, with some of the results presented
in the following examples.

Example 11.4. (ARMA(1,1) models based on M1) Table 11.4 presents a
summary of statistical results based on three ARMA(1,1) models with endo-
genous variablesM1, log(M1) andD log(M1) respectively. The statistical results
are obtained by using the following equation specifications:

M1 C ARð1ÞMAð1Þ ð11:28Þ

logðM1Þ C ARð1ÞMAð1Þ ð11:29Þ

DðlogðM1ÞÞ C ARð1ÞMAð1Þ ð11:30Þ

Table 11.4 Statistical results summary based on the models in (11.28) to (11.30)

M1 log(M1) D log(M1)

Variable Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.

C �114.16 �0.835 634.0864 0.013 0.013 11.112
AR(1) 1.011 446.46 0.999 980 646.136 �0.981 �112.97
MA(1) 0.148 1.916 �0.021 524 �0.277 0.984 128.15

R-squared 0.999 331 0.999 582 0.060 367
Adjusted R-squared 0.999 323 0.999 577 0.049 628
Sum squared residual 14 180.86 0.042 234 0.039 676

F-statistic 131 362.2 210 340.5 5.621 423
Prob(F-statistic) 0.000 000 0.000 000 0.004 304
AIC 7.243 659 �5.480 509 �5.537 202
SC 7.297 079 �5.427 089 �5.483 576

QHC 7.265 320 �5.458 848 �5.515 455
DW- statistic 1.855 139 1.993 080 1.923 886
Inverted AR roots 1.01a 1.00b �0.98

Inverted MA roots �0.15 0.02 �0.98

a
With the error message �Estimated AR process is nonstationary�.

bWithout the error message.
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Based on this table, the following notes are given:

(1) The ARMA(1,1) model having the endogenous variableM1 has an inverted
root that is strictly greater than one, and the output presents an errormessage
�Estimated AR process is nonstationary.� This indicates that the model has
heterogeneous error terms. Hence the model is an unstable model.

(2) TheARMA(1,1) model having the endogenous variable log(M1) seems to be
an unstable model, since it has an inverted root of one. However, its residual
graph in Figure 11.4(a) does not clearly indicate its instability, compared to
themodel ofM1. Since the result did not present the errormessage �Estmated
AR process is nonstationary,� then it could be said that the root is in fact not
outside the unit circle or the root is still less than one.However, it is presented
as 1.00, because the number uses only two decimals. As a result, this model is
an acceptable model.

(3) The ARMA (1,1) model ofDlog(M1), with its residual graph in Figure 11.4(b),
canbeconsideredasa stablemodel, since its absolute inverted root is |�0.98| < 1.

(4) Finally, note that the three models considered have different dependent
variables. Hence, each of them estimates different time series. However, the
first model ofM1 is an unstable model and has a very large SSR¼ 14 180.86.
For this reason, the last two ARMA(1,1) models should be considered as
acceptablemodels, in a statistical sense, even though themodel in (11.30) has
a very low value of the adjusted R-squared. &

Figure 11.4 Residual graphs of (a) the ARMA(1,1) model of log(M1) in (11.29) and
(b) the ARMA(1,1) model of Dlog(M1) in (11.30)

11.4.3 The ARMA models with covariates

Since many illustrative examples of the time series models having exogenous
variables have been presented, here only simple autoregressive moving average
models with a covariate or an exogenous variable, namely ARMA(p, q)_C
models, will be discussed. The ARMA(p, q) model with multicovariate or
multivariate exogenous variables can easily be derived from all models presented
in the previous chapters.
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In order to do the analysis based on ARMA models with k-covariates or
exogenous variables, namely X1, . . ., Xk, the following equation specification
should be used:

Y C X1 X2 � � �Xk ARð1Þ � � �ARðpÞMAð1Þ � � �MAðqÞ ð11:31Þ

Example 11.5. (The ARMA models with a covariate) For illustration purposes,
Table 11.5 presents a summary of the statistical results based on Demo.wf1, by
using the following equation specifications:

M1 C GDPMAð1ÞMAð2ÞMAð3Þ ð11:32Þ

M1 C GDP ARð1ÞMAð1Þ ð11:33Þ

M1 C GDP ARð1Þ ARð2ÞMAð1ÞMAð2ÞMAð3Þ ð11:34Þ

Table 11.5 Statistical results summary based on the MA(3)_C, ARMA(1,1)_C

and ARMA(2,3)_C models

Dependent
variable: M1

MA(3)_C ARMA(1,1)_C ARMA(2,3)_Ca

Variable Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic

C 61.588 22 11.336 31 24 754.78 0.013 578 19 104.02 0.023 036
GDP 0.605 294 96.152 92 0.341 532 3.049 041 0.289 908 2.626 587

AR(1) — — 0.999 901 136.6337 0.100 234 2.584 797
AR(2) — — — — 0.899 473 22.597 78
MA(1) 1.295 507 21.022 82 0.158 311 2.019 306 1.000 569 12.394 15

MA(2) 1.112 708 14.020 82 0.381 492 3.510 442
MA(3) 0.586 591 9.422 256 0.354 024 4.543 432
R-squared 0.998 794 0.999 316 0.999 392

Adjusted
R-squared

0.998 767 0.999 304 0.999 371

SSR 25 667.73 14 499.07 12 807.18
F-statistic 36 235.44 85 164.79 46 881.50

Prob
(F-statistic)

0.000 000 0.000 000 0.000 000

AIC 7.853 465 7.277 024 7.192 506

SC 7.942 159 7.348 251 7.317 633
QHC 7.889 427 7.305 906 7.243 249
DW- statistic 1.497 902 1.857 585 1.811 330

Inverted
AR roots

— 1.00 1.00 �0.90

Inverted

MA roots

�0.24� 0.81i �0.81 �0.16 �0.01� 60i �0.0.98

a
Convergence not achieved after 500 iterations.

Note that the first model is a third-order moving average model with a
covariate, namely theMA(3)_C model, the second is an autoregressive moving
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average (1,1)model with a covariate, namely theARMA(1,1)_Cmodel, and the
third is an autoregressive moving average (2,3) model with a covariate, namely
the ARMA(2,3)_C model.

Even though the ARMA_C models have an inverted AR root of 1.00, the
output of the threemodels do not present the errormessage �EstimatedARprocess
is nonstationary.�Refer to the statistical results in the previous Example 11.3. For
this reason, these ARMA_C models are considered as acceptable models, in a
statistical sense. Since the ARMA(2,3)_C model has the smallest SSR (sum
squared residual), this model should be considered as the best model.

Which onewould youprefer?Remember that the threemodels in fact represent
three distinct models, since they have different dependent variables. &

11.5 Nonparametric regression based on a time series

Without loss of generality the bivariate time series fðXt; YtÞgTt¼1 can be written or
considered as the ordered observations or cross-sectional data set as follows:

fðXi; YiÞgNi¼1 with X1 � X2 � � � � � XN ð11:35Þ

where N¼T, since the scatter graph or plot in a two-dimensional coordinate
system based on the time series fðXt; YtÞgTt¼1 is exactly the same as the scatter
graph based on the cross-sectional data set presented in (11.35).

In the following subsections the moving average models presented by Hardle
(1999) will be reviewed, as well as some examples that can be done using
EViews.

11.5.1 The Hardle moving average models

Hardle (1999) presents various nonparametric regressions or estimationmethods
based on a cross-sectional bivariate data set, namely the data set presented
in (11.35). The general equation of the simplest nonparametric regression is

Yi ¼ mðXiÞþ ui; i ¼ 1; 2; . . . ;N ð11:36Þ

with the unknown regression function m(Xi) and observation error ui.
Instead of finding an explicit function of the exogenous variable X, a set of

possible estimated values of m(Xi) will be found using specific criteria, and then
their values will be presented in the form of a curve.

The simplest technique to estimate all possible values of the functionm(Xi), say
Xi¼ x for all x, uses the following formula (Hardle, 1999):

m̂kðxÞ ¼ N�1
XN
i¼1

WkiðxÞYi ð11:37Þ
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where fWkiðxÞgNi¼1 is a weight sequence defined through the following set of
indexes:

Jx ¼ fi : Xi is one of the k nearest observations to xg ð11:38Þ

This method is called the k-nearest neighbor estimation method. Note that the
k-nearest neighbor (k-NN) estimate of mk(x) is in fact a weighted average in a
varying neighborhood. For a specific weighted average,

WkiðxÞ ¼ N

k
if i 2 Jx and WkiðxÞ ¼ 0 otherwise ð11:39Þ

Therefore, the formula (11.37) can be written as

m̂kðxÞ ¼
XN
i¼1

JxYi

k
¼ k�1

X
i2Jx

Yi ð11:40Þ

However, EViews provides different types of nonparametric regression, called
the nearest neighbor fit, as presented in the following example. As a result, in the
following subsections, empirical findings will be presented using the nonpara-
metric estimation methods available in EViews 6.

11.5.2 The nearest neighbor fit

Based on the time series (Xi, Yi) in the BASICS workfile, the stages of the
estimation method are as follows:

(1) After opening the BASICS workfile, block the X-variable and then the
Y-variable.

(2) ClickView/Show . . . and then clickOK. The data ofXt andYtwill appear on
the screen.

(3) By selecting View/Graph . . ., the options presented in Figure 11.5 will be
available.

(4) By selecting Scatter/Nearest Neighbor Fit . . . and clicking Options, the
window in Figure 11.6 will appear with the default options, such as Poly-
nomial degree¼ 1, Bandwidth span¼ d¼ 0.3, Local weighting, Cleveland
subsampling and Number of evaluation¼ 100.

(5) Finally, by clicking OK, the nonparametric regression curve is obtained, as
presented later in Figure 11.7(a) in Example 11.6.

(6) Remember to insert a name in the �Fitted series (Optional)� to generate the
fitted values variable for further statistical analysis, similar to generating
the residual, and then do a detailed residual analysis. However, this
option is available in EViews 5, but not in EViews 6, and is presented
in Figure 11.6.
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11.5.3 Mathematical background of the nearest neighbor fit

The estimation method of the nearest neighbor fit, in fact, is based on a
polynomial model as follows:

Yi ¼ aþ b1Xi þ b2X
2
i þ � � � þ bnX

n
i þmi ð11:41Þ

Figure 11.5 Alternative options of the scatter graphs

Figure 11.6 Default for the nearest neighbor fit options
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but the estimation method is using the weighted nonparametric regression. The
weighted regression minimizes the weighted sum of squared residuals

WSSE ¼
XN
i�1

WiðYi�a�b1Xi�b2X
2
i � � � � �bnX

n
i Þ2 ð11:42Þ

where

Wi ¼ 1�
��� di

d½dN�
���3

0
@

1
A

3

for
��� di

d½dN�
��� < 1

0 otherwise

8>><
>>: ð11:43Þ

The span d (¼0.3) instructs EViews to include [dN] observations nearest to the
given point, where [dN] is 100d%of the total sample size, truncated to an integer
k, as indicated above.

Polynomial degree specifies the degree of polynomial to fit in each local
regression.

The local weighting (Tricube) weights the observations of each local regres-
sion, and di¼ |xi� x|, as well as d([dN]), is the [dN]th smallest such distance.
Observations that are relatively far from the point being evaluated are given
small weights in the sum of squared residuals.

Example 11.6. (Alternative nearest neighbor fit estimates) Figure 11.7 presents
four alternative nearest neighbor fit models (nonparametric or curves) based on
the bivariate (Xt,Yt) in BASICS.wf1. Based on these nonparametric regressions,
the following notes are presented:

(1) Figure 11.7(a) presents the scatter graph of (Xi,Yi) with itsNN-Fit regression
using the default options.

(2) Figure 11.7(b) is obtained by using a third-degree polynomial, with the same
value of d¼ 0.30. Compared to the first curve, this curve has higher waves.

(3) By taking a smaller value of the span, namely d¼ 0.10, and a third-degree
polynomial, the curve in Figure 11.7(c) is obtained, having several or many
relative maximum and minimum fitted values.

(4) Ontheotherhand,byusinga largerspanofd¼ 0.80, thecurve inFigure11.7(d)
is obtained, which is very close to a straight line, even it uses the third-degree
polynomial.

(5) Manymore nonparametric regressions or curves based on this bivariate time
series canbeobtained, aswell as anyother bivariates, by using polynomials of
various degrees and various bandwidth spans. There is a great problem that
should be faced, which is how many curves should be obtained or developed
in order to obtain the best fit nonparametric regression (refer to the special
notes and comments in Section 2.14).

(6) However, it is suggested that default options should be used, if there is no
other good reason to select the other alternative options. &
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Example 11.7. (The nearest neighbor fit series using EViews 5) Note that the
options of EViews 6 in Figure 11.6 do not provide the option for generating the
fitted series, compared to EViews 5, presented in Figure 11.8. For this reason, in
order to present additional illustrations based on the fitted series, it is best to use
EViews 5.

Figure 11.7 Scatter graph of (X,Y) with its alternative nearest neighbor fit curves

Figure 11.8 The fitted series option in EViews 5
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Corresponding to the four alternative NN-Fit presented in Example 11.6, the
four fitted series are defined as Poli_1 up to Poli_4. Figure 11.9 presents their
scatter graphs on X. Further data analysis could be done by using these fitted
series. After having these fitted series in the workfile, the data analysis using
EViews 6 could then also be conducted. By usingEView6,multiple scatter graphs
could be constructed directly for each Poli_k on X, with a parametric or
nonparametric regression. Do this as an exercise. &

Example 11.8. (Data analysis based on the NN-Fit series using EViews 6) As an
illustration, Figure 11.10 presents the statistical results based on an MAR(1) (a
multivariate first-order autoregressive) model of the bivariate (Poli_1,Poli_2) on
X. By using a fitted value variable as a dependent or an independent variable,
various or many time series models could be developed, as presented in the
previous chapters. This type of regression will be called a switching regression.
Gulati, Lawrence and Puraman (2005) present switching regressions using the
fitted value variables of a multinomial logit model.

Furthermore, Figure 11.11 presents the residual graphs of two AR(1) simple
linear regressions, using the following equation specifications:

Poli 1 C X ARð1Þ ð11:44Þ

Poli 2 C X ARð1Þ ð11:45Þ

Figure 11.9 Scatter graphs of Poli_k on X, for k¼ 1, 2, 3, 4
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Basedon either one of the residual graphs, the error terms canbe identified to have
heterogeneous variances. Hence, it is suggested that the Newey–West estimation
method should be applied, as presented in the previous chapters. &

11.6 The local polynomial Kernel fit regression

The statistical method used to obtain a local kth degree polynomial Kernel fit of
Y, at each value x, is the polynomial regression as follows:

Yi ¼ b0 þb1ðx�XiÞþb2ðx�XiÞ2 þ � � � þbkðx�XiÞk þmi ð11:46Þ

The model parameters are then estimated by minimizing the following weighted
sum of squared residuals:

SSresðxÞ ¼
XN
i�1

ðYi�b0�b1ðx�XiÞ� � � � �bkðx�XiÞkÞ2K x�Xi

h

� �
ð11:47Þ

where N is the number of observations, h is the bandwith (or smoothing
parameter) and K(x�Xi)/h) is a Kernel function that integrates to one. Note

Figure 11.10 Statistical results based on an MAR(1) model of (Poli_1, Poli_2) on X

Figure 11.11 Residuals graphs of the AR(1) simple linear regressions of Poli_1 and
Poli_2 on X
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that the minimizing estimates of b will differ for each x. By default, EViews
arbitrarily sets the bandwidth as

h ¼ 0:15ðXU�XLÞ ð11:48Þ

where (XU�XL) is the range of observed values of X.
By selecting the option �Scatter with Kernel Fit,� using EViews 5 the Kernel Fit

options presented in Figure 11.12 will appear. Note that EViews 6 does not
provide the option to generate the fitted series.

This figure shows three options for the regressions and seven options for the
Kernel fit beside the other options. Hence, there could be 21 types of Kernel fit
regression, supported by the default case of the Method¼Linear binning,
Bandwith¼EViews and Number of grid points¼ 100. As a result, there will be
a great problem in selecting the best fit model(s).

Example 11.9. (Kernel fit regressions) For a comparison with the results in the
previous examples, the first- and third-degree polynomials and theEpanechnikov
(default) Kernel function are applied, as presented in Figure 11.13. The
corresponding estimated values or fitted series are saved as the variables
KF_1 and KF_2 for further analyses. Do this as an exercise.

Note that the analyses done using other Kernel functions can easily be
obtained, and all the results can then be compared in order to select the best
possible model. However, which one would you judge is the best fit model?
Should the measuring fits presented in Section 11.3 be trusted or should best
judgment be used (Turkey, 1962, quoted by Gifi, 1990), which was presented in
Section 2.14? &

Figure 11.12 Kernel fit options in EViews 5
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11.7 Nonparametric growth models

By considering the time seriesYt and the time t as theX-variable presented in the
previous section, a nonparametric growth curve would be obtained, which
should be considered as a modification of the classical continuous growth model
in (2.3). The following examples present several nonparametric growthmodels or
curves based on selected endogenous variables.

Example 11.10. (Nonparametric growth curve of M1) By using the endogenous
variable log(M1) with the exogenous variable t, the two graphs in Figure 11.14
are presented. The first graph on the left is based on the OLS simple linear
regression of log(M1) on t, namely log(m1)¼ c(1) þ c(2)�t þ m, and the
second graph is the nearest neighbor fit regression using the default option of
EViews 6. &

Figure 11.13 Two alternative kernel fit regressions of Y on X, using EViews 5

Figure 11.14 Graphical comparison between anOLS simple regression of log(M1) on the
time t and the nearest neighbor fit regression, using the default options
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Example 11.11. (Nonparametric growth curve of RS) By using the endogenous
variable log(RS) and the exogenous variable t, the two graphs in Figure 11.15 are
presented. The first graph on the left presents the nearest neighbor fit regression
using the default options and the second graph on the right presents theKernel fit
regression using the default options. The two graphs look very similar. &

Example 11.12. (Nonparametric growth curve of the unemployment rate) By
using the endogenous variable the natural logarithm of the variable Urate
(i.e. unemployment rate for all workers, 16 years and over) in the BASICS
workfile and the exogenous variable t, the two graphs in Figure 11.16 are
presented. The first graph on the left is based on the default option of the
nearest neighbor fit regression and the second graph on the right is based on a
Kernel fit regression of log(Urate) on the time t. It is very clear that the Kernel fit
is a much better fit than the nearest neighbor fit.

Figure 11.15 Graphical comparison between the nearest neighbor and kernel fit regres-
sions of log(RS) on the time t, using the default options

Figure 11.16 The nearest neighbor and kernel fit regressions of log(Urate) on the time t,
using EViews 5
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For a comparison, Figure 11.17 presents the nearest neighbor and Kernel fits
using the default options in EViews 6. Note that EViews 5 should be used to
generate the fitted value variable. By using EVeiws 5 and 6, many or infinitely
many alternative nonparametric regressions can be obtained, besides these two
nonparametric regressions.

Furthermore, if the SSE in (11.18) is being considered as a measure of a fit
model, there could also bemany SSEs. As a result, there would bemany different
choices in selecting the best fit model. However, based on other measures of fit
models, there could be contradictory conclusions. &

Figure 11.17 The nearest neighbor and kernel fit regressions of log(Urate) on the time t,
using the default options in EViews 6
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Appendix A:

Models for a single time series

Definition A.1: The univariate time series or process fYtgTt¼1 is second-order
stationary if and only if

(i) the mean EðYtÞ ¼ m is independent of t,
(ii) the autocovariance CovðYt; Yt�kÞ ¼ EðYt�mÞðYt�k�mÞ ¼ gðkÞis independent

of t for any k; gðkÞ ¼ gk is the autocovariance function (ACF) of the process,
with

gð�kÞ ¼ gðkÞ ðA:1Þ

&

Definition A.2: The second-order stationary process f«tgTt¼1 is a weak white
noise process if and only if

(i) the meanEð«tÞ ¼ 0; 8t,
(ii) the autocovariance

Covð«t; «t�kÞ ¼ Eð«t«t�kÞ ¼ gðkÞ ¼ 0; 8k 6¼ 0 ðA:2Þ

&

A.1 The simplest model

Based on a single time series, namely fYtgTt¼1, the simplest model, called themean
model, is obtained as follows:

Yt ¼ mþ «t ðA:3Þ

whereYt is an observable random variable,m is the mean parameter, and «t is the
unobserved random error term, for t¼ 1,2,. . ., T.
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A.1.1 OLS estimates

In order to obtain the ordinary least square (OLS) estimates of the parameter, not
assumptions are needed on the error term. For this purpose, only the following
quadratic function should be minimized as a function of m based on a data set
fytgTt¼1 that happens to be selected by the researcher:

Q ¼ QðmÞ ¼
XT
t¼1

«2t ¼
XT
t¼1

ðyt�mÞ2 ðA:4Þ

The necessary condition to minimize this function is

qQ
qm

¼ 2
XT
t¼1

ðyt�mÞ ¼ 0 ðA:5Þ

which is known as the normal equation of the model. Then an estimate is
obtained of the parameter m, namely m̂, called the sample mean, as follows:

m̂ ¼ 1

T

XT
t¼1

yt ¼ �y ðA:6Þ

Furthermore, this defines the following statistics:

1. The sample error sum of square:

SSE ¼
XT
t¼1

ðyt � m̂Þ2 ¼
XT
t¼1

ðyt ��yÞ2 ðA:7Þ

2. The sample mean error sum of squares:

MSE ¼ 1

T�1

XT
t¼1

ðyt � m̂Þ2 ¼ 1

T�1

XT
t¼1

ðyt ��yÞ2 ðA:8Þ

A.1.2 Properties of the error terms

For inferential statistical analysis, namely estimation and testing hypotheses, the
following assumptions are required:

(a) The random error term «t has E(«t)¼ 0 and Var(«t)¼s2(«t)¼s2, for t¼ 1,
2, . . . , T.

(b) The random error is normally distributed as N(0, s2) or Gaussian.

Note that both of these assumptions indicate that «t is i.i.d. (independently and
identically distributed) Gaussian or N(0,s2), so that E(«t«s)¼ 0 for all t 6¼ s,
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since «t is the random error. Under these assumptions, it can be proven that the
statistics m̂ and MSE, not their sample values, are unbiased estimators of the
corresponding parameters, which are indicated by the following expected
values:

Eðm̂Þ ¼ m ðA:9Þ

EðMSEÞ ¼ s2 ðA:10Þ

A.1.3 Maximum likelihood estimates

Under the assumption(s) above, namely «t is i.i.d. Gaussian, the following
normal density function is obtained:

f ð«tÞ ¼ ½2ps2��1=2
exp � «2t

2s2

� �
¼ ½2ps2��1=2

exp �ðyt�mÞ2
2s2

" #
ðA:11Þ

In order to estimate the model parameters, namely m and s2, the following
likelihood function is defined:

L ¼
YT
t¼1

f ð«tÞ ¼ ½2ps2��T=2
exp � 1

2s2

XT
t¼1

ðyt �mÞ2
" #

ðA:12Þ

with its log likelihood function, namely LL¼ log(L)¼ ln(L), as follows:

LL ¼ � T

2
logð2pÞþ logðs2Þ� �� 1

2s2

XT
t¼1

ðyt �mÞ2 ðA:13Þ

The necessary conditions for maximizing this L function, as well as LL, are

qðLLÞ
qm

¼ 1

s2

XT
t¼1

ðyt�mÞ ¼ 0

qðLLÞ
qs2

¼ � T

2s2
þ 1

2s4

X
ðyt�mÞ2 ¼ 0

ðA:14Þ

which lead to the normal equations as follows:

XT
t¼1

ðyt �mÞ ¼ 0

s2 ¼ 1

T

XT
t¼1

ðyt �mÞ2
ðA:15Þ
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Then the following unique solutions are found:

m̂ ¼ 1

T

XT
t¼1

yt ¼ �y

ŝ2
y ¼

1

T

XT
t¼1

ðyt � m̂Þ2 ¼ 1

T

XT
t¼1

ðyt ��yÞ2
ðA:16Þ

Note that the first estimate is exactly the same as presented in (A.5). This result
shows that both the OLS and ML estimation methods give the same estimates.
Furthermore, the following expected value is obtained:

Eðŝ2
yÞ ¼

T�1

T
E

1

T�1

XT
t¼1

ðyt ��yÞ2
" #

¼ T�1

T
EðMSEÞ ¼ T�1

T
s2 ðA:17Þ

This indicates that the statistic ŝ2
y is a biased estimator of the parameter s2.

However, it is an asymptotical unbiased estimator, since for T ! ¥, Eŝ2
y ¼ s2:

A.2 First-order autoregressive models

The first-order autoregressive model, namely the AR(1) model based on a
seriesfYtgTt¼1, can be presented as follows:

Yt ¼ b0 þb1Yt�1 þ «t ðA:18Þ

where b0 and b1 are the model parameters and «t is i.i.d. Gaussian.

A.2.1 Properties of the parameters

Under the assumptions E(«t)¼ 0 and Var («t)¼ 0, and the stationary condition
E(Yt)¼m and VarðYtÞ ¼ s2

y for all t, then

m ¼ b0 þb1m or EðYtÞ ¼ m ¼ b0

1�b1

ðA:19Þ

and

VarðYtÞ ¼ b2
1 VarðYt�1ÞþVarð«tÞ

ð1�b2
1ÞVarðYtÞ ¼ Varð«tÞ ¼ s2

«

VarðYtÞ ¼ s2
«

1�b2
1

¼ s2

1�b2
1

¼ g0
ðA:20Þ
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A.2.2 Autocorrelation function of an AR(1) model

By using b0¼m(1�b1) in (A.18), the AR(1) model can be presented as

Yt ¼ mð1�b1Þþb1Yt�1 þ «t
Yt�m ¼ b1ðYt�1�mÞþ «t

ðA:21Þ

Then, since E[«t(Yt�1�m)]¼E(«t)E(Yt�1�m)¼ 0, the following expected
value is obtained:

E½«tðYt�mÞ� ¼ b1E½«tðYt�1�mÞ� þEð«2t Þ ¼ Eð«2t Þ ¼ s2 ðA:22Þ

Furthermore, based on the model in (A.21), it is easy to derive the following
autocovariance function or equation:

ðYt�mÞðYt�k�mÞ ¼ b1ðYt�1�mÞðYt�k�mÞþ «tðYt�k�mÞ
CovðYt; Yt�kÞ ¼ E½ðYt�mÞðYt�k�mÞ�

¼ b1E½ðYt�1�mÞðYt�k�mÞ�þE½«tðYt�k�mÞ�
ðA:23Þ

Then by using the result in (A.22), and under the assumption that Yt is
covariance stationary or weakly stationary, namely

E½ðYt�mÞðYt�k�mÞ� ¼ gk for all t and anyk ðA:24Þ

the following results are obtained:

For k¼ 0,

E½ðYt�mÞðYt�mÞ� ¼ b1E½ðYt�1�mÞðYt�mÞ� þE½«tðYt�mÞ�
g0 ¼ b1g1 þs2 ðA:25Þ

For k 6¼ 0,

E½ðYt�mÞðYt�k�mÞ� ¼ b1E½ðYt�1�mÞðYt�k�mÞ� þE½«tðYt�k�mÞ�
gk ¼ b1gk�1

ðA:26Þ

where gk¼ g�k is used.
Furthermore, from (A.21) it is found that s2 ¼ ð1�b2

1Þg0. Inserting this value
in (A.25) gives

g0 ¼ b1g1 þs2 ¼ b1g1 þð1�b2
1Þg0 ! g1 ¼ b1g0 ðA:27Þ
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Then from (A.25) and (A.27), it is found that the autocorrelation function
(ACF) of Yt satisfies

rk ¼ b1rk�1; ¼ b2
1gk�2 ¼ � � � ¼ bk

1g0 for k � 0 ðA:28Þ

Since g0¼ 1 then gk ¼ bk
1 .

A.2.3 Estimates of the parameters

Corresponding to the functions Q(m) in (A.4) and LL in (A.13), for the model
in (A.18), then

Q ¼ Qðb0;b1Þ ¼
XT
t¼2

«2t ¼
XT
t¼2

ðyt�b0�b1yt�1Þ2 ðA:29Þ

LL ¼ � T�1

2
logð2pÞþ logðs2Þ� �� 1

2s2

XT
t¼2

ðyt�b0�b1yt�1Þ2 ðA:30Þ

Here, only the LL function is considered when obtaining the estimates of the
parameters b0, b1 and s2. Note that, in (A.29) and (A.30), the summation
from t¼ 2 should be used, since the series yt�1 is used for the observed values
y1, . . ., yT.

EViews provides an iteration process or estimation method in order to obtain
the estimates of these parameters. However, in a mathematical sense, the
necessary conditions for maximizing this LL function are

qðLLÞ
qb0

¼ 1

s2

XT
t¼2

ðyt�b0�b1yt�1Þ ¼ 0

qðLLÞ
qb1

¼ 1

s2

XT
t¼2

ðyt�b0�b1yt�1Þyt�1 ¼ 0

qðLLÞ
qs2

¼ � T�1

2s2
þ 1

2s4

XT
t¼2

ðyt�b0�b1yt�1Þ2 ¼ 0

ðA:31Þ

As a result, the following normal equations are obtained:

XT
t¼2

ðyt�b0�b1yt�1Þ ¼ 0

XT
t¼2

ðyt�b0�b1yt�1Þyt�1 ¼ 0

s2 ¼ 1

T�1

XT
t¼2

ðyt�b0�b1yt�1Þ2

ðA:32Þ

532 Time Series Data Analysis Using EViews

www.trading-software-collection.com



By using the notation

€y ¼ 1

T�1

XT
t¼2

yt and _y ¼ 1

T�1

XT
t¼2

yt�1 ðA:33Þ

the following estimates are obtained:

b̂1 ¼
Pðyt �€yÞðyt� 1 � _yÞP ðyt�1� _yÞ2

b̂0 ¼ €y� b̂1 _y

ŝ2 ¼ 1

T�1

XT
t¼2

ðyt � b̂0 � b̂1yt�1Þ2
ðA:34Þ

A.3 Second-order autoregressive model

The second-order autoregressive model, namely the AR(2) model based on a
seriesfYtgTt¼1, can be presented as follows:

Yt ¼ b0 þb1Yt�1 þb2Yt�2 þ «t ðA:35Þ

where b0, b1 and b2 are the model parameters and «t is i.i.d. Gaussian.

A.3.1 Properties of the parameters

Corresponding to the expected value and variance of Yt presented in (A.19)
and (A.20), using the same technique gives

m ¼ b0 þb1mþb2m or EðYtÞ ¼ m ¼ b0

1�b1 �b2

ðA:36Þ

and

VarðYtÞ ¼ s2
«

1�b2
1�b2

2

¼ s2

1�b2
1�b2

2

¼ g0 ðA:37Þ

A.3.2 Autocorrelation function of an AR(2) model

By using b0¼m(1�b1�b2) in (A.36), the AR(2) model in (A.35) can be
presented as

Yt ¼ mð1�b1�b2Þþb1Yt�1 þb2Yt�2 þ «t
Yt�m ¼ b1ðYt�1�mÞþb2ðYt�2�mÞþ «t

ðA:38Þ
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Using the same technique as for the AR(1) model gives

E½ðYt�mÞðYt�k�mÞ� ¼ b1E½ðYt�1�mÞðYt�k�mÞ�
þb2E½ðYt�2�mÞðYt�k�mÞ�þE½«tðYt�k�mÞ� ðA:39Þ

which leads to the following relationship:

gk ¼ b1gk�1 þb2gk�2 for k > 0 ðA:40Þ

Note that g�k¼ gkBydividing both sides by g0, the relationship between the serial
correlation or autocorrelation is obtained as follows:

rk ¼ b1rk�1 þb2rk�2 for k > 0 ðA:41Þ

For the ACF of Yt in particular,

r1 ¼ b1r0 þb2r�1 ¼ b1 þb2r1

r1 ¼
b1

1�b2

ðA:42Þ

Therefore, for the stationary AR(2) series Yt,

r0 ¼ 1

r1 ¼
b1

1�b2

rk ¼ b1rk�1 þb2rk�2 for k � 2

ðA:43Þ

A.3.3 Estimates of the parameters

Similar to the quadratic function Q(b0, b1) in (A.19) and the log likelihood
function LL in (A.20), for the model in (A.35),

Q ¼ Qðb0;b1;b2Þ ¼
XT
t¼3

«2t ¼
XT
t¼3

ðyt�b0�b1yt�1�b2yt�2Þ2 ðA:44Þ

LL ¼ � T�2

2
logð2pÞþ logðs2Þ� �� 1

2s2

XT
t¼3

ðyt�b0�b1yt�1�b2yt�2Þ2 ðA:45Þ
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With respect to theLL function, the following normal equations for estimating
the parameters b0, b1, b2 and s2 are

XT
t¼3

ðyt�b0�b1yt�1�b2yt�2Þ ¼ 0

XT
t¼3

ðyt�b0�b1yt�1�b2yt�2Þyt�1 ¼ 0

XT
t¼3

ðyt�b0�b1yt�1�b2yt�2Þyt�2 ¼ 0

s2 ¼ 1

T�2

XT
t¼3

ðyt�b0�b1yt�1�b2yt�2Þ2

ðA:46Þ

Here, the explicit solution of this normal equation will not be presented.
However, it will be presented in Appendix C, by using the matrix equation based
on a general linear model (GLM).

A.4 First-order moving average model

The first-order moving average model, namely the MA(1) model based on a
seriesfYtgTt¼1, can be presented as follows:

Yt ¼ mþ «t þ d«t�1 ðA:47Þ

where m and d are the model parameters and «t is i.i.d. Gaussian or N(0, s2).
Note that the series Yt is constructed from a weighted sum of the most recent

values of the error terms, namely «t and «t�1. Under the assumption above, the
following expected values are obtained:

The expectation of Yt is

EðYtÞ ¼ Eðmþ «t þ d«t�1Þ ¼ m ðA:48Þ

The variance of Yt is

EðYt�mÞ2 ¼ Eð«t þ d«t�1Þ2
¼ Eð«2t þ d«t«t�1 þ d2«2t�1Þ
¼ s2 þ 0þ d2s2

g0 ¼ ð1þ d2Þs2

ðA:49Þ
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By using E(«t«s)¼ 0 for all t 6¼ s, the autocovariances of Yt and Yt�k are obtained
as follows:

g1 ¼ EðYt�mÞðYt�1�mÞ ¼ Eð«t þ d«t�1Þð«t�1 þ d«t�2Þ ¼ ds2 ðA:50Þ

gk ¼ EðYt�mÞðYt�k�mÞ ¼ Eð«t þ d«t�1Þð«t�k þ d«t�k�1Þ ¼ 0 for k > 1
ðA:51Þ

From (A.49), (A.50) and (A.51), the ACF for the MA(1) model is

r1 ¼
g1
g0

¼ d

ð1þ d2Þ ; rk ¼ 0 for k > 1 ðA:52Þ

A.5 Second-order moving average model

The second-order moving average model, namely the MA(2) model, can be
presented as follows:

Yt ¼ mþ «t þ d1«t�1 þ d2«t�2 ðA:53Þ

where m, d1 and d2 are the model parameters and «t is i.i.d. Gaussian orN(0, s2).
Under this assumption and by using the same technique or process as that for

the MA(1) model, the following expected values are obtained:
The expectation of Yt is

EðYtÞ ¼ Eðmþ «t þ d1«t�1 þ d2«t�2Þ ¼ m ðA:54Þ

The variance of Yt is

EðYt�mÞ2 ¼ Eð«t þ d1«t�1 þ d2«t�2Þ2
g0 ¼ ð1þ d21 þ d22Þs2

ðA:55Þ

The autocovariances of Yt and Yt�k are

EðYt�mÞðYt�1�mÞ ¼ Eð«t þ d1«t�1 þ d2«t�2Þð«t�1 þ d1«t�2 þ d2«t�3Þ
¼ d1Eð«2t�1Þþ d1d2Eð«2t�2Þ

g1 ¼ ðd1 þ d1d2Þs2

ðA:56Þ

EðYt�mÞðYt�2�mÞ ¼ Eð«t þ d1«t�1 þ d2«t�2Þð«t�2 þ d1«t�3 þ d2«t�4Þ
g2 ¼ d2Eð«2t�2Þ ¼ d2s

2 ðA:57Þ
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gk ¼ EðYt�mÞðYt�k�mÞ ¼ 0 for k > 2 ðA:58Þ

From (A.55), (A.56) and (A.58), the autocorrelation function (ACF) for the
MA(2) model is as follows:

r1 ¼ g1
g0

¼ d1ð1þ d2Þ
ð1þ d21 þ d22Þ

r2 ¼ g2
g0

¼ d2

ð1þ d21 þ d22Þ
rk ¼ 0 for k > 2

ðA:59Þ

A.6 The simplest ARMA model

The simplest autoregressive moving average model is the ARMA(1,1) model,
which can be presented as follows:

Yt ¼ b0 þb1Yt�1 þ «t þ d1«t�1 ðA:60Þ

whereb0, b1 and d1 are themodel parameters and «t is i.i.d. Gaussian orN(0, s2).
Under this assumption, the following expectation of Yt is obtained:

EðYtÞ ¼ Eðb0 þb1Yt�1 þ «t þ d1«t�1Þ
m ¼ b0 þb1mþ 0þ 0

m ¼ b0

1�b1

ðA:61Þ

For further statistical analysis, it is suggested that the ARMA(1,1) model should
be written in terms of the deviation from the mean (Hamilton, 1994, p. 60), as
follows:

ðYt�mÞ ¼ b1ðYt�1�mÞþ «t þ d1«t�1

dt ¼ b1dt�1 þ «t þ d1«t�1

ðA:62Þ

Therefore, E(dt)¼E(Yt�m)¼ 0 and VarðdtÞ ¼ Eðd2
t Þ. The following results can

then be derived by using or assuming that dt�1 and «t are uncorrelated (i.e.
E(dt�1«t)¼ 0:

Eðdt«tÞ ¼ b1Eðdt�1«tÞþEð«2t Þþ d1Eð«t«t�1Þ
¼ 0þs2 þ 0 ¼ s2

ðA:63Þ
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The variance of dt is given by

VarðdtÞ ¼ b2
1Varðdt�1ÞþVarð«tÞþ d21Varð«t�1Þþ 2b1d1Eðdt�1«t�1Þ

ð1�b2
1ÞVarðdtÞ ¼ ð1þ d21 þ 2b1d1Þs2

VarðdtÞ ¼ ð1þ d21 þ 2b1d1Þs2

1�b2
1

¼ g0

ðA:64Þ

In order to obtain the autocovariance function of dt, the following expectation is
considered:

Eðdtdt�kÞ ¼ b1Eðdt�1dt�kÞþEð«tdt�kÞþ d1Eð«t�1dt�kÞ ðA:65Þ

Therefore,

g1 ¼ b1g0 þ d1s
2 for k ¼ 1

gk ¼ b1gk�1 for k > 1
ðA:66Þ

Hence, the ACF for the stationary ARMA(1,1) model is

r1 ¼
g1
g0

¼ b1 þ
d1s

2

g0
¼ b1 þ

ð1�b2
1Þd1

1þ d21 þ 2b1d1

rk ¼ d1rk�1 for k > 1
ðA:67Þ

A.7 General ARMA model

A.7.1 Derivation of the ACF

A general autoregressive moving average model, namely the ARMA(p,q) model
based on a seriesfYtgTt¼1, is defined as follows:

Yt ¼ b0 þ
Xp
i¼1

biYt�i þ «t þ
Xq
j¼1

dj«t�j ðA:68Þ

where b0, b1 and dj are the model parameters and «t is i.i.d. Gaussian orN(0, s2).
Under this assumption,

EðYtÞ ¼ b0

1�Pp
i¼1

bi

ðA:69Þ
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For further derivation of the statistical results, the deviation is used from the
mean of the series Yt, namely dt¼Yt�m, giving the following ARMA model:

dt ¼
Xp
i¼1

bidt�i þ «t þ
Xq
j¼1

dj«t�j

¼
Xp
i¼1

bidt�i þ
Xq
j¼0

dj«t�j with d0 ¼ 1

ðA:70Þ

By using the same technique as that for the ARMA(1,1) model, the following
results or statistics are obtained:

Eðdt«tÞ ¼
Xp
i¼1

biEðdt�i«tÞþ
Xq
j¼0

djð«t«t�jÞ

¼ 0þ d0Eð«2t Þ ¼ 1xs2 ¼ s2

ðA:71Þ

The variance of dt is given by

VarðdtÞ ¼
Xp
i¼1

b2
iVarðdt�iÞþ

Xq
j¼0

d2jVarð«t�jÞþ 2
Xp
i¼1

Xq
j¼0

bidjEðdt�i«t�jÞ

1�
Xp
i¼1

b2
i

" #
VarðdtÞ ¼

Xq
j¼0

d2j s
2 þ 2

Xminðp;qÞ

i¼1

bidis
2

VarðdtÞ ¼

Xq
j¼0

d2j 2þ 2
Xminðp;qÞ

i¼1

bidi

" #
s2

1�
Xp
i¼1

b2
i

¼ g0

ðA:72Þ
Note that in deriving this result,E(dt�1«t�j)¼ 0 for all i „ j andE(dt�1«t�j)¼s2

for all i¼ j have been used. Therefore,

Xp
i¼1

Xq
j¼0

bidjEðdt�i«t�jÞ ¼
Xminðp;qÞ

i¼1

bidis
2 ðA:73Þ

Then the autocovariance function is given by

gk ¼ Eðdtdt�kÞ ¼
Xp
i¼1

biEðdt�idt�kÞþ
Xq
j¼0

djEð«t�jdt�kÞ

¼
Xp
i¼1

big ji�kj þ dks
2

ðA:74Þ
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For specific or selected values of (p,q), based on (A.73) and (A.74) an explicit form
of gk for each k can be derived. Then the ACF of theARMA(p, q) model could be
obtained by using the general formula rk¼ gk/g0. Furthermore, the following
special cases can be derived:

1. The Autocovariance Function of the AR(p) Model in (A.23)
For q¼ 0, the variance of the series dt and ACF of the AR(p) model is
obtained, as follows:

VarðdtÞ ¼
Xp
i¼1

b2
iVarðdt�iÞþVarð«tÞþ

Xp
i¼1

biEðdt�i«tÞ

1�
Xp
i¼1

b2
i

" #
VarðdtÞ ¼ s2 þ 0

VarðdtÞ ¼ s2

1�
Xp
i¼1

b2
i

¼ g0

ðA:75Þ

gk ¼ Eðdtdt�kÞ ¼
Xp
i¼1

biEðdt�idt�kÞþEð«tdt�kÞ

g0 ¼
Xp
i¼1

big i þs2 for k ¼ 0

gk ¼
Xp
i¼1

big ji�kj for k > 0

ðA:76Þ

2. The Autocovariance Function of the MA(q) Model
For p¼ 0, the variance of the series dt and ACF of the MA(q) model is
obtained, as follows:

VarðdtÞ ¼ b2
1Varðdt�1Þþ

Xq
j¼0

d2jVarð«t�jÞþ 2b1

Xq
j¼0

djEðdt�1«t�jÞ

½1�b2
1�VarðdtÞ ¼

Xq
j¼0

d2j s
2 þ 2b1d1s

2

VarðdtÞ ¼

Xq
j¼0

d2j þ 2b1d1

" #
s2

1�b2
1

¼ g0

ðA:77Þ

gk ¼ Eðdtdt�kÞ ¼ b1Eðdt�1dt�kÞþ
Xq
j¼0

djEð«t�jdt�kÞ

¼ b1g j1�kj þ dks
2 for k � q with d0 ¼ 1

¼ b1g j1�kj for k > q

ðA:78Þ
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A.7.2 Estimation method

EViews provides an iteration method to estimate directly the model parameters.
In practice, there is not any difficulty in estimating the parameters, as well as
testing hypotheses, since EViews will present error messages, including the
unstationary process corresponding to themodel considered, if themodel cannot
be estimated based on the data set used. Note that the error message does not
directly mean that the model is a wrong or bad model, since its statistical results
are highly dependent on the data.However, if there is an errormessage, themodel
needs to be modified in order to have an estimable model.

In this section, alternative conditional likelihood functions proposed by
Hamilton (1994) will be presented, which can be used for an iteration estimation
method. In order to write the likelihood function, the error term «t will be
considered, as follows:

«t ¼ Yt�b0�
Xp
i¼1

b1Yt�i�
Xq
j¼1

d1«t�j ðA:79Þ

which is i.i.d. Gaussian or N(0, s2).
Then by taking y0¼ (y0, y�1, y�pþ 1) and «0 ¼(«0, «1, . . . , «�qþ 1) as initial

values, for t¼ 1,2,. . . , T the following conditional LL function is obtained for
estimating the parameters by using the iteration method:

LL ¼ log f ðyT ; . . . ; y1jy0; «0Þ ¼ � T

2
logð2pÞ� T

2
logðs2Þ�

XT
t¼1

«2t
2s2

¼ � T

2
logð2pÞ� T

2
logðs2Þ

� 1

2s2

XT
t¼1

yt�b0�
Xp
i¼1

biyt�i�
Xq
j¼1

dj«t�j

" #2

ðA:80Þ
Alternatively, Box and Jenkins (1976, quoted by Hamilton, 1994, p. 132)

recommended setting « to zero but the y values equal to their observed values.
Hence, the iteration in (A.80) starts at date t¼ p þ 1 with y1, y2, . . ., yp set to
observed values and «p¼ «p�1¼ � � � ¼ «p�qþ 1¼ 0.

Then the conditional LL function considered will be as follows:

LL¼ log f ðyT ; . . . ;yPþ1jyp; . . . ;y1; «p ¼ 0; . . . ;«p�qþ1 ¼ 0Þ

¼ T�p

2
logð2pÞ�T�p

2
logðs2Þ�

XT
t¼pþ1

«2t
2s2

¼ T�p

2
logð2pÞ�T�p

2
logðs2Þ

� 1

2s2

XT
t¼pþ1

yt�b0�
XT

t¼pþ1

biyt�i�
XT

t¼pþ1

dj«t�j

 !2

ðA:81Þ
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Appendix B:

Simple linear models

B.1 The simplest linear model

Based onapair of time series, namelyYt andXt, the simplest linear population (or
true) model is defined as

Yt ¼ b0 þb1Xt þ «t ðB:1Þ

Based on a sample of size T, having observed values (xt, yt) for t¼ 1, 2, . . . , T,
the following T equations are obtained with unknown values of b0, b1 and «t:

yt ¼ b0 þb1xt þ «t; t ¼ 1; 2; . . . ; T ðB:2Þ

Note that this system of equations cannot have a unique solution, since this
system has (T þ 2) unknown variables, namely two model parameters, and T of
the error terms, which is greater than the number of equations. For this reason, in
order to obtain the (estimated) values of the parameters b0 and b1, a quadratic
function of b0 and b1 should be considered, as follows:

Q ¼ Qðb0;b1Þ ¼
XT
t¼1

«2t ¼
XT
t¼1

ðyt �b0 �b1xtÞ2 ðB:3Þ

B.1.1 Least squares estimators

According to the least squares (LS) estimation method, the estimators of b0 and
b1 are the values that minimizeQ. It is well known that the necessary conditions
for minimizing Q are as follows:

qQ
qb0

¼ � 2
XT
t¼1

ðyt �b0 �b1xtÞ ¼ 0

qQ
qb1

¼ � 2
X

xtðyt �b0 �b1xtÞ ¼ 0

ðB:4Þ
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or

XT
t¼1

xtðyt �b0 �b1xtÞ ¼ 0

XT
t¼1

xtðyt �b0 �b1xtÞ ¼ 0

ðB:5Þ

These equations are called the normal equations, which will, in general, have a
unique solution called the point estimatorsof the parametersb0 andb1, namely b̂0

and b̂1 respectively, as follows:

b̂1 ¼
PðXt � �XÞðYt � �YÞP ðXt � �XÞ2 ¼ CovðX; YÞ

VarðXÞ ¼ sxy

s2x

b̂0 ¼ �Y � b̂1
�X

ðB:6Þ

For these estimators, there will be aminimum value of the quadratic function
Q, called the error sum of squares (SSE), based on a sample of sizeT, as follows:

SSE ¼ SSEðb̂0; b̂1Þ ¼
XT
t¼1

«̂2t ¼
XT
t¼1

ðyt � b̂0 � b̂1xtÞ2 ðB:7Þ

Furthermore, it has been known that this SSE has (T� 2) degrees of
freedom, since two degrees of freedom are lost by estimating the two para-
meters b0 and b1.Therefore, the mean of squared errors, namely MSE, is
calculated as follows:

MSE ¼ SSE

T�2
¼ 1

T�2

XT
t¼1

ðyt � b̂0 � b̂1xtÞ2 ¼ ŝ2 ðB:8Þ

Note that the point estimators of b0 and b1, as well as the values of SSE and
MSE, can, in fact, be obtained without using any assumptions of the error terms.
However, for making inferences there should be specific assumptions of the error
term «t. Alternative cases will be presented in the following sections.

B.2 Linear model with basic assumptions

The basic simple linear model in (B.1) has the following assumptions:

A1. Yt is an observable random variable.
A2. Xt is an observable nonrandom variable.
A3. b0 and b1 are unknown parameters, called the model parameters.
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A4. «t is an unobserved random error term with mean E(«t)¼ 0, homoge-
neous variances, namely Var(«t)¼s2(«t)¼s2, and «t and «s are uncor-
related for all t 6¼ s, so that Cov(«t,«s)¼ 0. In other words, «t is i.i.d.

A5. «t has a normal distribution N(0,s2), for t¼ 1, 2, . . . , T.

Note that the assumptionsA4 andA5 indicate that the error terms «t, t¼ 1, 2, . . . ,
T, have independent identically normal distributions with E(«t)¼ 0 and
Var(«t)¼s2(«t)¼s2, namely i.i.d. N(0,s2). In order word, «t is i.i.d. Gaussian
or is a white noise process.

Under these assumptions, the following statistics and results are given.

B.2.1 Sampling distributions of the model parameters

Since E(«t)¼ 0 and Xt is an observable nonrandom variable, then

EðYtÞ ¼ Eðb0 þb1XtÞþEð«tÞ ¼ Eðb0 þb1XtÞ ðB:9Þ
Furthermore, the following results have been proved:

(i) The sampling distribution of the estimator b̂1 is normal with mean and
variance

Eðb̂1Þ ¼ b1

Varðb̂1Þ ¼
s2PT

t¼1 ðXt � �XÞ2
ðB:10Þ

where the first equation, Eðb̂1Þ ¼ b1, indicates that b̂1 as a statistic (not a
value computed based on the sample) is an unbiased estimator of the
parameter b1.

(ii) The sampling distribution of the estimator b̂0 is normal with mean and
variance

Eðb̂0Þ ¼ b0

Varðb̂0Þ ¼
s2
PT

t¼1 X
2
t

n
PT

t¼1 ðXt � �XÞ2
ðB:11Þ

where the first equation, Eðb̂0Þ ¼ b0, indicates that b̂0 as a statistic (not a
value computed based on the sample) is an unbiased estimator of the
parameter b0.

(iii) The mean square error MSE as a statistic is an unbiased estimator of the
corresponding population (or true) variance, which can be presented as

EðMSEÞ ¼ s2 ðB:12Þ
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B.2.2 Student�s t-statistic

Since b̂i is now assumed to be normally distributed for each i¼ 0 and i¼ 1, then
for the model in (B.1)

b̂i �bi

sðb̂iÞ
is distributed as tðn�2Þ ðB:13Þ

with

s2ðb̂1Þ ¼
MSEPT

t¼1 ðxt � �xÞ2

s2ðb̂0Þ ¼
MSE

PT
t¼1 xt

T
PT

t¼1 ðxt � �xÞ2
ðB:14Þ

By using the t-statistic and the parameter b1, we can test two- and one sided
hypotheses on the linear effect of the independent (source, cause or explanatory)
variable X on the dependent (respond, impact or downstream) variable Y.
Table B.1 presents the criteria used in testing the hypotheses.

B.2.3 Analysis of variance table

Corresponding to the data analysis based on the model in (B.1), there will be an
analysis of variance (ANOVA) table as presented inTableB.2. In addition to SSE
and MSE, which have been presented above, this table presents the following
statistics:

(1) The regression sum of squares (SSR) is defined or computed as

SSR ¼
XT
t¼1

ðŶ t � �YÞ2 ðB:15Þ

where

Ŷ t ¼ b̂0 þ b̂1Xt and �Y ¼
XT
t¼1

Yt

T
ðB:16Þ

Table B.1 Criteria used in testing hypotheses

Hypothesis Types Decision at the a significant level

H1: b1 6¼ 0 Two-sided If Prob¼P(|t|> t0)<a, data support the hypothesis

H1: b1> 0 Right-sided (1) If t0> 0 and Prob/2<a, data support the hypothesis
(2) If t0< 0, data do not support the hypothesis

H1: b1< 0 Left-sided (1) If t0< 0 and Prob/2<a, data support the hypothesis

(2) If t0> 0, data do not support the hypothesis
�) t0 is the observed value of the t-statistic
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with one degree of freedom, which is equal to the number of independent
variables of the model. In this case, the mean of squares regression MSR¼
SSR/1.

(2) The total sum of squares (SST ) is defined or computed as

SST ¼
X

ðYt � �YÞ2 ðB:17Þ

with (T� 1) degrees of freedom, and it has a special characteristic as follows:

SST ¼ SSRþ SSE ðB:18Þ
(3) The chi-squared-statistic corresponds to the MSR and MSE, giving the

following values:

x2
1 ¼ MSR ¼ SSR

1
� s2x2ð1Þ ðB:19Þ

x2
2 ¼ MSE ¼ SSE

T�2
� s2x2ðT � 2Þ ðB:20Þ

(4) The Fisher F-statistic is defined or computed as

F0 ¼ MSR

MSE
¼ SSR=1

SSE=ðT � 2Þ is distributed as Fð1; T � 2Þ ðB:21Þ

This F-statistic can be used to test the following two-sided hypothesis, where
large values of F0, which should be greater than one, supportH1, and values
of F0 near 1(one) support H0:

H0 : b1 ¼ 0

H1 : b1 6¼ 0
ðB:22Þ

B.2.4 Coefficient of determination

The coefficient of determination of the model in (B.1), namely r2, is computed as

r2 ¼ SST � SSE

SST
¼ SSR

SST
¼ 1� SSE

SST
ðB:23Þ

Table B.2 ANOVA table for a simple linear regression

Source of variation SS df MS

Regression SSR ¼P ðŶ t��YÞ2 1 MSR¼SSR/1

Error SSE ¼P ðYt�Ŷ tÞ2 T� 2 MSE¼SSE/(T� 2)
Total SST ¼P ðYt��YÞ2 T� 1
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Since 0�SSE�SST, then 0� r2� 1, which indicates the proportion of the
total variation of Y that can be explained by using variation in the independent
variable X, and the value of (1� r2)¼SSE/SST indicates the proportion of the
total variation that cannot be explained by variation in X.

Furthermore, the following statistics and comments may be considered:

(1) The correlation coefficient of X and Y variables:

rðX; YÞ ¼ �
ffiffiffiffi
r2

p
ðB:24Þ

where the positive sign or r(X,Y)> 0 indicates that the observed values of Yt

has a positive trend, with respect to the observed values ofXt. In other words,
the regression line has a positive slope and the regression line has a negative
slope if r(X,Y)< 0.

(2) The relationship between r(X,Y) and b̂1:

rðX; YÞ ¼ b̂1

sx

sy
ðB:25Þ

where sx and sy are the standard deviations of Xt and Yt respectively. This
relationship indicates that the correlation coefficient of X and Y is in fact a
measure of the linear association between the two variables, and it could also
be used to test the causal effect ofX onY. Refer to the standardized coefficient
regression of Y on X, which can be presented as zy ¼ r̂*zx ¼ rðx; yÞ*zx,
where zy and zx are the z-scores of Y and X respectively.

B.3 Maximum likelihood estimation method

Under the assumption that the error terms «t have a normal distribution with
mean E(«t)¼ 0 and Var(«t)¼s2, then «t has the density function

f ð«tÞ ¼ ð2ps2Þ�1=2
exp � «2t

2s2

� �
¼ ð2ps2Þ�1=2

exp �ðYt�b0�b1XtÞ2
2s2

" #
ðB:26Þ

Furthermore, under the assumption that the error terms «t, t¼ 1, 2, . . . ,T, have
independent identical normal distributions, the following likelihood function is
defined as follows:

L ¼ f ð«1; . . . ; «TÞ ¼ ð2ps2Þ�T=2
YT
t¼1

exp �ðYt�b0�b1XtÞ2
2s2

" #
ðB:27Þ
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In order to obtain the estimators of the model parameters, the following natural
logarithm function, called the log-likelihood function, should be considered:

LL ¼ � T

2
lnð2pÞ� T

2
lnðs2Þ� 1

2s2

XT
t¼1

ðYt �b0 �b1XtÞ2 ðB:28Þ

The necessary conditions to obtain the maximum value of LL are as follows:

qðLLÞ
qb0

¼ 1

s2

XT
t¼1

ðYt �b0 �b1XtÞ ¼ 0

qðLLÞ
qb1

¼ 1

s2

XT
t¼1

ðYt �b0 �b1XtÞXt ¼ 0

qðLLÞ
qs2

¼ � T

2s2
þ 1

2s4

XT
t¼1

ðYt �b0 �b1XtÞ2 ¼ 0

ðB:29Þ

As a result, the following normal equations are obtained:

XT
t¼1

ðyt �b0 �b1xtÞ ¼ 0

XT
t¼1

xtðyt �b0 �b1xtÞ ¼ 0

ŝ2 ¼ 1

T

XT
t¼1

ðyt � b̂0 � b̂1xtÞ2

ðB:30Þ

Note that the first two equations are exactly the same as the normal equations
based on the LS estimation method in (B.5). Therefore, it is easy to write the
estimators of the parameters as follows:

b̂1 ¼
Pðxt � �xÞðyt ��yÞP ðxt � �xÞ2 ¼ Covðx; yÞ

VarðxÞ ¼ sxy

s2x

b̂0 ¼ �y� b̂1�x

s2 ¼ 1

T

X
ðyt � b̂0 � b̂1xtÞ2

ðB:31Þ

Furthermore, note that both estimationmethods give the same estimate values
for the b parameters. However, the estimators based on the OLS are obtained
without using the normality assumption, but the maximum likelihood (ML)
should use the independent identical normal distributions, which lead to the
likelihood function in (B.27). On the other hand, in order to have unbiased
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estimators, the normality assumption that error terms should be taken for
granted is not proven or tested. They differ only in estimating s2.

B.4 First-order autoregressive linear model

For the time series variables Xt and Yt, the independent assumption of the error
terms of themodel in (B.1) is not realistic. For this reason, here the simplestmodel
is considered by taking into account the autocorrelation or serial correlation
between the error terms, namely the first-order autoregressive linear model, or
AR(1) model, which is presented as follows:

Yt ¼ b0 þb1Xt þmt

mt ¼ rmt�1 þ «t
ðB:32Þ

where r is the autocorrelation or serial correlation parameter such that |r|< 1, and
«t; t ¼ 1; 2; . . . ; T; are i:i:d:Nð0;s2Þ:

Compared to the autoregressive model presented in Appendix A, note that the
autocorrelations in this model are related to the series of the error term mt. The
autocorrelation for the models presented in Appendix A are related to the
endogenous variable Yt. Therefore, this AR(1) model is, in fact, a model with
first-order autoregressive errors.

B.4.1 Two-stage estimation method

To estimate the model parameters, namely b0, b1 and r, two stages of regression
analyses should be performed, as follows:

(1) The first stage is to apply the model

Yt ¼ b0 þb1Xt þmt ðB:33Þ

In this stage, there could be a variable of the error terms or residuals, namely
m̂t, by using the LS estimationmethod. Furthermore, the variable m̂t�1 could
be created.

(2) Then a model having two independent variables is applied, as follows:

Yt ¼ b0 þb1Xt þ rm̂t�1 þ «t ðB:34Þ

Under the basic assumptions A1 to A5 for «t, presented above, the unbiased
estimators of the three parameters in the model in (B.32) are found, namely
b̂0, b̂1 and r̂. Therefore, the hypothesis on each parameter can be tested
by using the usual t-statistic. Furthermore, refer to the following Durbin–
Watson test statistic.
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B.4.2 Durbin–Watson statistic

The Durbin–Watson statistic for testing the first-degree or first-order serial
correlation or autocorrelation of the error terms mt is defined as

DW ¼
PT

t¼2 ðm̂t � m̂t�1Þ2PT
t¼1 m̂t

ðB:35Þ

The usual hypothesis considered in business and economics is a right-sided
hypothesis as follows:

H0 : r ¼ 0

H1 : r > 0
ðB:36Þ

Durbin andWatson produced lower and upper bounds dL and dU, which should
be used for making a decision for a model having (p� 1) independent variables.

If DW> dU, the first-order autocorrelation is insignificant.
If DW< dL, the first-order autocorrelation is significantly positive.
If dL�DW� dU, then the test is inconclusive.

In practice, however (by rule of thumb), if the value of a DW-statistic is closed
to 2 (two), then the first-order autoregressive model is not used.

B.4.3 Properties of the error term mt

Based on the equation mt¼ rmt�1 þ «t, the following series can be derived:

mt ¼ rnmt�n þ «tð1þ rþ r2 þ � � � þ rnÞ ðB:37Þ

In the long run, for n ! ¥ and |r|< 1,

mt ¼
X¥
n¼0

rn«t ðB:38Þ

Since «t is normally distributedN(0,s2), then mt is also normally distributed with
mean and variance

EðmtÞ ¼
X¥
n¼0

rnEð«tÞ ¼ 0

VarðmtÞ ¼
X¥
n¼0

Varðrn«tÞ ¼ Varð«tÞ
X¥
n¼0

r2n ¼ s2

1� r2

ðB:39Þ
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Furthermore, the covariance between mt and mtþ s for all s> 0, as well as their
coefficient correlations, can be derived as follows:

Covðmt;mt�sÞ ¼ Eðmtmt�sÞ
¼ rsEðm2

t�sÞþ
Xs
k¼0

rkEð«tmt�sÞ

¼ rsVarðmt�sÞþ 0 ¼ rs
s2

1� r2

ðB:40Þ

Corðmt;mt�sÞ ¼
Covðmt;mt�sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½VarðmtÞVarðmt�sÞ�

p ¼ rs ðB:41Þ

B.4.4 Maximum likelihood estimation method

Based on the model in (B.32), the error terms «t can be presented as follows:

«t ¼ mt�rmt�1 ¼ ðYt�b0�b1XtÞ�rðYt�1�b0�b1Xt�1Þ ðB:42Þ

Since «t is normally distributed as N(0,s2), the following density function is
found:

f ð«tÞ ¼ ð2ps2Þ�1=2
exp

�
� «2t

2s2

�

¼ ð2ps2Þ�1=2
exp

(
� ½ðYt �b0 �b1XtÞ� rðYt�1 �b0 �b1Xt�1Þ�2

2s2

)d

ðB:43Þ

for t¼ 2,3, . . . ,T. Therefore, the log-likelihood function can bewritten as follows:

LL ¼ � T�1

2
lnð2pÞ� T�1

2
lnðs2Þ

� 1

2s2

XT
t¼2

½ yt �b0 �b1xtÞ� rðyt�1 �b0 �b1xt�1ð Þ�2
ðB:44Þ

The approach is then to maximize (B.42) numerically (by using the iterative
process) with respect to b0, b1, r and s2. In a mathematical sense, however, the
necessary conditions for maximizing this LL function are q(LL)/qn¼ 0 with
respect to all parameters. Then the following normal equations could be

552 Time Series Data Analysis Using EViews

www.trading-software-collection.com



obtained, but it is very difficult to obtain an explicit solution:

XT
t¼2

½ðyt �b0 �b1xtÞ� rðyt�1 �b0 �b1xt�1Þ� ¼ 0

XT
t¼2

½ðyt �b0 �b1xtÞ� rðyt�1 �b0 �b1xt�1Þ�ðxt � rxt�1Þ ¼ 0

XT
t¼2

½ðyt �b0 �b1xtÞ� rðyt�1 �b0 �b1xt�1Þ�ðyt�1 �b0 �b1xt�1Þ ¼ 0

s2 ¼ 1

T � 1

XT
t¼2

½ðyt �b0 �b1xtÞ� rðyt�1 �b0 �b1xt�1Þ�2

ðB:45Þ

For this reason, Hamilton (1994, p. 22) estimated the first-order autocorrela-
tion r by using the first iteration alone, namely m̂t ¼ yt�b̂0�b̂1xt. He presented
the following estimate by renormalizing the number of observations in the
original sample to (T þ 1), denoted by y0, y1, . . . , yT:

r̂ ¼ ð1=TÞPT
t¼1 m̂tm̂t�1

ð1=TÞPT
t¼1 m̂

2
t�1

¼
PT

t¼1 m̂tm̂t�1PT
t¼1 m̂

2
t�1

ðB:46Þ

It has been proved that

ðr̂� rÞ
ffiffiffiffi
T

p
is asymptotic normally distributed as N½0; ð1�r2Þ�: ðB:47Þ

Based on this normal distribution, an alternative statistic can be obtained for
testing the null hypothesis �no first-order autocorrelation of the error terms�, in
addition to the Durbin–Watson test.

B.5 AR(p) linear model

An extension of the AR(1) model in (B.22) is an AR(p) model, described as
follows:

Yt ¼ b0 þb1Xt þmt

mt ¼
Xp
i¼1

rimt�i þ «t
ðB:48Þ

where ri are the ith autocorrelation or serial correlation parameters such that
|ri|< 1 and «t is i.i.d Gaussian or N(0,s2).
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B.5.1 Estimation method

Based on this model, a series of the error terms can be considered, as follows:

«t ¼ mt �
Xp
i¼1

rimt�i ¼ ðYt �b0 �b1XtÞ�
Xp
i¼1

riðYt�i �b0 �b1Xt�iÞ ðB:49Þ

Since the error terms «t, t¼ 1,2, . . . , T, are i.i.d. N(0,s2), then, similar to the LL
function in (B.43), the following LL function is obtained:

LL ¼ � T�p

2
lnð2pÞ� T � p

2
lnðs2Þ

� 1

2s2

XT
t¼pþ 1

ðyt �b0 �b1xtÞ�
Xp
i¼1

riðyt�i �b0 �b1xt�iÞ2
ðB:50Þ

Then the approach is to maximize this function numerically (by the iteration
process) with respect to b0, b1, s

2 and ri, i¼ 1, 2, . . . , p. The simplest approach is
known as the grid search method (Hamilton, 1994, pp. 133–145), using the
numerical process.

Alternatively, the following stages of regressions may be used:

(1) Regress Yt on Xt in order to generate the series of residuals, namely m̂t�i, for
i¼ 0, 1, . . . , p.

(2) RegressYt onXt and m̂t�i, i¼ 1, . . . , p, to obtain the estimates ofb0,b1 and ri,
as well as the residual «t. Then ŝ2 ¼PT

t¼1 «̂
2
t .

B.5.2 Properties of mt

By considering only the equation or model of the error term, namely

mt ¼
Xq
i¼1

rimt�i þ «t ðB:51Þ

it can be seen that thismodel is in fact similar to or the same as theAR(p)model of
a single seriesYt as presented in Appendix A. Therefore, the properties of mt can
easily be derived by using the same steps, as follows:

VarðmtÞ ¼
Xp
i¼1

r2iVarðmt�iÞþVarð«tÞþ
Xp
i¼1

riEðdt�i«tÞ

1�
Xp
i¼1

r2i

" #
VarðmtÞ ¼ s2 þ 0

VarðmtÞ ¼
s2

1�Pp
i¼1 r

2
i

¼ g0

ðB:52Þ
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gk ¼ Eðmtmt�kÞ ¼
Xp
i¼1

riEðmt�imt�kÞþEð«tmt�kÞ

g0 ¼
Xp
i¼1

rig i þs2 for k ¼ 0

gk ¼
Xp
i¼1

rig ji�kj for k > 0

ðB:53Þ

B.6 Alternative models

Refer to the exogenous variable Xt of the model presented in the previous
sections. In general, there are many choices for the exogenous variable, such
as the time t-variable, the lagged dependent variable and the transformation of a
variable. For this reason, in the following subsections, selected simplemodels are
presented that have been presented in this book.

B.6.1 Alternative 1: The simplest model with trend

The simplest linear model with trend or the simplest trend model is defined as

Yt ¼ b0 þb1tþ «t ðB:54Þ

Under the assumption that «t is i.i.d. non-Gaussian (i.e. independent identically
distributed as nonnormal) withmean zero, variances2 and finite fourthmoment,
Hamilton (1994, pp. 458–459) derived statistics that are asymptotically normal
(Gaussian), supported by the central limit theorem. Two of those statistics are
univariate statistics as follows:

1ffiffiffiffi
T

p
XT
t¼1

«t �!L Nð0;s2Þ ðB:55Þ

and

1ffiffiffiffi
T

p
XT
t¼1

t

T

� �
«t �!L

�
0;
s2

3

�
ðB:56Þ

B.6.2 Alternative 2: The classical growth model

This model can be considered as the model in (B.54) with the following equation
(please refer to the model in (2.3), Chapter 2):

logðYtÞ ¼ b0 þb1tþ «t ðB:57Þ

Appendix B: Simple Linear Models 555

www.trading-software-collection.com



This model could be extended to the AR(p) growthmodel, as a special case of the
AR(p) model in (B.48), with the following equation:

logðYtÞ ¼ b0 þb1tþmt

mt ¼
Xp
i¼1

rimt�i þ «t
ðB:58Þ

B.6.3 Alternative 3: The AR(p) polynomial model

This model is defined as

Yt ¼ b0 þ
Xk
i¼1

biX
i
t þmt

mt ¼
Xp
i¼1

rimt�i þ «t

ðB:59Þ

B.6.4 Alternative 4: The AR(p) return rate model

This model is defined as

d logðYtÞ ¼ b0 þb1Xt þmt

mt ¼
Xp
i¼1

rimt�i þ «t
ðB:60Þ

B.6.5 Alternative 5: The bounded translog linear (Cobb-Douglas)
AR(p) model

This model is defined as

log
Yt�L

U�Yt
¼ b0 þb1logðXtÞþmt

mt ¼
Xp
i¼1

rimt�i þ «t

ðB:61Þ

where U and L are the upper and lower bounds of the expected values of the
series Yt.

B.7 Lagged-variable model

A qth lagged endogenous variable model, namely the LV(q) model, with an
exogenous variable Xt is defined as

Yt ¼ b0 þ
Xq
j¼1

bjYt�j þ dXt þ «t ðB:62Þ
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Based on this model, the error sum of squares function is defined as follows:

Q ¼
XT
t¼1

«2t ¼
XT
t¼1

Yt�b0�
Xq
j¼1

bjYt�j�dXt

 !2

ðB:63Þ

Furthermore, under the assumption that «t is i.i.d. Gaussian or N(0,s2), the
following log-likelihood function is obtained:

LL ¼ � T

2
logð2pÞ� T

2
logðs2Þ�

XT
t¼1

«2t
2s2

LL ¼ � T

2
logð2pÞ� T

2
logðs2Þ� 1

2s2

XT
t¼1

yt�b0�
Xq
j¼1

bjyt�j�dxt

 !2 ðB:64Þ

To estimate the parameters b0, bj, d and s2, in a mathematical sense, the
following normal equation is considered:

XT
t¼qþ 1

yt�b0�
Xq
j¼1

bjyt�j�dxt

 !
¼ 0

XT
t¼qþ 1

yt�b0�
Xq
j¼1

bjyt�j�dxt

 !
yt�j ¼ 0; j ¼ 1; . . . ; q

XT
t¼qþ 1

yt�b0�
Xq
j¼1

bjyt�j�dxt

 !
xt ¼ 0

s2 ¼
XT

t¼qþ 1

yt�b0�
Xq
j¼1

bjyt�j�dxt

 !2

ðB:65Þ

B.8 Lagged-variable autoregressive models

B.8.1 The simplest lagged-variable autoregressive model

The simplest lagged-variable autoregressive model, namely the LVAR(1,1)
model, with an exogenous variable is defined as

Yt ¼ b0 þb1Yt�1 þ dXt þmt

mt ¼ rmt�1 þ «t
ðB:66Þ

Under the assumption that «t is i.i.d. N(0,s2), then

«t ¼ ðYt�b0�b1Yt�1�dXtÞ�rmt�1

¼ ðYt�b0�b1Yt�1�dXtÞ�rðYt�1�b0�b1Yt�2�dXt�1Þ ðB:67Þ
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with the normal density function as follows:

f ð«tÞ ¼ ð2ps2Þ�1=2
exp

½ðYt�b0�b1Yt�1�dXtÞ�rðYt�1�b0�b1Yt�2�dXt�1Þ�2
2s2

( )

ðB:68Þ
for t¼ 3, . . . ,T, sinceYt�2 is on the right-hand side and the series considered isYt,
for t¼ 1, . . . , T.

In order to estimate the parameters b, d, r and s2, either the error sum of
squares function or the LL function may be used, as follows.

The error sum of squares function is given by

Q ¼ Qðb0; . . . ;bq; r; dÞ ¼
XT
t¼3

«2t

¼
XT
t¼3

½ðYt�b0�b1Yt�1�dXtÞ�rðYt�1�b0�b1Yt�2�dXt�1Þ�2
ðB:69Þ

The LL function is given by

LL ¼ � T�2

2
logð2pÞ� T�2

2
logðs2Þ�

XT
t¼3

�
«2t
2s2

�

LL ¼ � T�2

2
logð2pÞ� T�2

2
logðs2Þ

� 1

2s2

XT
t¼3

½ðyt�b0�b1yt�1�dxtÞ�rðyt�1�b0�b1yt�2�dxt�1Þ�2

ðB:70Þ

Based on this LL function the following normal equations would be derived:

XT
t¼3

½ðyt�b0�b1yt�1�dxtÞ�rðyt�1�b0�b1yt�2�dxt�1Þ� ¼ 0

XT
t¼3

½ðyt�b0�b1yt�1�dxtÞ�rðyt�1�b0�b1yt�2�dxt�1Þ�ðyt�1�ryt�2Þ ¼ 0

XT
t¼3

½ðyt�b0�b1yt�1�dxtÞ�rðyt�1�b0�b1yt�2�dxt�1Þ�ðxt�rxt�1Þ ¼ 0

XT
t¼3

½ðyt�b0�b1yt�1�dxtÞ�rðyt�1�b0�b1yt�2�dxt�1Þ�
ðyt�1�b0�b1yt�2�dxt�1Þ ¼ 0

s2 ¼ 1

T�2

XT
t¼3

½ðyt�b0�b1yt�1�dxtÞ�rðyt�1�b0�b1yt�2�dxt�1Þ�2

ðB:71Þ
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Note that in (B.71) there are five equations with five unknowns or parameters,
so that, in general, a unique solution would be expected. However, it is very
difficult to present an explicit solution for each parameter. Therefore, EViews
provides an iteration estimation process, as presented in Section A.7.

B.8.2 General lagged-variable autoregressive model

A general lagged-variable autoregressive model, namely the LVAR(p, q) model,
with an exogenous variable, is defined as

Yt ¼ b0 þ
Xq
j¼1

bjYt�j þ dXt þmt

mt ¼
Xp
i¼1

rimt�i þ «t

ðB:72Þ

Compared to theAR(p) model presented in SectionA.7, where the termAR(p)
is related to the endogenous variable Yt, in the model (B.72) the term AR(p) is
related to the error term or residual mt�1, . . . , mt�p.

Under the assumption that «t is i.i.d.N(0,s2), then themodel parameters canbe
estimated by using either the error sum of squares function or theLL function, as
follows.

The error or residual sum of squares function is

Q ¼
XT

t¼kþ 1

«2t

¼
XT

i¼kþ 1

ðyt�b0�
Xq
j¼1

bjyt�j�dxtÞ�
Xp
i¼1

riðyt�i�b0�
Xq
j¼1

bjyt�i�j�dxt�iÞ
" #2

ðB:73Þ

where k¼ p þ q¼max{i þ j, 8i and j}. Then the log-likelihood function is
given by

LL ¼ �T�k

2
logð2pÞ�T�k

2
logðs2Þ�

XT
t¼kþ1

«2t
2s2

LL ¼ �T�k

2
logð2pÞ�T�k

2
logðs2Þ

� 1

2s2

XT
t¼kþ1

ðyt�b0�
Xq
j¼1

bjyt�j�dxtÞ�
Xp
i¼1

riðyt�i�b0�
Xq
j¼1

bjyt�i�j�dxt�iÞ
" #2

ðB:74Þ
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By using the same technique as presented in SectionA.7, it is easy to obtain the
estimates of the parameters, as well as testing hypotheses, using EViews.

B.9 Special notes and comments

Considering the application of the basic model in (B.1), namely Yt¼b0 þ
b1Xt þ «t, the following notes and comments are made:

(1) This model represents the linear trend of an endogenous variable Yt with
respect to an exogenous variable Xt in the population. Even though their
pattern of relationship could be nonlinear, the true population model will
never be known.However, the linear trend ofYtwith respect toXt can always
be considered. Therefore, it could be said that this model can be defined as a
true population model with trend of Yt with respect to Xt.

(2) It is well known that the moment product correlation in the population,
namely r¼ r(Xt, Yt), is a measure of a linear correlation. Therefore, this
moment product correlation can also be used to present the linear trend ofYt

with respect toXt. Refer to the standardized regression ofYt onXt, which can
be presented asZYt¼ rZXt þ «t, whereZYt andZXt are theZ-scores of the
variable Yt and Xt respectively. Hence, testing the null hypothesisH0: b1¼ 0
is exactly the same as testing the null hypothesis H0: r¼ r(Xt, Yt)¼ 0.

(3) On the other hand, to study their pattern of relationship in more detail, as
well as the growth curve of Yt with respect to Xt, there should be a high
dependence on the data set that happens to be available. In this case, the
scatter graph or plot of the bivariate (Xt,Yt) with a regression or kernel fit
should be observed, as presented in this book. Then personal judgment
should be used to define a model or alternative models, as presented in
Section 2.6. Refer to Section 2.14 for more detailed comments.

(4) In order to present the causal effect of an exogenous variable Xt on an
endogenous variable Yt, it is suggested that Xt�i should be used for some
selected i> 0, instead ofXt, since a cause factor needs to bemeasured prior or
before the impact factor. However, in general, researchers have been using
Xt�1.

(5) It has been recognized that any time series models should be using either the
lag(s) of the endogenous variable or the autoregressive errors, or both.

(6) Finally, whatever model is used, it is suggested that an additional residual
analysis shouldbe done in order to findout the limitationof the finalmodel(s).
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Appendix C:

General linear models

C.1 General linear model with i.i.d. Gaussian disturbances

As an extension of the basic model presented in Appendix B, a (univariate)
general linear model (GLM) is presented as

yt ¼ b0 þb1x1t þ � � � þbk�1xðk�1Þt þmt ¼
Xk�1

i¼0

biXit þmt ðC:1Þ

for t¼ 1, . . . , T, which can be presented in matrix form as

y
ðTx1Þ

¼ X
ðTxkÞ

b
ðkx1Þ

þ m
ðTx1Þ

ðC:2Þ

where

y
ðTx1Þ

¼

y1
y2

..

.

..

.

..

.

yt

2
666666664

3
777777775

X
ðTxkÞ

¼

X0
1

X0
2

..

.

..

.

..

.

X0
t

2
666666664

3
777777775

with X
1xðk�1Þ

¼

x0t¼1

x1t

..

.

..

.

..

.

xðk�1Þt

2
666666664

3
777777775

b
ðkx1Þ

¼

b0

b1

..

.

..

.

..

.

bk�1

2
666666664

3
777777775

m
ðTx1Þ

¼

m1

m2

..

.

..

.

..

.

mt

2
666666664

3
777777775

ðC:3Þ

Note that for k¼ 2, the model is in the form presented in (B.1). Furthermore,
also note that the independent variables xit, i¼ 0, 1, 2, . . . , (k� 1), could be any
set of exogenous variables, such as pure exogenous variables and their lags, the
time t-variable, as well as selected two-way or higher interactions of the
independent variables. By selecting a set of relevant independent variables from
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all possible types of those variables, it is expected that the error term mt is i.i.d.
distributed.

C.1.1 The OLS estimates

Under the basic assumptions A1 to A5 presented in Appendix B, namely the
multivariate X is deterministic and the error term is an i.i.d. Gaussian distur-
bance, the following OLS estimates are obtained:

1. The unbiased estimator of the vector parameter b:

y ¼ Xb!X0y ¼ X0Xb!ðX0XÞ�1
X0y ¼ ðX0XÞ�1ðX0XÞb ðC:4Þ

If the matrix X0X is nonsingular then the estimator is

b̂
ðkx1Þ

¼ b ¼ ðX0XÞ�1
X0y ðC:5Þ

or

b ¼ ðX0XÞ�1
X0ðXbþmÞ ¼ bþðX0XÞ�1

X0m ðC:6Þ
with its expected value

EðbÞ ¼ b ðC:7Þ

which indicates that b is an unbiased estimator of b.

2. The unbiased estimator of the population variance s2:
The estimate of the error term vector can be written as

m̂
ðTx1Þ

¼ u ¼ y�XðX0XÞ�1
X0y ¼ ½IT�XðX0XÞ�1

X0�y ¼ Mxy ðC:8Þ

Therefore, the sum of squared errors (SSE) and the mean of squared errors
(MSE) can be written as:

SSE ¼ u0u ¼P ðyt�X0
tbÞ2

MSE ¼ s2 ¼ SSE

T�k
ðC:10Þ

where X0
tb indicates

Pk�1
i¼0 xitbi. Furthermore,

EðMSEÞ ¼ Eðs2Þ ¼ s2 ðC:11Þ
which indicates that the MSE is an unbiased estimator for the population
variance.

(C.9)
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3. The uncentered and centered R-squared, namely R2
u and R2

c respectively:

R2
u ¼

SSEPT
t¼1 y

2
t

ðC:12Þ

R2
c ¼

SSE�T�y2PT
t¼1 y

2
t�T�y2

ðC:13Þ

4. The variance–covariance matrix of b:

E½ðb� bÞðb�bÞ0� ¼ s2ðX0XÞ�1 ðC:14Þ

5. The normal distribution of b:

b � Nðb;s2ðX0XÞ�1Þ ðC:15Þ

C.1.2 Maximum likelihood estimates

Under the assumption that the error term mt ¼ Yt�X0
tb is i.i.d. Gaussian, the

following density function is obtained (compare with the density function in
(B.3)):

f ðmtÞ ¼ ð2ps2Þ�1=2
exp � m2

t

2s2

� �
¼ ð2ps2Þ�1=2

exp �ðyt �X0
tbÞ2

2s2

" #
ðC:16Þ

where X0
tb ¼Pk�1

i¼0 bixit. Therefore, the log likelihood function considered for
estimation purposes is

LL ¼ � T

2
lnð2pÞ� T

2
lnðs2Þ� 1

2s2

XT
t¼1

ðyt�X0
tbÞ2 ðC:17Þ

The necessary conditions to obtain the maximum value of LL are as follows:

qðLLÞ
qb0

¼ 1

s2

XT
t¼1

ðYt �X0
tbÞ ¼ 0

qðLLÞ
qbi

¼ 1

s2

XT
t¼1

ðYt �X0
tbÞxit ¼ 0; i ¼ 1; 2; . . . ; ðk�1Þ

qðLLÞ
qs2

¼ � T

2s2
þ 1

2s4

XT
t¼1

ðYt�X0
tbÞ2 ¼ 0

ðC:18Þ
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As a result, the following normal equations are obtained:

XT
t¼1

ðyt �X0
tbÞ ¼ 0

XT
t¼1

xitðyt �X0
tbÞ ¼ 0; for i ¼ 0; 1; . . . ; ðk�1Þ

s2 ¼ 1

T

XT
t¼1

ðyt �X0
tbÞ2

ðC:19Þ

It iswell known that the first two sets of equations canalso be obtainedbyusing
the OLS estimation method. Therefore, in a mathematical sense, the same
estimates of the vector parameter b can be obtained by using either one of the
estimation methods. As a result, based on the last equation,

ŝ2 ¼ 1

T

XT
t¼1

yt�
Xk�1

i¼0

bixit

 !2

ðC:20Þ

C.1.3 Student�s t-statistic

Corresponding to the multivariate distribution of the vector b¼ [b0, b1, . . ., bk�1]
as N(b, s2(X0X)�1) in (C.15), each of its components bi ¼ b̂i is normally
distributed as Nðbi;s

2
iiÞ, where s2

ii is the element in row i and column i of
[s2(X0X)�1]. By using s2ðbiÞ ¼ ŝ2

ii, Student�s t-statistic can be presented as

bi�bi

sðbiÞ is distributed as tðT�kÞ ðC:21Þ

C.1.4 The Wald form of the OLS F-test

C.1.4.1 Testing the Hypothesis

H0 : Cb ¼ c and H1 : Otherwise ðC:22Þ

where C is a constant (m� k) matrix representing the particular linear combina-
tions of themodel parameterb and c is an (m� 1) vector of defined values that are
believed or judged to be the true values of the corresponding linear combinations.

From (C.15) it is found that, under H0,

Cb � Nðc;s2ðX0XÞ�1
C0Þ

Furthermore, under H0, the chi-squared test is found to be

ðCb�cÞ0½s2ðX0XÞ�1
C0��1ðCb� cÞ � x2ðmÞ ðC:24Þ

(C.23)
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By replacing s2 with its estimate s2¼SSE/(T� k), the Wald form of the OLS
F-test is obtained:

ðCb�cÞ0½s2ðX0XÞ�1
C0��1ðCb�cÞ

m
� Fðm; T�kÞ ðC:25Þ

or

ðCb�cÞ0½ðX0XÞ�1
C0��1ðCb�cÞ

ms2
� Fðm; T�kÞ ðC:26Þ

The hypothesis (C.22) can be represented as

H0 : Restricted model

H1 : Unrestricted model
ðC:27Þ

Then the Wald form of the OLS F-test can be written as

F ¼ ðSSER�SSEUÞ=m
SSEU=ðT�kÞ � Fðm; T�kÞ ðC:28Þ

where SSER indicates the sum of squared errors of the restrictedmodel (i.e. if the
null hypothesis Cb¼ c is true) and SSEU indicates the sum of squared errors of
the unrestricted or full model. Furthermore, it is well known that the numerator
and denominator of the F-test are the chi-squared tests as follows:

x2
1 ¼ ðSSER�SSEUÞ=m � s2x2ðmÞ ðC:29Þ

x2
2 ¼

SSEU

ðT�kÞ � s2x2ðT�kÞ ðC:30Þ

C.2 AR(1) general linear model

Corresponding to the basic model in (C.1), the AR(1) model, without lag of the
endogenous variable, should be considered as follows:

yt ¼ Xbþmt

mt ¼ rmt�1 þ «t
ðC:31Þ

with the assumptions that m¼ [m1, m2, . . ., mT]�N(0, s2V), where V is a known
(T�T) positive definite matrix and |r| < 1.

Compared to the AR(1) model in (A.18) in Appendix A, this model is in fact a
linear model with first-order autoregressive errors. However, the same terminol-
ogy is used here, namely the AR(1) model. Note that the AR(1) model in (B.19)
and (C.31) have different characteristics, and similarly for the AR(p) models
presented inAppendixAand theAR(p)model presented in the following section.
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C.2.1 Properties of mt

Under the assumption that «t is i.i.d.N(0,s2), the residualmt has exactly the same
properties as presented in Section B.4.3.

C.2.2 Estimation method

By presenting the model in (C.31) as

yt ¼ Xtbþ rmt�1 þ «t ðC:32Þ

then under the assumption that the error term of this model, namely «t, is i.i.d.
Gaussian, «¼ [«1, «2, . . ., «T]�N(0, s2I).

Furthermore, based on the model in (C.32), the error term is as follows:

«t ¼ ðyt �XtbÞ� rðyt�1 �Xt�1bÞ ðC:33Þ

By using the same process as in Appendix B, the following log-likelihood
function is obtained:

LL ¼ � T�p

2
lnð2pÞ� T�p

2
lnðs2Þ

¼ � 1

2s2

XT
t¼2

½ðyt�X0
tbÞ�rðyt�1�X0

t�1bÞ�2
ðC:34Þ

where X0
tb ¼Pk�1

i¼0 bixit. Then the approach is to maximize this function nu-
merically with respect to b0, b1, s

2 and r.
In fact, corresponding to themodel in (C.31), the following normal equation is

considered for the estimation process, for |r| < 1:

XT
t¼2

yt�b0�
Xk�1

i¼1

bixit

 !
�r yt�1�b0�

Xk�1

i¼1

bixiðt�1Þ

 !" #
¼0

XT
t¼2

yt�b0�
Xk�1

i¼1

bixit

 !
�r yt�1�b0�

Xk�1

i¼1

bixiðt�1Þ

 !" #
ðxit�rxiðt�1ÞÞ¼0

for i¼1;2;...;k�1:

XT
t¼2

yt�b0�
Xk�1

i¼1

bixit

 !
�r yt�1�b0�

Xk�1

i¼1

bixiðt�1Þ

 !" #
yt�1�b0�

Xk�1

i¼1

bixiðt�1Þ

 !
¼0

s2¼ 1

T�1

XT
t¼2

yt�b0�
Xk�1

i¼1

bixit

 !
�r yt�1�b0�

Xk�1

i¼1

bixiðt�1Þ

 !" #2

ðC:35Þ
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Alternatively, instead of using the numerical iteration method, the following
regression may be used:

ðyt�ryt�1Þ ¼ b0 þ
Xk�1

i¼1

biðxit�rxiðt�1ÞÞ þ «t ðC:36Þ

for various values of r, such as 0.05, 0.10, . . . , 0.95. Then amodel could be chosen
having the smallest sum of squared errors or othermeasures of fit, as presented in
Section 11.3.

C.3 AR(p) general linear model

As an extension of the AR(1) model in (C.31) or the model in (2.8), this is an AR
(p) GLM, without lag of the endogenous variable, as follows:

yt ¼ Xbþmt

mt ¼
Xp
i¼1

rimt�i þ «t
ðC:37Þ

where ri are the ith autocorrelation or serial correlation parameter such that
|ri| < 1 and «t, t¼ 1, 2, . . . , T, are i.i.d. Gaussian or N(0, s2).

In order to estimate the parameters, the following LL function should be
considered:

LL ¼ � T�p

2
lnð2pÞ� T�p

2
lnðs2Þ

� 1

2s2

XT
t¼pþ 1

ðyt�X0
tbÞ�

Xp
i¼1

riðyt�i�X0
t�ibÞ

" #2 ðC:38Þ

where X0
tb ¼Pk�1

i¼0 bixit(compare this to the LL function in (C.17).

C.4 General lagged-variable autoregressive model

As an extension of the LVAR(p, q) model in (C.31) with an exogenous variable, a
general lagged-variable autoregressive model, namely the LVAR(p, q) model with
multivariate exogenous variables, is defined as

Yt ¼ b0 þ
Xq
i¼1

biYt�i þ
Xk
i¼1

diXit þmt

mt ¼
Xp
i¼1

rimt�i þ «t

ðC:39Þ
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Note that the AR(p) model in (C.39) is in fact a model with autoregressive
errors, which is indicated by the error terms mt ¼

Pp
i¼1 rimt�i þ «t, compared to

the AR(p) model in Appendix A, yt ¼ b0 þ
Pp

i¼1 biyt�i þ «t, with respect to the
endogenous variable yt.

In order to estimate the parameters, the following LL function should be
considered:

LL ¼ � T�p�q

2
lnð2pÞ� T�p�q

2
lnðs2Þ

� 1

2s2

XT
t¼pþ qþ 1

yt�b0�
Xq
i¼1

biyt�i�
Xk
i¼1

dixit

 !

�
Xp
i¼1

ri yt�i�b0�
Xq
j¼1

bjyt�i�j�
Xk
i¼1

dixiðt�1Þ

 !
2
6666664

3
7777775

2

ðC:40Þ

C.5 General models with Gaussian errors

C.5.1 Gaussian errors with a known variance covariance matrix

Corresponding to the general linear model in (C.1), namely

y ¼ Xbþm ðC:41Þ

the following assumptions are made:

A1. X is stochastic.
A2. Conditional on the full matrix X, the error vector m is N(0, s2V).
A3. V is a known positive definite matrix.

Recall from (C.6) that

ðb�bÞ ¼ ðX0XÞ�1
X0m ðC:42Þ

Under the assumption A2, the conditional expectation is

E½ðb�bÞjX� ¼ ðX0XÞ�1
X0EðmÞ ¼ 0 ðC:43Þ

and by the law of iterated expectation (Hamilton, 1994, p. 217),

Eðb�bÞ ¼ ExfE½ðb�bÞjX� ¼ 0 ðC:44Þ

568 Time Series Data Analysis Using EViews

www.trading-software-collection.com



The variance of the vector b conditional on X is given by

E½ðb�bÞðb�bÞ0jX� ¼ E½fðX0XÞ�1
X0mm0XðX0XÞ�1gjX�

¼ s2ðX0XÞ�1
X0VXðX0XÞ�1

ðC:45Þ

As a result, the vector b conditional on X is multivariate normally distributed
with E(b)¼b and Var(b)¼s2(X0X)�1X0VX(X0X)�1, which can be presented as

bjX � Nðb;s2ðX0XÞ�1
X0VXðX0XÞ�1Þ ðC:46Þ

C.5.2 Generalized least squares with a known covariance matrix

Under the assumptions A1 to A3 above, namely m|X�N(0, s2V), where V is a
known symmetric and positive (T�T) matrix, there exists a nonsingular (T�T)
matrix G such that

V�1 ¼ G0G ðC:47Þ

Then the model (C.39) should be transformed to

Gy ¼ ðGXÞbþGm ðC:48Þ

with Gm|X�N(0, s2IT). Under this condition, the estimator of b is as follows:

ðGXÞ0Gy ¼ ðGXÞ0ðGXÞbG ¼ ðGXÞ0ðGXÞb
X0ðG0GÞy ¼ X0ðG0GÞXÞb
X0V�1y ¼ X0V�1Xb

b ¼ ðX0V�1XÞ�1
X0V�1y

ðC:49Þ

which is known as the generalized least squares (GLS) estimator, with

CovðbÞ ¼ s2ðX0V�1XÞ�1 ðC:50Þ

Furthermore, similar to the estimator of the vector b in (C.46), the conditional
distribution of the vector estimator in (C.49) is

bjX � Nðb;s2ðX0V�1XÞ�1Þ ðC:51Þ

Similarly, the sumof squared errors has a conditional chi-squareddistribution,

s2 ¼ y0½V�1�V�1XðX0V�1XÞ�1
X0V�1�y � s2:x2ðT�kÞ ðC:52Þ
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Then under the null hypothesisCb¼ c in (C.19), theWald form of the F-test is
given by

½Cb�c�0½s2CðX0V�1XÞ�1
C0��1½Cb�c�

m
� Fðm; T�kÞ ðC:53Þ

C.5.3 GLS and ML estimations

Under the assumption that m|X�N(0, s2V), then, based on the model in (C.41),

yjX � NðXb;s2VÞ ðC:54Þ

The log-likelihood function of y conditioned on X is given by

LL ¼ �T

2

� �
logð2pÞ� 1

2

� �
logjs2V j� 1

2

� �
ðy�XbÞ0ðs2VÞ�1ðy�XbÞ

LL ¼ �T

2

� �
logð2pÞ� 1

2

� �
logjs2Vj� 1

2s2
ðy�XbÞ0V�1ðy�XbÞ ðC:55Þ

Since V�1¼G0G, then

LL ¼ �T

2

� �
logð2pÞ� 1

2

� �
logjs2Vj� 1

2s2
ðy�XbÞ0G0Gðy�XbÞ

LL ¼ �T

2

� �
logð2pÞ� 1

2

� �
logjs2Vj� 1

2s2
ðGy�GXbÞ0ðGy�GXbÞ ðC:56Þ

This equation shows that the log likelihood function is maximized with respect
to b by an OLS regression ofGy onGXb (refer to the model in (C.48). Hence the
GLS estimate is also the maximum likelihood estimate.

C.5.4 The variance of the error is proportional to the square of one
of the explanatory variables

Under the assumption that VarðmtÞ ¼ x21ts
2, then

s2V ¼ s2Diag½x211; x212; . . . ; x21T � ðC:57Þ
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whereDiag[aij] is a squarematrixwhose off-diagonal elements are zeros. It is then
easy to verify that

G ¼ Diag
1

jx11j ;
1

jx12j ; . . . ;
1

jx1T

� �
ðC:58Þ

Furthermore, to estimate the model parameters, the regression

yt

jx1tj ¼
Xp
k¼0

bk

xkt

jx1tj þ «t ðC:59Þ

can be used, where «t ¼ mt=jxitj; and Var(«t)¼s2.

C.5.5 Generalized least squares with an unknown covariance matrix

In this case the model in (C.41) will be presented as

yt ¼
Xp
k¼0

bkxkt þmt ðC:60Þ

for t¼ 1, . . . , T, where x0t¼ 1.
Under the assumption that m|X�N(0, s2V) and mt ¼ yt�

Pp
k¼0 bkxkt, the

PDF of a T-variate normal distribution is observed (Wilks, 1962, p. 164), as
follows:

f ðm1; . . . ;mTÞ ¼ ð2pÞ�T=2
ffiffiffiffiffiffiffiffi
jsijj

p
exp

�
� 1

2
Qðmi; . . . ;mTÞ

�

Qðm1; . . . ;mTÞ ¼
XT
i;j¼1

sij yi�
Xp
k¼0

bkxki

 !
yj�
Xp
k¼0

bkxj

 ! ðC:61Þ

where ||sij|| is the inverse of the covariance matrix s2V¼ ||sij|| and it is assumed
that it is positive definite, which implies that the determinants |sij| „ 0 and |sij| „ 0.

To estimate the model parameters, namely b and sij, the following log
likelihood function should be considered:

LL ¼ � T

2
logð2pÞþ 1

2
logðjsij jÞ�

XT
i;j¼1

sij yi�
Xp
k¼0

bkxki

 !
yj�

Xp
k¼0

bkxj

 !

ðC:62Þ

Therefore, in general, (p þ 1) of the b parameters and T(T� 1) of the sij

parameters are obtained. However, under some restrictions on the series or in
special cases, the model would have less parameters, such that V¼V(u), where u
is a small dimensional vector parameter that could be estimated by using theOLS
or GLS regressions.
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Appendix D:

Multivariate general linear
models

Definition D.1: The multivariate or N-dimensional process fYt ¼ ðY1t; Y2t; . . . ;
YNtgt ¼ 1T is second-order stationary if and only if

(i) the mean E(Yt)¼m is independent of t,
(ii) the autocovariance (N�N) matrix Cov(Yt,Yt�h)¼E(Yt�m)(Yt�h�m)¼

G(t, t� h)¼G(h) is independent of t for any h; G(h) is the autcovariance
function (ACF) of the process, with G(�h)¼G(h)0. &

Definition D.2: The N-dimensional second-order stationary process f«tgTt¼1 is a
weak white noise process if and only if

(i) the mean E(«t)¼ 0, 8t,
(ii) the autocovariance Cov(«t, «t�h)¼E(«t«t�h)¼G(t, t� h)¼ 0, 8h „ 0. &

D.1 Multivariate general linear models

A multivariate general linear model (MGLM), in EViews, is presented or consid-
ered as a system equations or system of equations (i.e. a set of univariate linear
models). Furthermore, EViews provides an option called �System,� which can be
used to estimate any type of MGLM, such as the following special types of
MGLM:

(1) The first special type of MGLM is the VAR (vector autoregressive) model,
where all regressions of the model have the same set of lagged endogenous
variables and the same set of exogenous variables. Refer toChapter 6. On the
other hand, since the term �VAR�, in EViews, is used as an option, function or
estimationmethod for this special type ofMGLM, then the term �VAR� is not
appropriate to represent a general multivariate time series model. For this
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reason, the term MAR (multivariate autoregressive) model is proposed to
represent the general multivariate autoregressive model.

(2) The second types are the VMA (vector moving average) model and VARMA
(vector autoregressive moving average) model.

(3) The third type of MGLM is the VEC (vector error correction) model, where
all regressions in a VEC model have the same sets of exogenous variables
(refer to Chapter 6, where it is shown that the VEC model can also be
estimated by using the VAR function or estimation method).

(4) The fourth type is the simultaneous causal models, where at least two of the
endogenous variables are defined to have simultaneous causality.

(5) Finally, the fifth type is the structural equation model (SEM), where all
regressions in an MGLM can have unequal sets of exogenous variables,
either additive or interaction models, including the multivariate models with
trend and time-related effects, and multivariate seemingly causal models, as
well as the multivariate models with dummy variables.

D.2 Moments of an endogenous multivariate

Let Yt¼ (Y1t, Y2t, . . . , YNt) be an N-dimensional multivariate time series.
However, note that in some equations the symbol Yt should be presented or
written as Yt (i.e. not a bold letter), for simplicity.

The mean or the first moment of the multivariate process Yt¼ (Y1t, Y2t, . . . ,
YNt) is defined as

mt ¼ EðYtÞ ¼ ½EðY1tÞ; . . . ;EðYNtÞ�0 ðD:1Þ

which is a N-dimensional column vector.
The variance–covariance of Yt is an (N�N) symmetric positive matrix,

namely V(Yt)¼G(t,t), as follows:

VðYtÞ ¼ Gðt; tÞ ¼ jjsijðtÞjj ðD:2Þ

where

sijðtÞ ¼ VarðYitÞ for i ¼ j

CovðYit; YjtÞ for i „ j
�

ðD:3Þ

Then the correlation between Yit and Yjt is given by

CorrðYit; YjtÞ ¼ CovðYit; YjtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYitÞVarðYjtÞ

p ðD:4Þ
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For any N-dimensional vector C, the following identity is obtained:

C 0VðYtÞC ¼ VðC 0YtÞ � 0 ðD:5Þ

The multivariate autocovariance function in matrix form is defined as

CovðYt;Yt�hÞ ¼ Gðt; t�hÞ ¼ EðYtY
0
t�hÞ�EðYtÞEðY 0

t�hÞ ¼ jjsijt;t�hjj; 8h ðD:6Þ
where sijt,t�h¼Cov(Yit, Yj,t�h) for i, j¼1, . . . , N. Since the covariance is a
symmetric matrix, then

CovðYt;Ytþ hÞ0 ¼ CovðYt;Yt�hÞ or GðhÞ0 ¼ Gð�hÞ ðD:7Þ

Furthermore, it is also possible to define a lagged effect of Yi on Yj, namely
Yi,t�h on Yjt, for i „ j, which is measured as

CorrðYi;t�h; YjtÞ ¼ CovðYi;t�h; YjtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYi;t�hÞVarðYjtÞ

p ðD:8Þ

D.3 Vector autoregressive model

Based on the N-dimensional multivariate time series, Yt¼ (Y1t, Y2t, . . . , YNt), a
vector autoregressive model of order p, namely the VAR(p) model, is defined as

Yt ¼ Q0 þ
Xp
i¼1

QiYt�i þUt ðD:9Þ

Note that this model represents the following N regressions, which is an
extension of the AR(p) model in Appendix A:

Y1t ¼ b10 þb11Yt�1 þ � � � þb1pYt�p þm1t

..

.

YNt ¼ bN0 þbN1Yt�1 þ � � � þbNpYt�p þmNt

8><
>: ðD:10Þ

for each time point t. This model also can be considered as a member of the
MGLMs, which has the following general equation:

Yt ¼ Xtbþmt ðD:11Þ

In this case, Yt is an (N� 1) vector of the observed endogenous variable,
Xt¼ [1, Yt�1, . . . , Yt�p] is an [N� (p þ 1)] matrix of the lagged endogenous
variables, b is a [(p þ 1)� 1] vector of model parameters and mt is an (N� 1)
vector of random errors.
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Finally, if there areT-values of observations at time points t¼ 1, 2, . . .,T, then
there will be a system of (N�T) equations to estimate the model parameters,
which can be presented as the following matrix equation:

Y
NTx1

¼ X
NTxðpþ 1Þ

* B
ðpþ 1Þx1

þ E
NTx1

ðD:12Þ

Note that this system has NT equations with [N� (p þ 1)] model parameters,
bnk for n¼ 1, . . . ,N; k¼ 0, 1, . . . , p, andNerror terms,mnt, for n¼ 1, 2, . . . ,N. The
general estimation process will be presented later.

D.4 Vector moving average model

Based on the N-dimensional multivariate time series above, a vector moving
average model of order q, namely the MA(q) model, is defined as

Yt ¼ «t þ
Xq
l¼1

Yi«t�l ðD:13Þ

where Yt is an (N� 1) vector of the observed endogenous variables and C is an
(N�N) matrix of the model parameters.

A moving average model can be derived from the first-order autoregressive
model in (D.9) for p¼ 1. This gives the following derivation:

Yt ¼ Q0 þQ1Yt�1 þUt

¼ Q0 þQ2
1Yt�2 þUt þQ1Ut�1

..

.

¼ Q0 þQk
1Yt�k þUt þQ1Ut�1 þ � � � þQk�1

1 Ut�kþ 1

ðD:14Þ

Under the condition that Limk!¥Qk
1 ¼ 0, i.e. all eigenvalues of Q1 < 1, then

from (D.14), the following multivariate infinite moving average series can be
obtained:

Yt ¼ Q0 þ
X¥
k¼0

Qk
i Ut�k ðD:15Þ

D.5 Vector autoregressive moving average model

Finally, based on themultivariate endogenous variables,Yt¼ (Y1t,Y2t, . . . ,YNt),
a vector autoregressive moving average model of order (p, q), namely VARMA
(p, q), is defined as

Yt ¼ Q0 þ
Xp
i¼1

QiYt�i þ «t þ
Xq
j¼1

Yj«t�j ðD:16Þ
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For each component ofYt, namelyYnt, n¼ 1, 2, . . . ,N, there will be anARMA
(p, q) model, as presented in (A.68), Appendix A, as follows:

Ynt ¼ un0 þ
Xp
i¼1

uniYnðt�iÞ þ «nt þ
Xq
j¼1

cnj«nðt�jÞ ðD:17Þ

The derivation of the corresponding statistics, such the Var(Ynt) and the
autocovariance function Cov(YntYn(t�h)) are exactly the same as those presented
in (A.72) and (A.74), Appendix A, as well as for each regression in the VAR(p)
model, i.e. for q¼ 0, and each regression in the VMA(q) model, i.e. for p¼ 0.
Therefore, they will not be presented again in this section.

D.6 Simple multivariate models with exogenous variables

In the following subsections, two simple models based on two endogenous
variables will be presented, namely fY1t; Y2tgTt¼1, with a single exogenous (inde-
pendent or source) variable and a multidimensional exogenous variable.

D.6.1 The simplest multivariate model

The simplest multivariate model is a bivariate linear model having a single
exogenous variable, which is an extension of the model in (B.1), Appendix B, as
follows:

Y1t ¼ b10 þb11Xt þm1t

Y2t ¼ b20 þb21Xt þm2t

ðD:18Þ

for t¼ 1, 2, . . . , T. Therefore, in the estimation process, this bivariate model
represents a system of 2T equations based on a time series data set, namely
fxt; y1t; y2tgTt¼1. Similarly, there are two sets of the error terms as follows:

m1t ¼ y1t�b10 �b11xt
m2t ¼ y2t�b20 �b21xt

ðD:19Þ

The parametersb10 andb11 as well asb20 andb21 can be estimated by using the
OLS estimation method. However, in general, the residuals m1t and m2t are
correlated, so their (2� 2) covariance matrix should be considered. An estimate
of the covariance matrix can easily be computed based on the OLS estimators
fm̂1t; m̂2tgTt¼1. Refer to the examples previously presented, specifically the covari-
ance analysis.

On the other hand, for the normal linear regression, the bivariate (m1t, m2t) is
assumed to have a bivariate normal density function, as follows:

f ðm1t;m2tÞ ¼
1

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�r2Þp exp

�
� 1

2
Qðm1t;m2tÞ

�
ðD:20Þ
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where

Qðm1t;m2tÞ ¼
1

1�r2

ðy1t�b10�b11xtÞ2
s2
1

þ ðy2t�b20�b21xtÞ2
s2
2

�r
ðy1t�b10�b11xtÞðy2t�b20�b21xtÞ

s1s2

2
6666664

3
7777775

Therefore, the following log likelihood function is obtained:

LL ¼ �T log 2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�r2Þ

ph i
� 1

2

XT
t¼1

Qðm1t;m2tÞ ðD:21Þ

D.6.2 Simple model with a multidimensional exogenous variable

A simple model with a multidimensional exogenous variable can be presented as

Y1t ¼
Xk
i¼0

b1iXit þm1t

Y2t ¼
Xk
i¼0

b2iXit þm2t

ðD:22Þ

where X0t¼ 1, 8t.
Similar to the simplest model in (D.18) the parameters b1is and b2is could be

estimated by using the OLS estimation method. Then the covariance matrix of
m1t and m2t should be estimated using the OLS estimators fm̂1t; m̂2tgTt¼1.

Corresponding to the LL function in (D.21), the LL function for the model
in (D.22) is

LL ¼ �Tlogð2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�r2Þ

p
Þ� 1

2

XT
t¼1

Qðm1t;m2tÞ

where

Qðm1t;m2tÞ ¼
1

1�r2

y1t�
Pk

i¼0 b1ixit

� �2

s2
1

þ
y2t�

Pk
i¼0 b2ixit

� �2

s2
2

�r
y1t�

Pk
i¼0 b1ixit

� �
y2t�

Pk
i¼0 b2ixit

� �
s1s2

2
6666666664

3
7777777775

ðD:23Þ

(D.20)

(D.23)
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In a mathematical sense, the parameters b, s2
1;s

2
2 and r can be estimated.

However, here an explicit estimator will not be presented. Refer to the general
estimation method presented in Section D.7 below.

D.6.3 A more general model

Note that the two regressions in the model in (D.22) have the same set of
exogenous variables. As an extension of this model is a model where each of the
two regressions have unequal sets of exogenous variables, which canbe presented
as

Y1t ¼
Xk
i¼0

b1iX1it þm1t

Y2t ¼
Xm
j¼0

b2iX2jt þm2t

ðD:24Þ

where X10t¼X2ot¼ 1, 8t.
The estimation method can easily be done by using the OLS orML estimation

methods, as mentioned above. Furthermore, note that the independent variables
X1is and X2js can be any types of variables, such as the lags of endogenous
variables, other endogenous variables, pure exogenous variables, as well as their
lags, the time t-variable and selected two-way or three-way interactions of the
main independent variables, as well as the power of selected exogenous variables,
and dummy variables. Therefore, themodel in (D.24) could represent all types of
time series models. Some selected models are presented in the following
subsection.

D.6.4 Selected bivariate time series models

D.6.4.1 A VAR model with a multivariate endogenous variable

Note that, in EViews, the term VAR indicates a special case of the multivariate
time series models, where all regressions have the same set of independent
variables, including the general model as follows:

Y1t ¼
Xp
i¼1

b1iY1ðt�iÞ þ
Xp
i¼1

d1iY2ðt�iÞ þC1 þ
Xk
j¼1

g1jXjt þm1t

Y2t ¼
Xp
i¼1

b2iY1ðt�iÞ þ
Xp
i¼1

d2iY2ðt�iÞ þC2 þ
Xk
j¼1

g2jXjt þm2t

ðD:25Þ

for p > 0, where the Xj are other exogenous variables, besides the lagged
endogenous variable.
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D.6.5 Bivariate Granger causality tests

Note that the model in (D.26) below is in fact a bivariate VARmodel without an
exogenous variable. However, here Xt and Yt are used as endogenous or
dependent variables, instead of Y1t and Y2t. By using this VAR model, the
Granger causality of the X and Y variables needs to be investigated:

Xt ¼ a0 þ
Xp
i¼1

aiXt�i þ
Xp
i¼1

biYt�i þm1t

Yt ¼ d0 þ
Xp
i¼1

diXt�i þ
Xp
i¼1

g iYt�i þm2t

ðD:26Þ

In order to test the hypothesis of whether X does or does not give Granger
causality of Y, the following hypothesis is considered:

H0 : d1 ¼ d2 ¼ � � � ¼ dp ¼ 0

H1 : Otherwise
ðNaN:26aÞ

or

H0 : Restricted=Reduced model : Yt ¼ d0 þ
Xp
i¼1

g iYt�i þ «t

H1 : Full=Unstricted model : Yt ¼ d0 þ
Xp
i¼1

diXt�i þ
Xp
i¼1

g iYt�i þmt

ðNaN:26bÞ

Note that the first model is a nestedmodel of the second, so the usual lack of fit
F-test can be used, or the Wald form of the F-test as provided by EViews. If the
null hypothesis is rejected then X does give Granger causality of Y.

Furthermore, the following hypothesis should be considered for testing
whether Y does or does not give Granger causality of X:

H0 : b1 ¼ b2 ¼ � � � ¼ bp ¼ 0

H1 : Otherwise
ðNaN:27aÞ

or

H0 : Restricted=Reduced model : Xt ¼ a0 þ
Xp
i¼1

aiXt�i þ «t

H1 : Full=Unstricted model : Xt ¼ a0 þ
Xp
i¼1

aiXt�i þ
Xp
i¼1

biYt�i þmt

ðNaN:27bÞ

The F-test can be computed as

F ¼ ðSSER�SSEURÞ=p
SSEUR=ðT�2p�1Þ � Fðp; T�2p�1Þ ðD:29Þ

(D.27a)

(D.27b)

(D.28a)

(D.28b)
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with an asymptotically equivalent test (Hamilton, 1994, p. 305)

x2 ¼ TðSSER�SSEURÞ
SSEUR

� x2ðpÞ ðD:30Þ

where SSER and SSEUR are the sum of squared errors of the reduced/restricted
and unrestricted/full models respectively, which can be computed as follows:

SSER ¼
XT
t¼1

«̂2t and SSEUR ¼
XT
t¼1

m̂2
t ðD:31Þ

D.6.6 Simultaneous causal model

Y1t ¼ w1Y2t þ
Xk
i¼0

b1iX1it þm1t

Y2t ¼ w2Y1t þ
Xm
j¼0

b2iX2jt þm2t

ðD:32Þ

where the independent variables X1i and X2j could be any types of exogenous
variables, including the lagged endogenous variables. Note that this model is a
special case of the model in (D.22) and shows that the series Y1 and Y2 have
simultaneous causal effects.

D.6.7 Additional bivariate models

Furthermore, all types of the previousmodels can easily be extended by using the
transformed variables, as presented in the examples of data analysis, such as the
bounded growth models, models with time-related effects, seemingly causal
additive as well as interaction models, bounded semilog models, the bounded
translog linear (i.e. Cobb–Douglas) model, the bounded CES (i.e. constant
elasticity of substitution) model and bivariate models with dummy variables.

D.7 General estimation methods

Abasicmultivariate general linearmodel, namely theMGLM, based on the time
series data set, can be presented in matrix notation as

Y
ðTxNÞ

¼ X
ðTxKÞ

b
ðKxNÞ

þ «
ðTxNÞ

ðD:33Þ
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where

Y
ðTxNÞ

¼
Y 0
1

Y 0
2

..

.

Y 0
T

2
6664

3
7775 X

ðTxKÞ
¼

X0
1

X0
2

..

.

X0
T

2
6664

3
7775 b

ðKxNÞ
¼

b0
0

b0
1

..

.

b0
K�1

2
6664

3
7775 «

ðTxNÞ
¼

«01
«02
..
.

«0T

2
6664

3
7775 ðD:34Þ

Y 0
t ¼ ½y1t; y2t; . . . ; yNt�; t ¼ 1; 2; . . . ; T

X0
t ¼ ½xot ¼ 1; x1t; . . . ; xðK�1Þt�; t ¼ 1; 2; . . . ; T

b0
t ¼ ½bi0;bi1; . . . ;biðK�1Þ�; i ¼ 0; 1; . . . ; ðp�1Þ

«0t ¼ ½«1t; «2t; . . . ; «Nt�

This model, in fact, is a set of N univariate linear models or multiple
regressions, where all multiple regressions have the same sets of exogenous
variables, namely the (K� 1) dimensional exogenous variable X.

D.7.1 The OLS estimates

Under the basic assumptions A1 to A5 presented in Appendix B, namely the
multivariateX is deterministic and «t is i.i.dGaussian disturbance ormultivariate
normally distributed, the following properties of the OLS parameter estimates
are obtained:

(1) The unbiased estimator of the vector parameter b:
To estimate the element of the (K�N) parameter matrix b by least squares,
the following function should be minimized

QðbÞ ¼ Tr½ðY�XbÞ0ðY�XbÞ� ðD:35Þ

This gives the normal equations

ðX0XÞB ¼ X0Y ðD:36Þ

If the matrix X0X is a nonsingular matrix then the following estimator is
obtained:

b̂
ðKxNÞ

¼ B ¼ ðX0XÞ�1X0Y ðD:37Þ

582 Time Series Data Analysis Using EViews

www.trading-software-collection.com



Note that if the matrix X0X is a singular matrix, then there will not be a
unique solution or estimators. In this case, EViews will present an error
message �Near singular matrix.� Therefore, the model needs to be modified in
order toobtain an estimablemodel.However, as there is no lawor general rule
to overcome the error message, the trial-and-error methods should be used.

(2) Unbiased estimator of parameter b is given by:

EðBÞ ¼ b ðD:38Þ

(3) The variance–covariance matrix of B:

E½ðB�bÞ0ðB�bÞ� ¼ s2ðX0XÞ�1 ðD:39Þ

(4) The unbiased estimator of the population covariance matrixV:
The estimates of the error term matrix can be written as

«̂
ðTxNÞ

¼ e ¼ ðY�BÞ ¼ Y�XðX0XÞ�1X0Y ¼ ½I�XðX0XÞ�1X0�Y ðD:40Þ

Therefore, the (N�N) matrix of sum of squared errors is given by

Qe ¼ e0e ¼ ðY�BÞ0ðY�BÞ ðD:41Þ

with the unbiased estimate of the covariance matrix

S ¼ ðY�BÞ0ðY�BÞ
ðT�KÞ ðD:42Þ

D.8 Maximum likelihood estimation for an MGLM

Recall the multivariate model in (D.33), where for each component of the
N-dimensional endogenous times series Yt¼ (Y1t, . . . , YNt) at time point t, the
following multiple regression for the estimation process was considered:

Ynt ¼ Xtbn þ «nt ðD:43Þ

Therefore, a set of N equation specifications, for n¼ 1, . . . , N, is considered.
Under the assumption that the error term «nt¼Ynt�Xtbn is i.i.d. Gaussian, then
«nt has a normal density function, as follows:

f ð«ntÞ ¼ ð2ps2Þ�1=2
exp � «2nt

2s2

� �
¼ ð2ps2Þ�1=2

exp �ðynt�Xt*bnÞ2
2s2

" #
ðD:44Þ
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where the symbol Xt*bn ¼
PK

k¼0 bnkXkt, with a joint density function or the
likelihood function

L ¼ f ð«n1; «n2; . . . ; «nTÞ ¼ ð2ps2Þ�T=2 P
T

t¼1
exp �ðynt�Xt*bnÞ2

2s2

" #
ðD:45Þ

Therefore, the log likelihood function considered for estimation purposes is

LL ¼ � T

2
lnð2pÞ� T

2
lnðs2Þ� 1

2s2

XT
t¼1

ðynt�Xt*bnÞ2 ðD:46Þ

Note that this LL function has exactly the same form as theLL function of the
univariate GLM in (C.17), so that the model (D.43) has exactly the same
characteristics and properties as the model in (C.1), as well as all statistics related
to thismodel, including the t-test and theWald formof theOLSF-test, as follows.

D.8.1 Student�s t-test

Let Bn¼ [Bn0, Bn1, . . . , Bn,K�1], the estimator of the model parameter bn, be
multivariate normally distributed, which can be presented as

Bn � Nðbn;s
2ðX0

tXtÞ�1Þ ðD:47Þ

Then each of its componentBnk for k¼ 0, 1, . . . , (K� 1) is normally distributed as
Nðbnk;s

2
kkÞ, where s2

kk is the element in row k and column k of the covariance
matrix ½s2ðX0

tXtÞ�1�. Byusing s2ðBnkÞ ¼ ŝ2
kk, then theStudent�s t-test considered is

ðBnk�bnkÞ
sBnk

is distributed as tðT�KÞ ðD:48Þ

D.8.2 The Wald form of the OLS F-test

D.8.2.1 Testing the hypothesis

H0 : Cbn ¼ c ðD:49Þ
where C is a constant (m�K) matrix representing the particular linear combina-
tion of themodel parameter bi and c is an (m� 1) vector of defined values that are
believed or judged to be the true values of the corresponding linear combinations.

The hypothesis (D.49) can be presented as

H0 : Restricted model : Yit ¼ Xtbi þ «it withCbi ¼ c
H1 : Unrestricted model : Yit ¼ Xtbi þ «it

ðD:50Þ

584 Time Series Data Analysis Using EViews

www.trading-software-collection.com



This hypothesis can be tested using theWald formof theOLSF-test as follows:

F ¼ ðSSER�SSEUÞ=m
SSEU=ðT�KÞ � Fðm; T�KÞ ðD:51Þ

where SSER indicates the error sum of squares of the restricted model (i.e. if the
null hypothesis Cbn¼ c is true) and SSEU indicates the error sum of squares of
the unrestricted or full model. Furthermore, it is well known that the numerator
and denominator of the F-test are the chi-squared tests as follows:

x1 ¼
ðSSER�SSEUÞ

m
� s2x2ðmÞ ðD:52Þ

x2 ¼
SSEU

ðT�KÞ � s2x2ðT�2Þ ðD:53Þ

D.8.3 Residual analysis

Corresponding to the multivariate model in (D.33), there are N time series of
residuals or N-dimensional error terms, namely «t¼ («1t, «2t, . . . , «Nt). These N
series of residuals can easily be generated by using EViews, as well as presented in
the form of graphs. Then it is easy to conduct a detailed analysis based on these
series of residuals, in order to study or investigate whether or not the models are
acceptable models, in a statistical sense.

Based on the experimentation, it has been found that the models need to be
modified in most cases, and trial-and-error methods should be used. Refer to the
special notes and comments in Section 2.14.

D.9 MGLM with autoregressive errors

This section will present two types of AR(p)MGLMs. The first type is the AR(p)
MGLM, where all multiple regressions have an equal set of exogenous or
independent variables, and the second type has unequal sets of exogenous
variables. However, since in EView anMGLM is presented as system equations,
here the AR(p) MGLM is presented as the following system equations.

D.9.1 AR(p) MGLM with equal sets of exogenous variables

As an extension of the AR(p) model in (B.19), this is an MGLM with autore-
gressive errors, namely theAR(p)MGLM,where all regressions have equal sets of
exogenous variables. However, as an extension of the model in (D.43), the AR(p)
MGLM is ddefined as follows:

Ynt ¼ Xtbn þmnt; for n ¼ 1; . . . ;N ðNaN:54aÞ

mnt ¼ rn1mn;t�1 þ rn2mn;t�2 þ � � � þ rnpmn;t�p þ «nt ðNaN:54bÞ

(D.54a)

(D.54b)
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where rni is the ith autocorrelation or serial correlation parameter, corresponding
to the nth component of the multivariate endogenous variable, such that |rni| < 1,
for all n and i, and «nt, t¼ 1, 2, . . . , T, are i.i.d. Gaussian or normally distributed
with E(«nt)¼ 0, and Varð«ntÞ ¼ Eð«2ntÞ ¼ s2

n and Cov(«nt, «t,t�h)¼E(«nt, «n,t�h)¼
(h)¼ g

h
are independent on t.

Note that the AR(p) model with the endogenous variablemnt, for n¼ 1, . . . ,N,
in (D.54b) has exactly the same form, as well as characteristics, as the AR(p)
model with the endogenous variable Yt in (D.10). Then similar statistics can
easily be derived, as well as tested, based on the model in (D.54b) by using the
same process in deriving the statistics based on the model in (D.10). Therefore,
this will not be presented again in this section.

Furthermore, in order to estimate themodel parameters, for each componentof
the N-dimensional endogenous variable, the LL function considered is given by

LL ¼ � T�p

2
lnð2pÞ�T�p

2
lnðs2

nÞ

� 1

2s2
n

XT
t¼pþ 1

ðynt�Xt*bnÞ�
Xp
i¼1

rniðyn;t�i�Xt*bnÞ
" #2 ðD:55Þ

where Xt*bn ¼
PK

k¼0 bnkxkt (compare this with the LL function in (D.46)).

D.9.2 AR(p) MGLM with unequal sets of exogenous variables

AnAR(p)MGLMwith unequal sets of exogenous variables can easily be derived
from the model in (D.54). In this case, the sets of independent variables of the
regressions are highly dependent on or closely related to the endogenous vari-
ables. The model can be considered as an extension of the model in (D.32), with
the following system equations:

Ynt ¼ Xntbn þmnt; for n ¼ 1; . . . ;N ðNaN:55aÞ

mnt ¼ rn1mn;t�1 þ rn2mn;t�2 þ � � � þ rnpmn;t�p þ «nt ðNaN:55bÞ

where themultimensional exogenous variableXn¼ (Xn0, . . . ,XnK(n)) is dependent
on Yn.

For each component of the multivariate endogenous series Yt, namely ynt, the
following LL function is obtained:

LL ¼ � T�p

2
lnð2pÞ� T�p

2
lnðs2

nÞ

� 1

2s2
n

XT
t¼pþ 1

ðynt�Xnt*bnÞ�
Xp
i¼1

rniðyn;t�i�Xnt*bnÞ
" #2 ðD:57Þ

(D.56a)

(D.56b)
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where Xnt*bn ¼
PKn

k¼0 bnkxnkt. Note that the multidimensional exogenous vari-
ables Xn are dependent on the endogenous variable Yn.

By using a matrix equation, the whole set of regressions in (D.56a) will be
presented as

Y
NTx1

¼ X
NTxK

* b
Kx1

þ m
NTx1

ðD:58Þ

where K¼K1 þ � � � þ Kn, with Kn the number of exogenous variables in the nth
multiple regression in (D.56).

D.9.3 Special notes and comments

(1) For N¼ 1, the model in (D.56) can represent any time series univariate
regressions, either the AR(p) models as presented in Appendix B or the
models with autoregressive errors as presented in Appendices B and C and
the models with trend, as well as two-way or three-way interaction models,
including the models with time-related effects and the dummy variables
models.

(2) Furthermore, forN > 1, the model in (D.56) can represent multiple associa-
tion time series models or seemingly causal models, such as additive and
interaction structural equationmodels and simultaneous causalmodels, with
or without the time t as an endogenous or independent variable.

(3) For each of those models, any linear combinations of the model parameters,
namely theK-columnvector of the parameterb inmodel (D.58), canbe tested
as a univariate or multivariate hypothesis, as follows:

H0 : Cb ¼ c or Restricted model

H1 : Unrestricted model
ðD:59Þ

where C is an (m�K) constant matrix representing a univariate hypothesis
for m¼ 1 and a multivariate hypothesis for m > 1 and b is a K-dimensional
column vector of the model parameters. The test can easily be done by using
the Wald form of the OLS F-statistic, as presented in (D.51) (refer to the
examples).
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endogenous variables, 60, 74, 80, 90,

118, 151, 171, 204, 221, 227, 256,

346, 513, 524

growth rate, 151

GDP, 171

gdpt , 81

lag interval, 346

log(GDP), 74

log(M1), 74

M1, 171

m1t, 81

path diagram, 80, 90, 227

environmental variable, 333

environment-related effects, 224, 231

Epanechnikov Kernel function, 523

equation specification window, 39, 41, 49,

56, 61, 124, 155, 263, 386, 402, 407,

410

error message, 387, 388

error sum of squares (SSE), 544

error term matrix, 583

error terms properties, 528, 551

estimation methods, 263

LS options, 263

TLS options, 263
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EViews workfile, 1, 3–7, 49, 96, 106, 109,

222, 226, 275, 319, 441, 448, 474,

476, 479, 483, 489, 490, 491, 519,

526, 573, 579

basic options, 1

creation, 3–7

data list, 4

definition, 1

example files, 3, 4

statistical results, 109

Excel datafile, 3, 7, 188

creation steps, 3

Excel spreadsheet, 3, 6

exogenous variable(s), 59, 60, 80, 90, 100,

164, 182, 213, 214, 226, 227, 241,

322, 323, 327, 333, 334, 343, 386,

402, 491, 559, 561, 579

path diagram, 80, 227

window, 334

explanatory model, see seemingly causal

model (SCM)

exponential generalized autoregressive

conditional heteroskedasticity

(EGARCH) model, 419, 422, 423,

437

EGARCH (0,b,0), 438

EGARCH (a,0,0), 437

equation, 423

general GARCH variance series, 437

exponential growth functions, 55

exponential growth model, 311

exponential growth rate, 59, 304, 423

federal fund, 315

FF variables, 21, 22, 315

bivariate scatter plots, 22

growth curves, 21

fifth-degree nonlinear least squares (NLS)

model, 498–499

first-order autocorrelation, 31, 42, 210,

283

first-order autoregressive model, 396,

530–533, 550–553

autocorrelation function, 531

parameters estimatation, 532

parameters properties, 530

two-stage estimation method, 550

first-order moving average

model, 535–536

first-order serial correlation, 551

Fisher F-statistic (s), 28, 40, 62, 126, 128,

134, 152, 158, 159, 214, 250, 326,

333, 450, 460, 462, 547

forcing process, 212

four time series VAR model, 338

F-test, 35, 570, 580

Wald form, 570

Gaussian disturbance(s), 561, 562

Gaussian errors, 568

variance covariance matrix, 568

GDP return rate model, 367, 368

time-related effect, 368

GDP variables, 7, 9, 11–20, 38, 55, 71, 74,

155, 156, 164, 171, 172, 235, 251,

252, 312–314, 335–337, 339, 367,

368, 384–386

correlation matrix, 16

descriptive statistics, 9

growth curves, 13

histograms, 14

mean, 12

mean graph, 16

theoretical distributions, 15

general autoregressive moving average

(ARMA) model, 538–541

ACF derivation, 538

estimation method, 541

general discontinuous seemingly causal

models, 238–243

general growth model, 60

generalized autoregressive conditional

heteroskedasticity (GARCH)

variance series, 421, 424, 434, 435,

436, 440

box plot, 435

growth curve, 435

graphical representation, 434

generalized Cobb–Douglas (GCD) model(s),

474, 479, 480, 481, 484, 487, 488

dummy variables, 481

input variable, 480

one input variable, 479

residual graphs, 484

statistical results, 481, 488

trend, 479, 480, 487

generalized discontinuous models, 159

trend, 159
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generalized error distributions

(GED), 431, 432

generalized Granger causality (GGC)

tests, 338

generalized-Kendall–tau (GKT)

index, 504

generalized least squares (GLS)

estimator, 569, 570, 571

covariance matrix, 569, 571

generalized method of moment (GMM)

estimation method, 416

generalized multivariate models, 118

generalized translog linear model, see

Cobb–Douglas (CD) model(s)

general lagged-variable autoregressive

model, 567–568

general linear models (GLMs), 381, 400,

561, 535, 568

application, 381

Gaussian errors, 568

general system equations, 228

general/threshold autoregressive

conditional heteroskedasticity

model, 419, 422, 423, 436

variance series, 436, 437

general two-piece models, 160, 174

time-related effects, 174

trend, 160

general univariate LVAR(p,q) seemingly

causal model, 212–220

geometric growth model, 25

good fit model(s), 231, 391, 400

Granger causality, 328, 339

bilateral causality, 328

feedback causality, 328

tests, 338, 341

graphs over times, 12

grid search method, 554

growth curve(s), 12, 155, 313

growth curve models, 259

specific cases, 259

growth curve patterns, 210, 259

growth model, 31, 56, 64, 142, 143, 151,

185

breakpoints, 143

exogenous variables, 56

growth curve, 141

interaction factors, 64

statistical results, 31

growth rate, 122

parameters, 152

Gunawan�s data set, 21

scatter plots, 21

Hannan–Quinn criterion (HQC), 39, 48

heterogeneous regressions, 157, 171, 225,

233

heterogeneous time series models, 233

heteroskedasticity, 42, 216, 262, 263, 265,

275, 287, 293, 310, 419

heteroskedasticity consistent covariant

matrix estimator, 263

hierarchical model, 220, 224, 225

hierarchical three-way interaction

ISCM, 405

higher-dimensional multivariate

models, 231

higher-interaction models, 225

higher-order serial correlation, 446

unit root test, 446

histogram-normality test, 34

homogeneous regressions, 158, 190, 191,

232

intercepts, 191

homogeneous residual term hypothesis,

34

homogeneous time series models, 232

hypothetical data set, 118, 171, 235

IF condition window, 131

industry production index, 315

inferential statistical analysis, 309

instrumental model, 388, 389, 391, 393,

397, 399, 417, 451

development, 388

equation specification, 393

extension, 417

omitted variables test, 451

reduced models, 399

residual analysis, 388

instrumental seemingly causal

models, 401, 402, 409, 410,

411, 416

additive multivariate, 409, 411

statistical results, 416

instrumental translog linear models, 399

instrumental two-way interaction

model, 414
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instrumental variable(s), 333, 385, 390,

392, 396

system equation, 392

instrumental variables model(s), 381, 383,

384, 386

use, 381

interaction factor, 67, 252

log(GDP), 67

interaction growth model, 64, 223, 254,

414

statistical results, 254

interaction simultaneous seemingly causal

model, 229

interaction translog linear seemingly

causal model, 241

interaction vector autoregressive (VAR)

model, 354

intercept parameter, 277

interquartile range (IQR), 11

inverted autoregressive (AR) root, 516

ISCM, see instrumental seemingly causal

models

iteration least squares (ILS) estimation

method, 71, 74

IVMAUT variable(s), 259, 260, 265, 288

growth curve, 260

IVMDEP variable(s), 259, 260, 265, 288

growth curve, 260

IVMMAE variable(s), 259, 260, 288

growth curve, 260

Jarque–Bera statistic, 9, 11, 34, 36

use, 11

Jarque–Bera test, 86, 87

Johansen cointegration test, 331

Johnson–Neyman technique, 171, 233

joint effect test(s), 85, 93, 118, 119, 134,

178, 449, 451

joint hypothesis, 18, 36

joint significant effect, 53, 68

J-test, 456

Kendall–tau index, 504

Kernel density, 88, 89

bandwidth, 89

options, 89

theoretical distribution, 89

Kernel fit regression(s), 523–526

Kernel function, 523

K-nearest neighbor estimation method

(k-NN), 504, 517

kth order, 504

K-nearest time forecast (K_NTF), 505

moving average, 506, 511

K-previous time points (K_PT), 505

lagged dependent variable(s), 402, 410,

411

lagged endogenous variable, 46, 113, 114,

162, 282

higher-order, 162

lagged exogenous variables, 221

lagged-variable(1) growth models, 44, 54,

55, 117, 194

statistical results, 54

lagged-variable(1) regression, 118

lagged-variable(1)_TGARCH (1,1,0)

models, 431

lagged-variable(1)_TGARCH (1,1,0)

models, 430

lagged-variable(2) interaction ISCM, 404

lagged-variable(2) model(s), 46, 275, 276

lagged-variable(2,1) growth models, 48

serial correlation LM test, 48

lagged-variable(3) model, 276, 286

lagged-variable(4) model, 194

lagged-variable(5) model, 194

statistical results, 194

lagged-variable AR GCD model, 485

statistical results, 485

lagged-variable AR(1) bivariate

model, 77, 80, 81

trend, 80

lagged-variable AR(1,1) model, 57, 118,

284, 285, 306, 394–395

interaction model, 254

statistical results, 254

lagged-variable AR(1,2) model, 286

lagged-variable AR(1,2) quadratic growth

model, 78

lagged-variable AR(1,2) translog linear

models, 299

lagged-variable AR(1,3) model, 178

lagged-variable AR(1,q) bivariate growth

model, 77

statistical results, 77

lagged-variable AR(2,1) growth

model, 46, 214
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lagged-variable AR(2,1)_SCM, 433

lagged-variable AR(p) model, 275

lagged-variable AR(p,q) model, 223, 283,

376, 567

exogenous variables, 223

lagged-variable autoregressive(1,1)

translog linear model, 395

lagged-variable autoregressive CES

models, 249

lagged-variable autoregressive

model(s), 41, 45, 58, 113, 201, 218,

282, 299, 557, 559

general, 559

higher-order, 45

simple, 557

lagged-variable model, 41, 145, 192, 212,

275, 276, 304, 320, 556–557

lagged-variable multivariate additive

model, 98

statistical results, 98

lagged-variable(p) growth model, 45

lagged-variable(q) model, see qth lagged

endogenous variable model

lagged-variable-third-order autoregressive

two-piece growth model, 166

lag interval(s), 343, 345, 351, 355, 360,

361

lag order selection criteria, 329

lag specification, 356, 358, 360

lag structure analysis, 324, 327

least squares (LS) estimation method, 26,

319, 543–544, 549

ARMA, 26

models, 476

NLS, 26

TLS estimation methods, 383

left-hand-side hypothesis, 58, 126, 127

likelihood function(s), 541, 548

linear association models, 320

linear causal effect, 17, 168

linear model, 544

basic assumptions, 544

model parameters, 545

Student�s t-statistic, 546

variance table analysis, 546

linear regression, 17, 164, 206, 315, 444

linear regression function(s), 121, 316,

392

linear regression model, 55

linear trend effect, 65

Ljung–Box (LB)-statistic, 18

Lny series generation, 131

Lny variable, 129, 131, 132, 135–138

local polynomial kernel fit

regression, 522–524

logistic seemingly causal model, 245

log(ivmae) variable, 282

correlogram, 282

log(ivmmae) variable, 270, 277–282

AR(2) model, 279

AR(3) model, 279

growth curve, 279, 282

residual correlograms, 281

log likelihood function (LL), 529, 532,

534, 549, 552, 554, 557, 558, 559,

563, 566, 570, 578, 584, 586

log likelihood ratio (LR), 158, 456

statistic, 159

log likelihood ratio (LR) chi-squared-

statistic, 449, 462, 466

log(M1) mean model, 186

residual graph, 186

log(M1) variable, 26, 28, 31, 38, 40, 44,

46, 55, 59, 67–69, 74, 154, 157, 159,

164, 165, 168–170, 178, 179, 186,

204–209, 215–219, 221, 234, 248,

250–251, 253–255, 257, 335,

337–341, 343, 361, 362, 364, 365,

368, 369, 373, 385, 392, 431, 462,

476, 513, 514, 524

Chow�s forecast test, 159

overlay growth curves, 205

simple linear regression, 169

log(mmdep) variable, 270, 271, 277, 283,

284, 286, 290

LVAR(2,1) model, 290

London metal exchange price, 291

M1 growth model, 27, 29

residual graphs, 29

M1 return rate model, 367, 368

time-related effect, 368

M1 variable(s), 9, 12, 13, 14, 15, 16, 17,

18, 157, 524

Chow breakpoint tests, 157

correlograms, 18

descriptive statistics, 9

growth curves, 13, 524
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M1 variable(s) (Continued)

histograms, 14

mean, 12

mean graph, 16

theoretical distributions, 15

M2 variables, 22

bivariate scatter plots, 22

MA(1) model, see first-order moving

average model

MA(2) model, see second-order moving

average model

macroeconomic indicator, see growth

curve

MA(q) model, 540

autocovariance function, 540

marginal cost (MC), 244

maximum likelihood estimation

method, 529, 548–550, 552–553,

563, 570

maximum likelihood (ML) function, 549

mean absolute error (MAE), 508

mean model, 527

mean squared error (MSE), 508, 544, 562

MMDEP variables, 259, 260

growth curves, 260

modified interaction models, 177

modified logistic seemingly causal model

(SCM), 245

monotonic growth curves, 20

moving average estimation

methods, 504–508

moving average models, 509–513, 535

error message, 510

first-order, 535

multicollinearity effects, 108, 112

multidimensional exogenous variable(s),

56, 578, 586

multidimensional scores/measurements,

105

multifactorial cell-means models, 190

multilevel cell-means model, see

multifactorial cell-means models

multiple regression, 106

multiplicative model, 459

multivariate AR(1) general growth

models, 79, 96, 411

S-shape, 79

multivariate AR(1) two-way interaction

model, 412

multivariate AR(p) general linear

model, 79

trend, 79

multivariate autocovariance function,

575

multivariate autoregressive model

(MARs), 70, 95, 100, 102, 226, 312,

374, 380, 413, 574

additive model, 96, 345

growth model, 413

hypothetical path diagram, 96

three-way interaction model, 102

two-way interactions, 100

multivariate exogenous variables, 160,

171, 323

multivariate growth models, 70–79, 414

classical, 70

multivariate general linear model

(MGLM), 573, 583, 585

autoregressive errors, 585

maximum likelihood estimation, 583

Student�s t-test, 584

multivariate hypotheses, 85

multivariate infinite moving average

series, 576

multivariate instrumental model(s), 406,

409, 410

multivariate instrumental seemingly causal

models (ISCMs), 409

multivariate linear seemingly causal

models, 310

multivariate models, 95, 180, 376

residual graphs, 376

states, 180

time periods, 180

trend, 95

multivariate time series model, 228, 319,

576

multivariate variance regressors, 429

Narindra’s data set, 21

scatter plots, 21

natural logarithm, 333

nearest neighbor fit, 206, 209, 517, 522,

524–526

curves, 520

data analysis, 521

fit series, 520

mathematical background, 518
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regression, 519

scatter graph, 206, 520

near singular matrix error message, 103,

105–107, 106, 115, 163, 174, 191,

256, 373, 393, 407, 410, 414, 415,

417, 472, 492

neo-classical growth model, 63

Newey-West estimation method(s), 40,

43–44, 77, 147–149, 150, 153, 175,

196, 198, 203, 215, 216, 264, 265,

275, 276, 287, 307, 308, 309, 310,

382, 389, 522

statistical results, 43, 45

Newey-West HAC standard errors, 305

Newey-West option, 264

nonlinear least squares AR(1) model, 473

statistical results, 473

nonlinear least squares (NLS) growth

models, 470, 471, 474, 477–479, 487,

493–501

Demo.Wf1, 495

residual graphs, 496, 498, 499

statistical results, 477, 494, 495, 496

unexpected statistical results, 478

nonhierarchical model, 225, 226, 267,

268, 402

nonlinear function, 225

nonlinear least squares (NLS) model, 469

interaction models, 475

regression functions, 482

nonlinear parameters, 469

nonnested AR(1) models, 458–459

nonnested basic regression

models, 456–458

nonnested lagged-variable autoregressive

(2,1) SCMs, 464

nonnested test (NN-test), 455–459

nonnested translog linear model, 459–460

nonparametric correlation, 504

nonparametric data analysis, 503

nonparametric estimation methods, 317,

503–524

nonparametric growth models, 524

nonparametric multivariate central limit

theorems (NM_CTL), 504

nonparametric regression, 20, 317, 516, 519

curve, 517

models, 20

time series, 516

nonsingular matrix, 582

normality assumption hypothesis, 34–35

normal linear regression, 577

not appropriate models, see not

recommended models

not recommended cell-means model, 190

not recommended model(s), 183–184,

207, 256

null hypothesis, 28, 31, 34, 48, 53, 57, 62,

74, 85, 118, 125, 127, 129, 149, 152,

188, 210, 215, 250, 271, 285, 298,

305, 327, 328, 333, 337, 357, 358,

442, 443, 444, 447, 482, 490, 553,

560, 570

Wald test, 127

numerical variables, 7, 10, 12, 234

% ASTINDO, 10

% BLOCKA, 10

GDP, 7, 12

M1, 7

NPM, 12

PR, 7, 12

RS, 7, 12

OBS indicator, 5

ordinary least squares (OLS) estimation

method, 105, 215, 307, 309, 389,

528, 530, 562, 577, 578, 582

assumptions, 34

parameter, 582

regression, 570

simple linear regression equation, 20,

524

ordinary least squares (OLS) F-test, 564,

584

Wald form, 564, 584

omitted variables test(s), 448–454, 462,

463

one-sided hypothesis, 123, 187

one unit root, 356

orthogonal regressions, 19, 20

overflow error message(s), 256, 470, 494

PARCH model, 419, 422, 423, 438

equation, 423

general GARCH variance series, 438

PARCH(0,b,0) models, 438

PARCH(3,1,2) model, 439

PARCH(a,0,0) models, 438
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partial autocorrelation (PAC), 17–18, 46,

195, 281

coefficient, 17, 45, 46

differences, 182

partial serial correlation, 304

Phillips–Perron (PP) test, 447, 448

unit root tests, 448

piecewise causal effect model, 172

path diagram, 172

piecewise growth model, 124

piecewise lagged-variable autoregressive

(2,3) model, 241

piecewise S-shape growth models, 129,

138

point estimators, 544

POLI_1 variable, 196

scatter graph, 196

POLI_1 Y bivariate variable, 210

graph, 210

polynomial bivariate AR(1) growth

models, 75

polynomial characteristic, 327

polynomial degree, 519

polynomial growth model, 49, 55, 261

population autocorrelations, 331

population growth model, 291, 441

population variance, 562

positive skewness, 11

possible reduced models, 51, 215

PPI variables, 21, 22

bivariate scatter plots, 22

growth curves, 21

principal component factor

analysis, 257

PR variables, 9, 12, 13, 14, 15, 16, 17

correlation matrix, 16

descriptive statistics, 9

growth curves, 13

histograms, 14

mean, 12

mean graph, 16

theoretical distributions, 15

p-value(s), 117, 128, 134, 143, 147, 152,

154, 159, 207, 210, 219, 237, 273,

277, 285, 288, 297, 327, 336, 338,

383, 384, 452

Q-statistic, see Ljung–Box (LB)-statistic

qth lagged endogenous variable

model, 556

quadratic function, 534

quadratic growth model, 49, 137

quadratic nonlinear least squares (NLS)

models, 494, 498

objective function, 494, 497

quadratic term, 255

quadratic translog model, 352

quantitative coefficient, 117

quarterly data, 5

workfile space, 5

quarterly time series, 192, 193

quick/estimate equation, 26

Ramsey RESET test(s), 459–462, 464–467

error message, 461

statistical results, 462

random walk drift model, 443, 444

real-valued sample space, 23

reduced linear model, 300

reduced model, 58, 401

path diagram, 95

statistical results, 58

VAR models, 336

redundant variables test

(RV-test), 454–456, 462–464

regression(s), 18, 146, 148, 149, 150, 152,

154, 161, 162, 173, 177, 178, 183,

189, 194, 195, 196, 199, 200, 203,

213, 215, 219, 223, 242, 246, 247,

251, 261, 262, 264, 266, 269, 280,

284, 301, 308, 396, 443, 484, 548

BG serial correlation test, 189

box plot, 199, 269

residual graph, 146, 148, 149, 150, 152,

189, 194, 200, 203, 213, 215, 219,

246, 251, 261, 264, 266, 280, 284,

301, 308

residual histogram, 154, 162, 195, 199,

242, 247, 269

residual squared correlogram, 196

states, 183

time periods, 183

unit root, 443

regression function(s), 42, 65, 122, 140,

143, 152, 199, 212, 221, 300, 316,

362, 401

regression line(s), 165, 193, 292, 293, 315

scatter graphs, 165

regression model(s), 29, 259, 314, 456

special cases, 259
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regression sum of squares (SSR), 546,

559

function, 559

residual analysis, 85, 383, 388, 585

objectives, 388

residual box plots, 73

residual graph(s), 219, 495, 498

residual heteroskedasticity, 332

residual histogram(s), 35, 44, 242

residual of regression, 253

correlation matrix, 253

residual series, 391, 392

graphical representation, 391

scatter graphs, 392

residual test(s), 32, 330, 332

residual variables, 384

correlation matrix, 385

exogenous variables, 385

return-to-scale production function, 63,

271

return rate growth curves, 313

return rate model (RRM), 311, 312, 367,

368, 378, 379, 512

regression functions, 378

right-hand hypothesis, 123, 154, 187

RS mean model(s), 186, 187

residual graph, 187

R-squared value(s), 309, 316, 317

RS variable(s), 9, 12, 13, 14, 15, 16, 17,

124, 192, 205, 525

correlation matrix, 16

descriptive statistics, 9

growth curves, 13, 192

growth rate, 124

histograms, 14

LV(p) models, 192

mean, 12

mean graph, 16

nonparametric growth curve, 525

overlay growth curves, 205

theoretical distributions, 15

rule of thumb, 40, 74, 507, 551

sample mean, 528

sample space statistics, 22

scatter graph(s), 19, 20, 49, 144, 165, 170,

193,204, 206, 217, 292, 293, 296,

306, 315, 316, 317, 445

use, 49

Schwarz criteria (SC), 28, 39, 44, 47

statistical results, 53, 199, 303, 353

VAR model, 353

second-order autoregressive

model, 533–535

autocorrelation function, 533

parameters estimation, 534

parameters properties, 533

second-order moving average

model, 536–537

second-order serial correlation, 48

second-order stationary process, 527

seemingly causal effects, 227

seemingly causal model (SCM), 63, 185,

203, 220, 229, 232, 234, 264, 282,

293, 294, 312, 333, 391, 409, 460

definition, 294

dummy variables, 232

path diagram, 409

Ramsey�s test, 460
seemingly unrelated regression (SUR)

estimation method, 73, 74, 91, 336,

377

statistical results, 73

semilogarithmic polynomial

model, 49

semilogarithmic regression model,

25, 315

semilog instrumental models, 417

semilog linear model, 244

semilog model(s), 261, 311

serial correlation(s), 283, 319, 322,

490

LM tests, 48

serial correlation hypothesis, 33

simple ARCH models, 420

simple instrumental models, 396

simple linear regressions (SLR), 168, 169,

192, 209, 454, 547

ANOVA table, 547

simple moving average estimates, 504

simple multivariate instrumental

models, 406

simple multivariate models, 577

exogenous variables, 577

simple nonlinear least squares (NLS)

models, 476, 477

simplest autoregressive moving average

(ARMA) model, 537–538

simplest linear population model, 543

simplest seemingly causal models, 204
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simple two-piece AR(1) interaction

model, 174

simultaneous causal effect model (s), 173,

310, 311, 337, 338, 581

path diagram, 173

statistical results, 338

simultaneous seemingly causal

models, 228

single time series models, 186, 527

statistical analysis, 186

Snedecor�s F-distribution, 108
special instrumental models, 390

specific residual analysis, 217

stability test, 155–159

standardized coefficient regression, 548

stationary autoregressive moving average

(1,1) model, 538

autocorrelation function, 538

statistical data analysis, 3

statistical model, 1

statistical technique, 105

structural equation models (SEM), 320,

574

Student�s t-distribution, 108, 431, 432

Student�s t-statistic, 564

sum of squared error (SSE), 508, 511, 512,

526, 562

switching regression, 521

system equation estimation methods, 319,

320, 336, 349, 359, 377, 490

error message, 490

system function estimation method,

380

tanslog linear model, 99

Taylor series approximation

model, 59–60, 459

Taylor series expansion, 300

testing hypotheses, 74, 127, 234, 338,

441, 456, 457, 461, 490, 528, 546,

560, 564–565

criteria, 546

omitted variable tests, 441

redundant variable tests, 441

statistical results, 491

unit root test, 441

TGARCH(0,1,1) nonlinear least squares

(NLS) model, 500

statistical results, 500

TGARCH(1,1,0) classical growth

models, 422

TGARCH(1,1,0) nonlinear least squares

(NLS) model, 499–501

statistical results, 500
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