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0
. Goals of this Book and Global Overview |

0.1 WHAT IS THIS BOOK?

The goal of this book is to develop robust, accurate and efficient numerical methods to price a
number of derivative products in quantitative finance. We focus on one-factor and multi-factor
models for a wide range of derivative products such as options, fixed income products, interest
rate products and ‘real’ options. Due to the complexity of these products it is very difficult to
find exact or closed solutions for the pricing functions. Even if a closed solution can be found
it may be very difficult to compute. For this and other reasons we need to resort to approximate
methods. Our interest in this book lies in the application of the finite difference method (FDM)
to these problems.

This book is a thorough introduction to FDM and how to use it to approximate the various
kinds of partial differential equations for contingent claims such as:

One-factor European and American options

One-factor and two-factor barrier options with continuous and discrete monitoring
Multi-asset options

Asian options, continuous and discrete monitoring

One-factor and two-factor bond options

Interest rate models

The Heston model and stochastic volatility

Merton jump models and extensions to the Black—Scholes model.

Finite difference theory has a long history and has been applied for more than 200 years
to approximate the solutions of partial differential equations in the physical sciences and
engineering.

What is the relationship between FDM and financial engineering? To answer this ques-
tion we note that the behaviour of a stock (or some other underlying) can be described by
a stochastic differential equation. Then, a contingent claim that depends on the underlying
is modelled by a partial differential equation in combination with some initial and bound-
ary conditions. Solving this problem means that we have found the value for the contingent
claim.

Furthermore, we discuss finite difference and variational schemes that model free and mov-
ing boundaries. This is the style for exercising American options, and we employ a number of
new modelling techniques to locate the position of the free boundary.

Finally, we introduce and elaborate the theory of partial integro-differential equations
(PIDEs), their applications to financial engineering and their approximations by FDM. In
particular, we show how the basic Black—Scholes partial differential equation is augmented by
an integral term in order to model jumps (the Merton model). Finally, we provide worked-out
C++ code on the CD that accompanies this book.



2 Finite Difference Methods in Financial Engineering

0.2 WHY HAS THIS BOOK BEEN WRITTEN?

There are a number of reasons why this book has been written. First, the author wanted to
produce a text that showed how to apply numerical methods (in this case, finite difference
schemes) to quantitative finance. Furthermore, it is important to justify the applicability of
the schemes rather than just rely on numerical recipes that are sometimes difficult to apply
to real problems. The second desire was to construct robust finite difference schemes for use
in financial engineering, creating algorithms that describe how to solve the discrete set of
equations that result from such schemes and then to map them to C++ code.

0.3 FOR WHOM IS THIS BOOK INTENDED?

This book is for quantitative analysts, financial engineers and others who are involved in
defining and implementing models for various kinds of derivatives products. No previous
knowledge of partial differential equations (PDEs) or of finite difference theory is assumed.
It is, however, assumed that you have some knowledge of financial engineering basics, such
as stochastic differential equations, Ito calculus, the Black—Scholes equation and derivative
pricing in general. This book will be of value to those financial engineers who use the binomial
and trinomial methods to price options, as these two methods are special cases of explicit finite
difference schemes. This book will also hopefully be employed by those engineers who use
simulation methods (for example, the Monte Carlo method) to price derivatives, and it is hoped
that the book will help to bridge the gap between the stochastics and PDE approaches.

Finally, this book could be interesting for mathematicians, physicists and engineers who
wish to see how a well-known branch of numerical analysis is applied to financial engineering.
The information in the book may even improve your job prospects!

0.4 WHY SHOULD I READ THIS BOOK?

In the author’s opinion, this is one of the first self-contained introductions to the finite difference
method and its applications to derivatives pricing. The book introduces the theory of PDE and
FDM and their applications to quantitative finance, and can be used as a self-contained guide
to learning and discovering the most important finite difference schemes for derivative pricing
problems.

Some of the advantages of the approach and the resulting added value of the book are:

® A defined process starting from the financial models through PDEs, FDM and algorithms
® An application of robust, accurate and efficient finite difference schemes for derivatives
pricing applications.

This book is more than just a cookbook: it motivates why a method does or does not work and
you can learn from this knowledge in a meaningful way. This book is also a good companion
to my other book, Financial Instrument Pricing in C++ (Duffy, 2004). The algorithms in
the present book can be mapped to C++, the de-facto object-oriented language for financial
engineering applications

In short, it is hoped that this book will help you to master all the details needed for a good
understanding of FDM in your daily work.
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0.5 THE STRUCTURE OF THIS BOOK

The book has been partitioned into seven parts, each of which deals with one specific topic in
detail. Furthermore, each part contains material that is required by its successor. In general,
we interleave the parts by first discussing the theory (for example, basic finite difference
schemes) in a given part and then applying this theory to a problem in financial engineering.
This ‘separation of concerns’ approach promotes understandability of the material, and the
parts in the book discuss the following topics:

I. The Continuous Theory of Partial Differential Equations
II. Finite Difference Methods: the Fundamentals
III. Applying FDM to One-Factor Instrument Pricing
IV.  FDM for Multidimensional Problems
V. Applying FDM to Multi-Factor Instrument Pricing
VI.  Free and Moving Boundary Value Problems
VII. Design and Implementation in C++

Part I presents an introduction to partial differential equations (PDE). This theory may be
new for some readers and for this reason these equations are discussed in some detail. The
relevance of PDE to instrument pricing is that a contingent claim or derivative can be modelled
as an initial boundary value problem for a second-order parabolic partial differential equation.
The partial differential equation has one time variable and one or more space variables. The
focus in Part I is to develop enough mathematical theory to provide a basis for work on finite
differences.

Part II is an introduction to the finite difference method for a number of partial differential
equations that appear in instrument pricing problems. We learn FDM in the following way:
(1) We introduce the model PDEs for the heat, convection and convection—diffusion equations
and propose several important finite difference schemes to approximate them. In particular,
we discuss a number of schemes that are used in the financial engineering literature and we
also introduce some special schemes that work under a range of parameter values. In this part,
focus is on the practical application of FDM to parabolic partial differential equations in one
space variable.

Part IIT examines the partial differential equations that describe one-factor instrument
models and their approximation by the finite difference schemes. In particular, we concen-
trate on European options, barrier options and options with jumps, and propose several finite
difference schemes for such options. An important class of problems discussed in this part
is the class of barrier options with continuous or discrete monitoring and robust methods are
proposed for each case. Finally, we model the partial integro-differential equations (PIDEs)
that describe options with jumps, and we show how to approximate them by finite difference
schemes.

Part IV discusses how to define and use finite difference schemes for initial boundary value
problems in several space variables. First, we discuss ‘direct’ scheme where we discretise the
time and space dimensions simultaneously. This approach works well with problems in two
space dimensions but for problems in higher dimensions we may need to solve the problem as a
series of simpler problems. There are two main contenders: first, alternating direction implicit
(ADI) methods are popular in the financial engineering literature; second, we discuss operator
splitting methods (or the method of fractional steps) that have their origins in the former Soviet
Union. Finally, we discuss some modern developments in this area.
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Part V applies the results and schemes from Part IV to approximating some multi-factor
problems. In particular, we examine the Heston PDE with stochastic volatility, Asian options,
rainbow options and two-factor bond models and how to apply ADI and operator splitting
methods to them.

Part VI deals with instrument pricing problems with the so-called early exercise feature.
Mathematically, these problems fall under the umbrella of free and moving boundary value
problems. We concentrate on the theory of such problems and the application to one-factor
American options. We also discuss ADI method in conjunction with free boundaries.

Part VII contains a number of chapters that support the work in the previous parts of the
book. Here we address issues that are relevant to the design and implementation of the FDM
algorithms in the book. We provide hints, guidelines and C++ sources to help the reader to
make the transition to production code.

0.6 WHAT THIS BOOK DOES NOT COVER

This book is concerned with the application of the finite difference method to instrument
pricing. This viewpoint implies that we concentrate on a number of issues while neglecting
others. Thus, this book is not:

an introduction to numerical analysis

a guide to the theoretical foundations of the theory of finite differences
an introduction to instrument pricing

a full ‘production’ C++- course.

These problems are considered in detail in other books and will be discussed elsewhere.

0.7 CONTACT, FEEDBACK AND MORE INFORMATION

The author welcomes your feedback, comments and suggestions for improvement. As far as I
am aware, all typos and errors have been removed from the text, but some may have slipped
past unnoticed. Nevertheless, all errors are my responsibility.

I am a trainer and developer and my main professional interests are in quantitative finance,
computational finance and object-oriented programming. In my free time I enjoy judo and
studying foreign (natural) languages.

If you have any questions on this book, please do not hesitate to contact me at
dduffy @datasim.nl.
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1
An Introduction to Ordinary

Differential Equations

1.1 INTRODUCTION AND OBJECTIVES

Part I of this book is devoted to an overview of ordinary and partial differential equations. We
discuss the mathematical theory of these equations and their relevance to quantitative finance.
After having read the chapters in Part I you will have gained an appreciation of one-factor and
multi-factor partial differential equations.

In this chapter we introduce a class of second-order ordinary differential equations as they
contain derivatives up to order 2 in one independent variable. Furthermore, the (unknown)
function appearing in the differential equation is a function of a single variable. A simple
example is the /inear equation

Lu = a(x)u” + b(x)u' + c(x)u = f(x) (1.1)

In general we seek a solution « of (1.1) in conjunction with some auxiliary conditions. The
coefficients a, b, ¢ and f are known functions of the variable x. Equation (1.1) is called linear
because all coefficients are independent of the unknown variable u. Furthermore, we have used
the following shorthand for the first- and second-order derivatives with respect to x:

, du d o d*u (1.2)
W=— and u' =— .
dx dx?
We examine (1.1) in some detail in this chapter because it is part of the Black—Scholes
equation

0C 1, ,0°C aC
& el % e =0 13
or T27 0 e T T (1.3)

where the asset price S plays the role of the independent variable x and ¢ plays the role of
time. We replace the unknown function u by C (the option price). Furthermore, in this case,
the coefficients in (1.1) have the special form

a(s) = 30°8?

b(S) =rS

«(S) — —r (1.4)
f($=0

In the following chapters our intention is to solve problems of the form (1.1) and we then
apply our results to the specialised equations in quantitative finance.
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1.2 TWO-POINT BOUNDARY VALUE PROBLEM

Let us examine a general second-order ordinary differential equation given in the form

u = f(x;u,u) (1.5)

where the function f depends on three variables. The reader may like to check that (1.1)
is a special case of (1.5). In general, there will be many solutions of (1.5) but our interest is
in defining extra conditions to ensure that it will have a unique solution. Intuitively, we might
correctly expect that two conditions are sufficient, considering the fact that you could integrate
(1.5) twice and this will deliver two constants of integration. To this end, we determine these
extra conditions by examining (1.5) on a bounded interval (a, b). In general, we discuss linear
combinations of the unknown solution # and its first derivative at these end-points:

aou(a) —ayu'(a) = a, lagl + lai| # 0

(1.6)
bou(b) + byu'(b) = B, |bol + b1] # 0

We wish to know the conditions under which problem (1.5), (1.6) has a unique solution.
The full treatment is given in Keller (1992), but we discuss the main results in this section.
First, we need to place some restrictions on the function f that appears on the right-hand side
of equation (1.5).

Definition 1.1. The function f(x, u, v) is called uniformly Lipschitz continuous if
[f(xsu,v) — fxsw, 2)] < K max(lu —wl, Jv—z|) (1.7)
where K is some constant, and x, ut, and v are real numbers.
We now state the main result (taken from Keller, 1992).

Theorem 1.1. Consider the function f(x;u,v) in (1.5) and suppose that it is uniformly
Lipschitz continuous in the region R, defined by:

R:a<x<b, u>*+v* <o0 (1.8)
Suppose, furthermore, that f has continuous derivatives in R satisfying, for some constant M,

iy ‘%

<M 1.9
ou ov| — (1.9

and, that
apa; > 0, boby = 0, laol + |bo| # O (1.10)
Then the boundary-value problem (1.5), (1.6) has a unique solution.

This is a general result and we can use it in new problems to assure us that they have a
unique solution.

1.2.1 Special kinds of boundary condition

The linear boundary conditions in (1.6) are quite general and they subsume a number of special
cases. In particular, we shall encounter these cases when we discuss boundary conditions for
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the Black—Scholes equation. The main categories are:

® Robin boundary conditions
® Dirichlet boundary conditions
e Neumann boundary conditions.

The most general of those is the Robin condition, which is, in fact, (1.6). Special cases of
(1.6) at the boundaries x = a or x = b are formed by setting some of the coefficients to zero.
For example, the boundary conditions at the end-point x = a:

ula) =«
u'(a)=p

are called Dirichlet and Neumann boundary conditions at x = a and at x = b, respectively.

Thus, in the first case the value of the unknown function u is known at x = a while, in the
second case, its derivative is known at x = b (but not u itself). We shall encounter the above
three types of boundary condition in this book, not only in a one-dimensional setting but also
in multiple dimensions. Furthermore, we shall discuss other kinds of boundary condition that
are needed in financial engineering applications.

(1.11)

1.3 LINEAR BOUNDARY VALUE PROBLEMS

We now consider a special case of (1.5), namely (1.1). This is called a linear equation and
is important in many kinds of applications. A special case of Theorem 1.1 occurs when the
function f(x;u, v) is linear in both u and v. For convenience, we write (1.1) in the canonical
form

—u" + p(u’ 4+ q()u = r(x) (1.12)
and the result is:
Theorem 1.2. Let the functions p(x), q(x) and r (x) be continuous in the closed interval [a, b]

with

qgx)>0, a<x<b,
apa; > 0, lag| + lai| #0, (1.13)
boby = 0, |bo| + |b1] # 0,

Assume that
lao| + 1bo| # 0
then the two-point boundary value problem (BVP)

Lu=—u"4+ pu' +gx)u=r(x), a<x<b (1.14)
aou(a) — ayu'(a) = a, bou(b) + byu'(b) = B '

has a unique solution.

Remark. The condition |ag| 4 |bg| # 0 excludes boundary value problems with Neumann
boundary conditions at both ends.
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1.4 INITIAL VALUE PROBLEMS

In the previous section we examined a differential equation on a bounded interval. In this case
we assumed that the solution was defined in this interval and that certain boundary conditions
were defined at the interval’s end-points. We now consider a different problem where we wish
to find the solution on a semi-infinite interval, let’s say (a, oo). In this case we define the initial
value problem (IVP)

u" = f(x;u,u)
apu(a) — aru'(a) = a (1.15)
bou(a) — byu'(a) = B

where we assume that the two conditions at x = a are independent, that is
albo—aobl 750 (116)
It is possible to write (1.15) as a first-order system by a change of variables:

u =v, vV = f(x;u,v)
apu(a) —av(a) =« (1.17)
bou(a) — biv(a) = B

This is now a first-order system containing no explicit derivatives at x = a. System (1.17)
is in a form that can be solved numerically by standard schemes (Keller, 1992). In fact, we can
apply the same transformation technique to the boundary value problem (1.14) to get

—v 4+ p(xX)v + g(x)u = r(x)
u=v

(1.18)
apu(a) — ayv(a) = a,

bou(b) + bv(b) = B

This approach has a number of advantages when we apply finite difference schemes to
approximate the solution of problem (1.18). First, we do not need to worry about approximating
derivatives at the boundaries and, second, we are able to approximate v with the same accuracy
as u itself. This is important in financial engineering applications because the first derivative
represents an option’s delta function.

1.5 SOME SPECIAL CASES

There are a number of common specialisations of equation (1.5), and each has its own special
name, depending on its form:

Reaction—diffusion: u" = qx)u
Convection—diffusion: u’” = p(u’ (1.19)
Diffusion: u" =0

Each of these equations is a model for more complex equations in multiple dimensions,
and, we shall discuss the time-dependent versions of the equations in (1.19). For example, the
convection—diffusion equation has been studied extensively in science and engineering and
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has applications to fluid dynamics, semiconductor modelling and groundwater flow, to name
just a few (Morton, 1996). It is also an essential part of the Black—Scholes equation (1.3).

We can transform equation (1.1) into a more convenient form (the so-called normal form)
by a change of variables under the constraint that the coefficient of the second derivative a(x)
is always positive. For convenience we assume that the right-hand side term f is zero. To this
end, define

p(x) =exp @ dx
a(x)

c(x)p(x)

a(x)

If we multiply equation (1.1) (note f = 0) by p(x)/a(x) we then get:

(1.20)
q(x) =

d du
ap(x)a +qgx)u=0 (1.21)

This is sometimes known as the self-adjoint form. A further change of variables
d
¢ = / = (122)
p(x)
allows us to write (1.21) to an even simpler form

d%u

de?

Equation (1.23) is simpler to solve than equation (1.1).

+ p(x)g(x)u =0 (1.23)

1.6  SUMMARY AND CONCLUSIONS

We have given an introduction to second-order ordinary differential equations and the as-
sociated two-point boundary value problems. We have discussed various kinds of boundary
conditions and a number of sufficient conditions for uniqueness of the solutions of these prob-
lems. Finally, we have introduced a number of topics that will be required in later chapters.






2
An Introduction to Partial

Differential Equations

2.1 INTRODUCTION AND OBJECTIVES

In this chapter we give a gentle introduction to partial differential equations (PDEs). It can be
considered to be a panoramic view and is meant to introduce some notation and examples. A
PDE is an equation that depends on several independent variables. A well-known example is
the Laplace equation:

9%u 9%u

In this case the dependent variable u satisfies (2.1) in some bounded, infinite or semi-infinite
space in two dimensions.

In this book we examine PDEs in one or more space dimensions and a single time dimension.
An example of a PDE with a derivative in the time direction is the heat equation in two spatial
dimensions:

du  ’u  du
or a2 | ay? 22)

We classify PDEs into three categories of equation, namely parabolic, hyperbolic and
elliptic. Parabolic equations are important for financial engineering applications because the
Black—Scholes equation is a specific instance of such a category. Furthermore, generalisations
and extensions to the Black—Scholes model may have hyperbolic equations as components.
Finally, elliptic equations are useful because they form the time-independent part of the Black—
Scholes equations.

2.2 PARTIAL DIFFERENTIAL EQUATIONS

We have attempted to categorise partial differential equations as shown in Figure 2.1. At the
highest level we have the three major categories already mentioned. At the second level we
have classes of equation based on the orders of the derivatives appearing in the PDE, while at
level three we have given examples that serve as model problems for more complex equations.
The hierarchy is incomplete and somewhat arbitrary (as all taxonomies are). It is not our
intention to discuss all PDEs that are in existence but rather to give the reader an overview of
some different types. This may be useful for readers who may not have had exposure to such
equations in the past.

What makes a PDE parabolic, hyperbolic or elliptic? To answer this question let us examine
the linear partial differential equation in two independent variables (Carrier and Pearson, 1976;
Petrovsky, 1991)

Auye +2Buyy + Cuyy + Duy +Euy +Fu+G =0 2.3)
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PDE
Parabolic Elliptic Hyperbolic
Convection—diffusion Diffusion P0|fson 1st order 2nd order
Laplace
Black—Scholes Heat equation Shocks Wave equation

Hamilton—Jacobi
Friedrichs’ systems

Figure 2.1 PDE classification

where we have used the (common) shorthand notation

_ ou _ du
e =55 Uy = dy
9%u 9%u
Uyy = ﬁ’ Uyy = 8—_)72 (24)
3%u
Uyy =
dxdy

and the coefficients A, B, C, D, E, F and G are functions of x and y in general. Equation (2.3)
is linear because these functions do not have a dependency on the unknown function u =
u(x, y). We assume that equation (2.3) is specified in some region of (x, y) space. Note the
presence of the cross (mixed) derivatives in (2.3). We shall encounter these terms again in later
chapters.

Equation (2.3) subsumes well-known equations in mathematical physics as special cases.
For example, the Laplace equation (2.1) is a special case, having the following values:

A=C=1

2.
B=D=E=F=G=0 @5

A detailed discussion of (2.3), and the conditions that determine whether it is elliptic,
hyperbolic or parabolic, is given in Carrier and Pearson (1976). We give the main results in
this section. The discussion in Carrier and Pearson (1976) examines the quadratic equation:

AE] +2BEE, +CE =0 (2.6)

where £(x, y) is some family of curves in (x, y) space (see Figure 2.2). In particular, we wish
to find the solutions of the quadratic form by defining the variables:

_&

0=
3}

2.7)
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curves

& (x, y) = const

N (x, y) = const
Figure 2.2 (&,n) Coordinate system

Then we get the roots

AB%2 +2BO+C =0

y_ “2B£2/B7—AC _ B+ VB~ AC (2.8)
B 2A B A
Thus, we distinguish between the following cases:
elliptic: B?—AC <0
parabolic: ~ B? — AC =0 2.9)

hyperbolic: B> — AC > 0

We note that the variables x and y appearing in (2.3) are generic and in some cases we may
wish to replace them by other more specific variables — for example, replacing y by a time
variable ¢ as in the well-known one-dimensional wave equation

’u  3%u
a2 ox?

It is easy to check that in this case the coefficients are: A =1, C =—1, B=D =FE =
F = G = 0 and hence the equation is hyperbolic.

=0 (2.10)

2.3 SPECIALISATIONS

We now discuss a number of special cases of elliptic, parabolic and hyperbolic equations that
occur in many areas of application. These equations have been discovered and investigated by
the greatest mathematicians of the last three centuries and there is an enormous literature on
the theory of these equations and their applications to the world around us.

2.3.1 Elliptic equations

These time-independent equations occur in many kinds of application:

e Steady-state heat conduction (Kreider et al., 1966)
e Semiconductor device simulation (Fraser, 1986; Bank and Fichtner, 1983)



16 Finite Difference Methods in Financial Engineering

Figure 2.3 Two-dimensional bounded region

e Harmonic functions (Du Plessis, 1970; Rudin, 1970)
® Mapping functions between two-dimensional regions (George, 1991).

In general, we must specify boundary conditions for elliptic equations if we wish to have a
unique solution. To this end, let us consider a two-dimensional region €2 with smooth boundary
I" as shown in Figure 2.3, and let  be the positive outward normal vector on I'. A famous
example of an elliptic equation is the Poisson equation defined by:
9%u 9%u .
Au=— +— = f(x,y) in Q (2.11)
axz  dy
where A is the Laplace operator.
Equation (2.11) has a unique solution if we define boundary conditions. There are various
options, the most general of which is the Robin condition:

aa—u—i-ﬁu:g (2.12)
an
where ¢, 8 and g are given functions defined on the boundary I'. A special case is when o = 0,
in which case (2.12) reduces to Dirichlet boundary conditions.

A special case of the Poisson equation (2.11) is when f = 0. This is then called the Laplace
equation (2.1).

In general, we must resort to numerical methods if we wish to find a solution of prob-
lem (2.11), (2.12). For general domains, the finite element method (FEM) and other so-called
variational techniques have been applied with success (see, for example, Strang et al., 1973;
Hughes, 2000). In this book we are mainly interested in square and rectangular regions be-
cause many financial engineering applications are defined in such regions. In this case the finite
difference method (FDM) is our method of choice (see Richtmyer and Morton, 1967).

In some cases we can find an exact solution to the problem (2.11), (2.12) when the domain
Q is arectangle. In this case we can then use the separation of variables principle, for example.
Furthermore, if the domain is defined in a spherical or cylindrical region we can transform
(2.11) to a simpler form. For a discussion of these topics, see Kreider et al. (1966).
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2.3.2 Free boundary value problems

In the previous section we assumed that the boundary I" of the domain of interest is known. In
many applications, however, we not only need to find the solution of a PDE in some region but
we define auxiliary constraints on some unknown boundary. This boundary may be internal
or external to the domain. For time-independent problems we speak of free boundaries while
for time-dependent problems we use the term ‘moving’ boundaries. These boundaries occur
in numerous applications, some of which are:

Flow in dams (Baiocchi, 1972; Friedman, 1979)

Stefan problem: standard model for the melting of ice (Crank, 1984)
Flow in porous media (Huyakorn and Pinder, 1983)

Early exercise and American style option (Nielson et al., 2002).

The following is a good example of a free boundary problem. Imagine immersing a block of
ice in luke-warm water at time + = 0. Of course, the ice block eventually disappears because
of its state change to water. The interesting question is: What is the profile of the block at any
time after + = 0? This is a typical moving boundary value problem.

Another example that is easy to understand is the following. Consider a rectangular dam
D ={(x,y):0<x <a, 0<y< H}andsuppose that the walls x = 0 and x = a border
reservoirs of water maintained at given levels g(¢) and f (¢), respectively (see Figure 2.4). The
so-called piezometric head is givenby u = u(x, y,t) = y + p(x, y, t), where p is the pressure
in the dam. The velocity components are given by:

velocity of water = — (uy, uy) (2.13)
y
H
N, dry part
P(x,1)
Water
g () Water
wet part
/
/
R0
N
0 a

Figure 2.4 Dam with wet and dry parts
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Furthermore, we distinguish between the dry part and the wet part of the dam as defined by
the function ¢(x, t). The defining equations are (Friedman, 1979; Magenes, 1972):

92 92

8—;;—}—3—;;:0 if0<x<a, O<y<opkx,t), t>0
u©,y,1)=g@), 0<y<g@

u©,y, )=y, g <y<eQ,1) (2.14)

u(a,y,t)=f@), 0<y<f()
ua,y, )=y, [f)<y<egla, 1
uy(x,0,1)=0, O<x<a,t>0
The function ¢(x, t) is called the free boundary and it separates the wet part from the dry

part of the dam.
Furthermore, on the free boundary y = ¢(x, t) we have the following conditions:

=Y 2.15)
Uy = u% + u% — Uy ’
Finally, we have the initial conditions:
xX,0)=¢@y(x), 0<x<a
@(x, 0) = @o(x) (2.16)

@o(x) >0, @o(0) = g(0), ¢@ola) = f(0)

We thus see that the problem is the solution of the Laplace equation in the wet region of the
dam while, on the free boundary, the equation is a first-order nonlinear hyperbolic equation.
Thus, the free boundary is part of the problem and it must be evaluated.

A discussion of analytic and numerical methods for free and moving boundary value prob-
lems is given in Crank (1984). Free and moving boundary problems are extremely important
in financial engineering, as we shall see in later chapters.

A special case of (2.14) is the so-called stationary dam problem (Baiocchi, 1972). In this
case the levels of the reservoirs do not change and we then have the special cases

gny=gO)  fO) =[O0

and y = ¢y(x) is the free boundary.
There may be similarities between the above problem and the free boundary problems that
we encounter when modelling options with early excercise features.

2.4 PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

This is the most important PDE category in this book because of its relationship to the Black—
Scholes equation. The most general linear parabolic PDE in n dimensions in this context is
given by

ou
— =Lu
o 2.17)
< 0%u 2 ou :
Lu= it bix,t) — +c¢
u iJZZIG,_z(x )Bxiaxj +j; j(x )ax, + cu
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where x is a point in n-dimensional real space and ¢ is the time variable, where ¢ is increasing
from r = 0. We assume that the operator L is uniformly elliptical, that is, there exist positive
constants « and S such that

n
wlE? < > aij(x, 0EE; < I
ij=1
P =&+ +E
for x in some region of n-dimensional space and ¢ > 0. Another way of expressing (2.18) is
by saying that matrix A, defined by

(2.18)

A= (a; )= (2.19)

is positive-definite.
A special case of (2.17) is the famous multivariate Black—Scholes equation
IC | < 9°C & aC
— +53 i, j0i0;SiS | + —dj)Sj—— —1rC =0 2.20
a7 zzpﬁjaaj jaS,BS, j;(r j) JaS] 7 ( )

ij=1
where 7 is the time left to the expiry T and C is the value of the option on n underlying assets.
The other parameters and coefficients are:

o; = volatility of asset j

pij = correlation between asset i and asset j 221)
r = risk-free intererst rate )

d; = dividend yield of the jth asset
Equation (2.20) can be derived from the following stochastic differential equation (SDE):
de = ([Lj — dj)de[ + O'ijde (2.22)
where
S; = jthasset
i = expected growth rate of jth asset (2.23)
dz; = the jth Wiener process
and using the generalised Ito’s lemma (see, for example, Bhansali, 1998).
In general, we need to define a unique solution to (2.17) by augmenting the equation with
initial conditions and boundary conditions. We shall deal with these in later chapters but for
the moment we give one example of a parabolic initial boundary value problem (IBVP) on a

bounded domain €2 with boundary I". This is defined as the PDE augmented with the following
extra boundary and initial conditions

u
— + = on I'x (0, T
oy TPU=8 ©.7) (2.24)

ulx,0) =up(x), xeQ

where Q is the closure of €.
We shall discuss parabolic equations in detail in this book by examining them from several
viewpoints. First, we discuss the properties of the continuous problem (2.17), (2.24); second, we
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introduce finite difference schemes for these problems; and finally we examine their relevance
to financial engineering.

2.4.1 Special cases

The second-order terms in (2.17) are called diffusion terms while the first-order terms are
called convection (or advection) terms. If the convection terms are zero we then arrive at a
diffusion equation, and if the diffusion terms are zero we then arrive at a first-order (hyperbolic)
convection equation.

An even more special case of a diffusion equation is when all the diffusion coefficients are
equal to 1. We then arrive at the heat equation in non-dimensional form. For example, in three
space dimensions this equation has the form

ou  3%u n 0%u n 0%u (2.25)
ar  axz  9y? 92 ’

A special class of equations is called convection—diffusion. A prototypical example in one
space dimension is

ou 02 a

5 =0, t)a—;; + ulx, t)a—z + b(x, Du (2.26)

Convection—diffusion equations will receive much attention in this book because they model
the behaviour of one-factor option pricing problems.

2.5 HYPERBOLIC EQUATIONS

Whereas parabolic equations model fluid and heat flow phenomena, hyperbolic equations
model wave phenomena, and there are many application areas where hyperbolic wave equations
play an important role:

Shock waves (Lax, 1973)

Acoustics (Kinsler et al., 1982)

Neutron transport phenomena (Richtmyer and Morton, 1967)

Deterministic models in quantitative finance (for example, deterministic interest rates).

We are interested in two sub-categories, namely second-order and first-order hyperbolic equa-
tions.

2.5.1 Second-order equations

In this case we have a PDE containing a second-order derivative in time. A typical example is
the equation (written in self-adjoint form)

P fi= 3 2 (a0 ) g (227)
— =l = —\a; (X, — ] — X)u .
ax; " 0x; 7

In order to define a unique solution to (2.27) we define boundary conditions in space in
the usual way. However, since we have a second derivative in time, we shall need to give two
initial conditions.
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We now take a specific example. Consider an infinite stretched rod of negligible mass. The
equations for the displacement of the string given a certain displacement are given by:

92 9?
—u—cz—u, X €(—00,00), t>0
or? dx2 (2.28)
au '
u(x, 0) = g(x), 5()6, 0)=v(x), x € (-00,00)
A common procedure when viewing (2.28) both analytically and numerically is to define
new variables v and w:

9 9
v="" ad w=2 (2.29)
ax ot

We can write equations (2.28) as a first-order system:

104 aU
A—+B—+CU =0 (2.30)
at 0x
where we define the vectors
u
U=1v (2.31)
w
and
1 0 O 0 0 0 0O 0 -1
A=|0 1 0}, B={0 -1 O0}), C=10 0 0] @32
0O 0 1 0 -2 0 0 0 0

It can be advantageous from both an analytical and numerical viewpoint to transform higher-
order equations to a first-order system.

2.5.2 First-order equations

First-order hyperbolic equations occur in many applications, especially in the theory of gas
flow and in shock waves. The prototypical scalar initial value problem is
ou

ou
+a(x,t)— =0 in (—o0,00) x (0,T
at ( )ax ( ) x( ) (2.33)

ulx,0) =up(x), x € (—o00,00)

Furthermore, the smoothness of the solution of (2.33) is determined by its discontinuities
(determined by the continuity of the initial condition) and these will be propagated indefinitely.
This is different from parabolic PDEs where discontinuities in the initial condition become
smeared out as time goes on.

Closely associated with first-order equations is the Method of Characteristics (MOC) (see
Courant and Hilbert, 1968). We shall discuss MOC later as a method for solving first-order
equations numerically.
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2.6 SYSTEMS OF EQUATIONS

In some applications we may wish to solve a PDE for vector-valued functions, that is sys-
tems of equations. We shall also come across some examples of such systems in the finan-
cial engineering applications in this book. Typical cases are chooser options and compound
options.

2.6.1 Parabolic systems

Let us consider the two-dimensional problem

oU U 02U oU oU

—=A—+B—+C—+D—+EU 2.34

ot 0x2 dy2 0x dy (2.34)
where U is a vector of unknowns and A, B, C, D and E are matrices. We say that the system
(2.34) is parabolic if for each vector w € R?

w = '(wy, wy) the eigenvalues K ;(w), j=1,...,n0f —wj A—w3B (2.35)

satisfy Re K j(w) < Slw)?>, j=1,...,nforsomed > 0independent of w (Thomas, 1998).

2.6.2 First-order hyperbolic systems

This is an important and common class of partial differential equations. In particular, the
Friedrichs systems constitute an important sub-category (Friedrichs, 1958). Let us take an
example (Duffy, 1977). Let I = (0, 1), the open unit interval, and let 7" be a number such that
0 < T < 00. Define the domain Q =1 x (0, T). Let U be a vector of length n and define
partitions of U as follows

U'="uy,...,u), l<n
I w ) (2.36)
U" = t(ul-&-l’ ey un)
We now consider the initial boundary value problem.
Find U : Q — R” such that
U U
— +A—=Fi 2.37
o TAG =g 37
that is augmented with boundary conditions
Ul0,t) =aU™0,1)+ go(t), te(0,T)
(2.38)

U(1,1) = BU(1,t) + gi(t), t€(0,T)

where g € R/, g1 € R" and « and B are matrices of size ! x (n — ) and (n — ) x [, respec-
tively (existence and uniqueness proofs are given in Friedrichs, 1958), and initial condition

ulx,0) =up(x), xel (2.39)

Many problems of interest can be cast into the form (2.36) to (2.39).
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2.7 EQUATIONS CONTAINING INTEGRALS

Equations that involve integrals occur in many kinds of applications:

Applications that model the past behaviour of a process

The effect of temperature feedback in a nuclear reactor model (Pao, 1992)
Problems in epidemics and combustion (Pao, 1992)

Instrument pricing applications (Tavella et al., 2000).

In general, we solve a problem by finding the solution of an integral equation. To begin with,
we consider a function of one variable only. The two main categories are

® Fredholm integral equations
® Volterra integral equations.

Let f(¢) be the unknown function and suppose that g(¢) and K (s, ¢) are known functions.
Then Fredholm equations of the first kind are:

b
o) = / K(t, 5)f(s)ds (2.40)

and Fredholm equations of the second kind are:

b
f = k/ K(t,s)f(s)ds + g(t) (2.41)

In both cases we are interested in finding the solution f(¢) in the interval (a, b). This interval
may be bounded, infinite or semi-infinite. Volterra integral equations are slightly different. The
interval of integration is variable. Volterra integral equations of the first kind are:

o) = / K(t, $)f(s)ds (2.42)

while Volterra integral equations of the second kind are:

f@t) = x[ K(t,s)f(s)ds + g(t) (2.43)

The main difference between Volterra and Fredholm equations is in the limits of integration
in the integral terms.

We can combine PDEs and integral equations to form an integro-parabolic equation (also
known as partial integro-differential equations, PIDEs). An example is the Fredholm type
PIDE defined by

u

m — Lu = f(x,t,u)—l—fg(x,t,é,u(x,t),u(é,t))dé (2.44)
Q

where the operator L is the same as in equation (2.17). An example of a Volterra type PIDE
that models the effect of temperature feedback is

ou !
— — DAu =au — hu[ u(s, x)ds (2.45)
at 0

In this equation the constants a and b associated with the various physical parameters are
both positive or both negative, depending on whether the temperature feedback is negative or
positive.
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A more general PIDE of Volterra type is

ou

i Lu= f(x,t,u)+ / g(x,t,s,u(x,t),u(x,s))ds (2.46)
0

For an introductory discussion of numerical methods for solving integral equations, see
Press et al. (2002), and for a more detailed discussion, see Kress (1989). We shall examine
integral equations when we model option problems containing jumps.

2.8 SUMMARY AND CONCLUSIONS

We have given an overview of some categories of partial differential equations as well as
their specialisations. We distinguished between parabolic, elliptic and hyperbolic equations.
Our main interest in this book is in parabolic equations because of their relationship with the
Black—Scholes model.

We have given a short introduction to systems of first-order hyperbolic equations and par-
tial integro differential equations (PIDE). We shall encounter applications of these special
equations to financial engineering in later chapters.



3
Second-Order Parabolic

Differential Equations

3.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce second-order parabolic partial differential equations in some
detail as well as their relevance to the Black—Scholes model. In particular, we study essential
properties of the solutions of initial boundary value problems:

e How positive initial and boundary values lead to positive values of the solution

e How the solution of a parabolic initial boundary value problem is bounded by its input data

e Constructing the solution of a parabolic initial boundary value problem by using the Green’s
function.

The results in this chapter are interesting in their own right because they are applicable to
a whole range of PDEs that occur in many kinds of application (see Morton, 1996, for a
discussion), and not just the Black—Scholes model.

In later chapters we shall develop similar results to those in this chapter for the discrete
approximations of parabolic PDEs and the associated initial boundary value problems. We
give the main results that we need later without becoming too involved in mathematical detail.
For a rigorous discussion, see I1’in et al. (1962) and Pao (1992).

For readers who are new to this theory, we recommend the works of Kreider et al. (1966),
Petrovsky (1991) and Carrier and Pearson (1976) as good introductory text books.

3.2 LINEAR PARABOLIC EQUATIONS

Many of the topics in this chapter are based on some of the fundamental results that were
developed in II’in et al. (1962).
Let us define the elliptic differential operator Lg by

u 3%u - ou
Lru = a;i(x,t + bi(x,t)— +c(x, t)u 3.1
E /X:j] P e ;,( 3, e 3.1
where
The functions a;;, b; and ¢ are real and take finite values (3.2a)
aij=aj; and Y aj(x, Doy >0 if Y ot >0 (3.2b)
ij=1 j=1
x = '(x1,...,x,)is an n-dimensional point in real space (3.2¢)

Let ¢ represent a time variable. We examine the second-order linear parabolic equation

0
LuE—a—I;+LEM=f(XJ) (3.3)
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at the point (x, #) where u is continuous and has continuous derivatives

du du  9%u

PSR .7.21,..., 3.4
ox, ot amex;, ") G4

Furthermore, f = f(x, t) is some given function.

In general there will be many solutions of (3.3) and in order to define a unique solution we
must define some auxiliary conditions. We shall now discuss some specific scenarios.

We denote by R” the n-dimensional Euclidean space of points with coordinates

(‘xl AR 'Xn)
Furthermore, the notation (x, ¢) will denote an arbitrary point in the (n + 1)-dimensional space
R™! = R" x (=00, 00)

We distinguish between space and time coordinates because we shall use different discretisa-
tions for them.

3.3 THE CONTINUOUS PROBLEM

We introduce the basic set of equations that model the behaviour of a class of derivative
products. In particular, we model derivatives that are described by so-called initial boundary
value problems of parabolic type (see I'in et al., 1962). To this end, consider the general
parabolic equation (3.1) again.

The variable x is a point in n-dimensional space and ¢ is considered to be a positive time
variable. Equation (3.1) is the general equation that describes the behaviour of many derivative
types. For example, in the one-dimensional case (n = 1) itreduces to the famous Black—Scholes
equation (see Black and Scholes, 1973)

aV o252 9%V aV

pye S 352 + (@ — D)S 5s rv=0 (3.5)
where V' is the derivative type, S is the underlying asset (or stock), o is the constant volatility,
r is the interest rate and D is a dividend. Equation (3.5) can be generalised to the multivariate
case

- - 9%V
] p—
o Z(r D)S; v a5, 5iEjzlpi-’aia-fSiS-fas,-as,- V=0 (3.6)

(see Bhansali, 1998). This equation models a multi-asset environment. In this case o; is the
volatility of the ith asset and p;; is the correlation between assets i and j. We see that the local
change in time (namely the factor dV/d¢*) is written as the sum of three terms:

® Interest earned on cash position: < Z S s, )
® Gain from dividend yield: Z D;S; W
j=1 J

9%V
® Hedging costs or slippage: —— Z Pij0i0; BS 3s,



Second-Order Parabolic Differential Equations 27

Returning to equation (3.1) we note that it has an infinite number of solutions in general.
In order to reduce this number to 1, we need to define some extra constraints. To this end, we
define so-called initial condition and boundary conditions for (3.1). We achieve this by defining
the space in which this equation is assumed to be valid. Since the equation has a second-order
derivative in x and a first-order derivative in ¢, we should expect that a unique solution can be
found by defining two boundary conditions and one initial condition.

In general, we note that there are three types of boundary condition associated with equa-
tion (3.1) (see II’in et al., 1962). These are:

e First boundary value problem (Dirichlet problem)
e Second boundary value problem (Neumann/Robins problems)
e Cauchy problem

The first boundary value problem is concerned with the solution of (3.1) in a domain D =
Q x (0, T) where Q is a bounded subset of R” and T is a positive number. In this case we
seek to find a solution of (3.1) satisfying the conditions

ul,—o = ¢(x) (initial condition) a7
ulp = ¥(x,t) (boundary condition) '

where I" is the boundary of €2 and v is a given function. The boundary conditions in (3.7)
are called Dirichlet boundary conditions. These conditions arise when we model single and
double barrier options in the one-factor case, for example. They also occur when we model
European options.

The second boundary value problem is similar to (3.7) except that instead of giving the
value of u on the boundary I', the directional derivatives are included, as seen in the following
specification:

[8_u +a(x,t)ui| =vyx,t) xel 3.8)
an r
Inthis case a(x, t) and v (x, t) are known functions of x and ¢, and du /dn denotes the derivative
of u with respect to the outward normal 7 at I". A special case of (3.8) arises when a(x, t) = 0;
there are the so-called Neumann boundary conditions. That occur when modelling certain
kinds of put options.

Finally, the solution of the Cauchy problem for (3.1) in the strip R” x (0, T) is given by the
initial condition

uli=o = ¢(x) (3.9

where, first, ¢(x) is a given continuous function, and, second, u(x, ¢) is a function that satisfies
(3.1) in R” x (0, T'). A special case of the Cauchy problem can be seen in the modelling of
one-factor European and American options (see Wilmott, 1993) where x plays the role of
the underlying asset S. Boundary conditions are given by values at S = 0 and S = oo. For
European options these conditions are:

C@,1)=0

(3.10)
CS,t) >SS a S—> o



28 Finite Difference Methods in Financial Engineering

Here C (the role played by u in equation (3.1)) is the variable representing the price of the call
option. For European put options, on the other hand, the boundary conditions are:

PO,1)=Ke T~

(3.11)
P(S,t) >0 as S — o0

Here P (the role played by u in equation (3.1)) is the variable representing the price of the put
option, K is the strike price, r is the risk-free interest rate, T is the time to expiry and ¢ is the
current time.

In practice, it is common to solve European options problems numerically by assuming a
finite domain — that is, one in which the right-hand boundary conditions in (3.10) or (3.11) are
defined at large but finite values of S.

3.4 THE MAXIMUM PRINCIPLE FOR PARABOLIC EQUATIONS

The results in this section are very important because they tell us things about the solutions of
parabolic PDEs. In particular, the results have a physical and financial interpretation. In general
terms, we say that positive input to a problem gives us a positive solution. For example, the
value of an option is always non-negative.

Theorem 3.1. Assume that the function u(x, t) is continuous in D and assume that the coef-
ficients in (3.1) are continuous. Suppose that Lu < 0in D\I", where b(x,t) < M (M is some
constant) and suppose furthermore that u(x,t) > 0 on I'. Then

u(x,t) > 0 inD,
where D = (0, 1) x (0, T).

This theorem states that positive initial and boundary conditions lead to a positive solution
in the interior of the domain D. This has far-reaching consequences. For example, we can use
this theorem to prove that the solution of the Black—Scholes PDE is positive. Furthermore, the
finite difference schemes that approximate the Black—Scholes equation should have similar
properties.

Theorem 3.2. Suppose that u(x, t) is continuous and satisfies (3.1) in D\T", where f(x,t) is
a bounded function (| f| < N)and b(x,t) < 0. If lu(x, t)|r < m, then

lu(x,t)] < Nt +m in D (3.12)

We can sharpen the results of Theorem 3.2 in the case where b(x, t) < by < 0. In this case
estimate (3.12) is replaced by

lu(x, 1) < max (ﬂm> (3.13)
bo

Proof. Define the so-called ‘barrier’ function wE(x, 1) = Ny £ u(x,t), where N; =
max(—N /by, m). Then w* > 0and Lwt <0. By Theorem 3.1 we deduce that wE > 0in
D. The desired result follows.

The inequality (3.13) states that the growth of u is bounded by its initial and boundary
values. It is interesting to note that in the special cases » = 0 and f = 0 we can deduce the
following maximum and minimum principles for the heat equation and its variants.



Second-Order Parabolic Differential Equations 29

Corollary 3.1. Assume that the conditions of Theorem 3.2 are satisfied and that b = 0 and
f = 0. Then the function u(x, t) takes its least and greatest values on T, that is

my =minu(x,t) <u(x,t) <max u(x,t)=m,

The results from Theorems 3.1 and 3.2 and Corollary 3.1 are very appealing: you cannot
get negative values of the solution u from positive input. It would be nice if the corresponding
finite difference scheme for this problem gave similar estimates. Generalisation of these results
can be found in Pao (1992).

3.5 A SPECIAL CASE: ONE-FACTOR GENERALISED
BLACK-SCHOLES MODELS

We now focus on a specific problem, namely the one-factor generalised Black—Scholes equation
with initial condition and Dirichlet boundary conditions. We formulate the problem in a general
setting; the specification can be used in various kinds of pricing applications by a specialisation
process.

Define 2 = (A, B), where A and B are two real finite numbers. Further,let D = Q x (0, T).
The formal statement of the problem is: Find a function u : D — R! such that

ou 3%u ou .
Lu=——+ox,t)— + pux,t)— +bx,H)u = f(x,t) in D (3.14)
ot 0x2 ox
u(x,0)=¢px), xef (3.15)
u(A, r) = go(t), u(B,t)=gi(t), te€,7T) (3.16)

The initial boundary value problem (3.14)—(3.16) is very general and it subsumes many
specific cases (in particular it is a generalisation of the original Black—Scholes equation).

In general, the coefficients o (x, t) and u(x, t) represent volatility (diffusivity) and drift
(convection), respectively. Equation (3.14) is called the convection—diffusion and has been the
subject of much study. It serves as a model for many kinds of physical phenomena. Much
research has been carried out in this area, both on the continuous problem and its discrete
formulations (for example, using finite difference and finite element methods). In particular,
research has shown that standard centred-difference schemes fail to approximate (3.14)—(3.16)
properly in certain cases (see Duffy, 1980). The problems are well known in the scientific and
engineering worlds.

We now investigate some special limiting cases in the system (3.14)—(3.16). One particular
case is when the function o (x, ¢) tends to zero. The Black—Scholes equation assumes that
volatility is constant, but this is not always true in practice. For example, the volatility may be
time-dependent (see Wilmott et al., 1993). In general, the volatility may be a function of both
time and the underlying variable. If the volatility is a function of time only, then an explicit
solution can be found but an explicit solution cannot be found in more complicated cases.
For example we note that the so-called exponentially declining volatility functions (see Van
Deventer and Imai, 1997) — as given by the formula

o(t) = oge *T=D (3.17)

where 0 and « are given constants — can be used in this model.
Having described situations in which the coefficient o is small or tends to zero, we now dis-
cuss the mathematical implications. This is very important in general because finite difference
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schemes must be robust enough to approximate the exact solution in these extreme cases as
well as in ‘normal’ regimes. Setting o to zero in (3.14) leads to a formally first-order hyperbolic
equation

—8—M+M(x,t)a—u+b(x,t)u = f(x,t) (3.18)

at ax

Since the second derivative in x is not present in (3.18) we conclude that only one boundary
condition and one initial condition are needed in order to specify a unique solution (see
Friedrichs, 1958; Duffy, 1977). But the question is: Which boundary condition in (3.16) should
we choose? In order to answer this question we must define the so-called characteristic lines
associated with equation (3.18) (see Godounov, 1973; Godounov et al., 1979). These are
defined as lines that satisfy the ordinary differential equation

dx —_
de
The lines have positive or negative slope depending on whether © has negative or positive

values. In general, it can be shown (see Friedrichs, 1958, for a definitive report) how to
discover the ‘correct’ boundary condition for (3.18), namely:

L1u =

— 1 (3.19)

u(A,t) =go(t) ifu<0
u(B,t)y=g1(t) ifu=>0

(3.20)

We see that one of the boundary conditions in (3.16) is superfluous.

3.6 FUNDAMENTAL SOLUTION AND THE GREEN’S FUNCTION

When studying linear parabolic partial differential equations such as (3.3), the so-called funda-
mental solution plays an important role. In general the fundamental solution has a singularity
of a certain type — for example, a Dirac delta function §(x). This function is defined on the real
line (—o0, 00) and is zero there, except at x = 0. Furthermore, ffooo S(x)=1.

We now construct the fundamental solution for parabolic equations. In general, a function

I'x,t;&, 1)

is called a fundamental solution of the parabolic operator

a
LE—5+LE inR" x [0, T]

if for any fixed
(¢,7) e R" x[0,T]
it satisfies the equation
LFE—%+LEF=8(X—E)8(I—T)

where § is the Dirac §-function. For the operator L, the function I' is a positive function in
R" x (0, T] except at the singular point (&, 7).
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We now discuss the Green’s function and its relationship with the fundamental solution, the
parabolic operator L defined by equation (3.3) and the boundary operator

ou
Bu=a— + Bu (3.21)
an
Then the Green’s function is expressed as

Gx, 6, 1)=Tx, &)+ W, t;&,t) with (x,1) # (&, 1) (3.22)

It can be shown (Il’in et al., 1962; Pao, 1992) that W is smooth. The function W is the
solution of the PDE

LW =0, (x,0)eQ x(t,T]
BW = —BTI', (x,1)€dQ x(1r,T] (3.23)
Wk, t;6€,7) =0, t<rt, x €

where 0€2 is the boundary of 2. We shall need the above results in the next section.

3.7 INTEGRAL REPRESENTATION OF THE SOLUTION
OF PARABOLIC PDEs

This discussion until now has implicitly assumed that a parabolic PDE has a solution. We
must now prove that a parabolic initial boundary value problem has a solution having certain
smoothness properties and, if possible, we would like to describe the solution analytically. To
this end, we focus on the initial boundary value problem

—E;—b; +Lgu = f(x,t) in D=Qx(0,T) (3.24a)

alx, t)g—u + B(x,Hu = h(x,t) ondQ x (0,T) (3.24b)
n

u(x,0) =ug(x), xeQ (3.24¢)

This problem subsumes Dirichlet, Neumann and Robin boundary conditions as special cases
and hence a number of cases in quantitative finance.

We define the following functions based on the fundamental solution, the Green’s function
and a new function that we define shortly.

Let I and G be defined as before.

Define the functions:

JO%, 1) = / [r, 1 £, Oug(E) dé (3.250)
Q

IO, 1) = / Glx. 13, Ouo(&) d (3.25b)
Q

JOx, 1) = / O(x, t; &, Ouo(&) d& (3.25¢)
Q
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where the function Q is defined by

Ox,t;6,1)= or x, &8, 1)+ B, Ol (x, 1€, 1) (3.26)

an

where 1, = normal direction to I at the point x.
Finally, we define the function H (x, t) as:

H(x,z)=J<2>(x,z)+h(x,r)+/ dr/ Q(x, 16, 1) f (&, 7)dE (3.27)
0 Q

We are now ready to give integral expressions for the solution u of system (3.24). We
distinguish two cases as far as boundary conditions are concerned:

® ¢ = ( (Dirichlet boundary conditions)
® ¢ is non-zero (Robin/Neumann boundary conditions).

We give the main results in both these cases (for the mathematical niceties, see Pao, 1992,
chapter 2)

Theorem 3.3. (First boundary value problem.) Let u be the solution of system (3.24) with
o = 0 and assume the compatibility conditions

B(x, Oup(x) = h(x,0) onad2
Then

ulx,t) = JVx, 1) +/ dt/ G(x,t;&, 1) f(E, 1) dE
0 Q

—i—/ dl’/ a—r(x,t;é,t)t/f(é,t)dé (3.28)
0 90 M

where r is the so-called density function defined as the solution of the integral equation

Y(x,t) = Z/Id‘[/ E()C,I;E,‘[)w(f, t)dé — 2h(x,t)/B(x, 1) (3.29)
0 90 0n¢

Theorem 3.4. (Robin/Neumann boundary condition.) The solution of system (3.24) witha = 1
has the integral representation

u(x,t)=J<°>(x,z)+/ drfr(x,t;g,z)f(g:, 7)d&
0 Q

+/ dr/ C'x, ;& v(E, v)dé (3.30)
0 aQ

where  is again a density function (see Pao, 1992, for details).
Remark. The solutions in Theorems 3.3 and 3.4 must have continuous partial derivatives

u  du 3%u
at’ ij ’ ax,’a)(j ’

i,j=1,....n

and must satisfy (3.24a) for every (x,t) in D. Furthermore, the boundary and initial con-
ditions in system (3.24) are also satisfied in the pointwise sense. Then the solution has
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continuous first derivatives in the time variable ¢ and continuous second derivatives in the space
variable x.

‘We now consider the problem (3.24) in an infinite domain. This is called the Cauchy problem:

au
—— 4+ Lgu = f(x,t) in R" x(O,T
” g = f(x,1) 0,T) (331

u(x,0) =up(x), xeR”

where we assume the following growth conditions on the initial condition and the right-hand
forcing function:

£, )] < AP and  [up(x)] < Ce”™ asx — oo (3.32)
where |x|? = Z'}zle-.

Theorem 3.5. (Cauchy problem.) Letu = u(x, t) be the solution of (3.31) given the conditions
(3.32). Then the dependent variable u can be expressed in integral equation form:

u(x,t):J(O)(x,t)+/dt/ C(x, 136, 1) f(E, 7)dE (3.33)
0 R~
where

J<°>(x,z)=/ C(x, ;& O)ug() d& (3.34)

Furthermore, the solution is bounded as follows:

lu(x, 1) < Ce?™* as x — oo (3.35)

3.8 PARABOLIC EQUATIONS IN ONE SPACE DIMENSION

In this section we look at a second-order parabolic partial differential equation in one space
dimension. In other words, this is a specialisation of the equations in previous sections for the
case n = 1. To this end, we examine the equation

du 3%u du
—— o, t)— +ux,t)— +b(x,Hu = f(x,1) (3.36)
ot 0x2 ox

in the domain D defined by
D={x,t):0<t<T, s1(t) <x <s1)} (3.37)
subject to the conditions

5100=0, 50)=1

(3.38)
si(f) <s200), 0=<t<T
Furthermore, we augment (3.36) with boundary conditions
u(sy(t),t) = ¥i(¢
(s1(2), 1) = Y (1) - (3.39)

u(s2(1), 1) = (1)
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t

s1(t) S2(f)

. (t) /

Figure 3.1 Region of integration D
and initial conditions
u(x,0) = @(x), s1(t) <x < s(t) (3.40)
(see Figure 3.1). Here, 11, ¥, and ¢ are given functions.
Finally, we assume the so-called compatibility conditions
¥1(0) = ¢(0)
341
Y2(0) = ¢(1)

The domain D is somewhat irregular because it is a function of time. We can map D onto the
unit square by a change of variables
x —s51(0)

z= m, s1(1) # $2(1) (3.42)

In this case the point (x, ) is mapped to the point (z, ¢) (see Bobisud, 1967).

The above problem is a model for many one-factor Black—Scholes equations (Wilmott, 1998;
Tavella et al., 2000). For example, standard European options can be formulated as a system
(3.36), (3.39), (3.40) having constant boundaries while barrier options also fit into this model
because in practice the boundaries (see Figure 3.1 again) are time-dependent. For example,
a down-and-out/up-and-out call barrier option is described by the following model (Tavella
et al., 2000, p. 183):

aV

—+ lazszaz—v + @ — DO)Sﬂ —rV =0
ar 2 952 EN

VIS < L(1), t] =0 (3.43)
VIS=U@®), t]=0
V(S,T) =max(S — K, 0)
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In general, the barrier functions L(¢) and U(¢) can be analytic functions but they could
also be the solution of ordinary differential equations or even the solution of other PDEs (for
example, U (¢) could be a forward swap rate). We shall have more to say about this problem in
later chapters.

3.9 SUMMARY AND CONCLUSIONS

We have given an introduction to second-order parabolic partial differential equations. We
focused on expressing the solution of a parabolic initial boundary value problem in terms of
its input data and we discussed several positivity and maximum principle theorems. We have
also paid some attention to proving the existence of the solution to parabolic initial boundary
value problems.






4
An Introduction to the Heat Equation

1in One Dimension

4.1 INTRODUCTION AND OBJECTIVES

In this chapter we examine one of the most important differential equations in mathematical
physics. This is the heat equation and it models many diffusion phenomena in real and artificial
worlds. It is a special case of the second-order parabolic differential equations that we discussed
in Chapter 3. In general terms diffusion describes the movement of one species, entity or
material through some medium due to the presence of some concentration gradient. There are
numerous examples of diffusion processes:

Flow of heat in a one-dimensional bar (Tolstov, 1962)

Animal and plant diffusion to new regions (Lotka, 1956)

Movement of doping atoms into crystals (Fraser, 1986)

VLSI device simulation (SIAM, 1983)

Flow of water in a porous media (Bear, 1979)

Diffusion models of neuron activity using Wiener and Ornstein—Uhlenbeck models (Arbib,
1998)

Numerical reservoir engineering (Peaceman, 1977)

Diffusion that can be attributed to Markov processes (Karatzas and Shreve, 1991).

Many of the diffusion processes originate in the physical sciences and we shall attempt to
apply some of the results in this book. In particular, we need to show the role of the heat
equation in the context of the Black—Scholes equation. In fact, the original Black-Scholes
equation with constant volatility and risk-free interest rate can be reduced to the heat equation
by a suitable change of variables (Wilmott, 1998).

Other reasons for studying the heat equation are:

e [tisanessential component in more general convection—diffusion equations. These equations
are models for the one-factor Black—Scholes equation and its generalisation to multiple
dimensions.

e A number of the techniques in this chapter (for example, Fourier and Laplace transforms)
are widely used in financial engineering and we discuss how they are applied in a simple
but illustrative context.

e We produce an exact solution to initial boundary value problems for the heat equation. We
can then compare this solution with discrete solutions from the Finite Difference Method.

In general, understanding the heat equation and its corresponding initial boundary value prob-
lems will help in our understanding of more general problems. A number of books on financial
engineering discuss the heat equation while this chapter complements such treatments by
examining it from a partial differential equation viewpoint. Eventually we shall show how to
approximate the heat equation using several finite difference schemes.
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4.2 MOTIVATION AND BACKGROUND

The one-dimensional heat equation describes the temperature distribution u#(x, ) at some point
x in space and at some moment in time ¢. To be more specific, we shall be interested in the
following regions:

® A bounded interval (both ends are finite) (a, b), —o0 <a,b < o0
® A semi-infinite interval (this is usually the positive semi-infinite interval), (0, co)
® An infinite interval (—o0, 00).

We introduce some key properties. In this chapter the interval represents a rod of some
kind of material (for example, copper or steel). First, let K be the thermal conductivity of the
rod material, ¢ its heat capacity and p its density. It can be shown (Tolstov, 1962) that the
temperature u(x, t) satisfies the differential equation:

a—”—azaz—” (@®> =K /cp) 4.1)
or ¢ o R '

In general, the coefficient a is a function of x and 7 and can even be nonlinear, for example,
a = a(x, t, u). Furthermore, it may be discontinuous or even degenerate (that is, it is zero at
certain points). These cases occur in real applications but for the purposes of this chapter we
shall assume that g is a constant.

If sources are present in the rod, then (4.1) is replaced by the non-homogeneous equation:

2
g—i’ = aZ% +q(x, 1) (4.2)
where the source term ¢ is a function of x and 7. As before, ¢ may be nonlinear and even
discontinuous at certain points.

For the moment we assume that the rod has finite length; it extends from x = 0to x = L.
Examining equation (4.1) we suspect that we need three auxiliary conditions in order to produce
a unique solution. This intuition is well founded and to this end we define the following
constraints:

® [nitial condition: Equation (4.1) is first order in time, so we need one condition:
ux,0)=fx), 0<x=<L (4.3)

® Boundary conditions: Equation (4.1) is second order with respect to the space variable x and
thus we need two conditions. There are various possibilities:

(a) Dirichlet conditions: The temperature is given at the end-point(s), for example,
u©,t)=g(), t>0 4.4)

where g(¢) is a given function
(b) Neumann conditions: The derivative of u is given at the end-point(s), for example,

ou
—0,t)=g(@), t>0 4.5)
0x

A special case is when g(¢) = 0; in this case the rod is insulated, which means that the
heat flux is zero on the boundary
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(c) Robin condition: This is a combination of Dirichlet and Neumann boundary conditions

Kg—u(o, t)y=H[u,t)—F(@®)], t>0
xa (4.6)
—Ka—Z(L,t)zH[u(L,t)—F(t)], t>0

Physically, the end-points are in contact with another medium and in this case we have
applied Newton’s law of cooling, which states that the heat flux at an end-point is proportional
to the difference between the temperature of the rod and the (known) temperature F(¢) of the
external medium. The parameter H > 0 is called heat transfer coefficient.

In general, we speak of an initial boundary value problem (IBVP) consisting of the partial
differential equation (4.1) and its associated initial condition (4.3) and boundary conditions (of
Dirichlet, Neumann or Robin type). In general, mathematicians are interested in determining
necessary and sufficient conditions under which an IBVP will have a unique solution. Further-
more, they may also be interested in finding conditions under which the solution is sufficiently
smooth.

We conclude this section defining the boundary conditions for semi-infinite and infinite
intervals. For the semi-infinite case we formulate the problem as follows:

du ,0%u
— —=adr—,
ot 9x2

u(x,0)= f(x), 0<x <o

O<x<oo, t>0
“@.7)
u(x, t)is bounded as x — oo

whereas for a rod of infinite length we can formulate the problem (the so-called Cauchy
problem) as follows:

du ,0%u

— =a"—, —o0<x<oo, >0

ot 0x2

ulx,0) = f(x), —oco<x<oo (4.8)

0
u(x, 1), 8—u(x,t) —Qasx —> +oo, >0
X

In practical applications (for example, using finite differences) we must approximate infinity
by some large number. Another tactic is to transform the original problem to one on a bounded
interval by a change of variables, for example. We are then left with the problem of determining
what the boundary condition should be at this new boundary point. We discuss this issue in
detail in later chapters.

4.3 THE HEAT EQUATION AND FINANCIAL ENGINEERING

The heat equation is fundamental to financial engineering for a number of reasons. First,
it is a component in the Black—Scholes equation and an understanding of it helps in our
appreciation of Black—Scholes. Second, the Black—Scholes equation can be transformed to
the heat equation by a change of variables, thus allowing us to produce closed form solutions.
Finally, the boundary conditions for the heat equation can also be applied to the Black—Scholes
equation, and it is possible to transform the Black—Scholes equation to the heat equation by a
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change of variables (Wilmott, 1998). To this end, consider the Black—Scholes equation

W iee sy o (4.9)
or 277 g2 s T T '

and let us define the new variable V' by
V(S, 1) = e PTu(x, 1) (4.10)

where o = —3(2r/0% — 1)
B =—1Qr/o?+ 1)
S=e", =T -2t/0?

We can then show that the function u satisfies the basic heat equation

ou  d%u 411
at  9x2 @D
Specifying boundary conditions for the Black—Scholes equation is somewhat of a black art.
Itis possible to define Dirichlet, Neumann and Robin conditions but there are other alternatives.
Let us consider the semi-infinite case. This corresponds to the problem in which we model
the underlying asset price as lying between zero and infinity. For a European call option C (S, t)
the boundary conditions are:

C0,t)=0

4.12)
CS,t)=8 asS —> o

The motivation in this case is that if the value of the asset is zero then the call option is
worthless, and for very large S the value of the option will be the asset price. For a European
put option P(S, ¢) the boundary condition is

P(0,1) = Ke" T

(4.13)
P(S,1)=0 asS — o0

Here K is the option strike price, T is the expiry date and r is the risk-free interest rate. The
first condition states that the value of the put option at S = 0 is the present value of the amount
K received at time T. More generally, in the case of time-dependent (deterministic) interest
rates we have

T
P(0,t) = K exp (—/ r(s) ds) 4.14)

The second condition in equation (4.13) states that we are unlikely to exercise, thus the
value is zero when § is large.

4.4 THE SEPARATION OF VARIABLES TECHNIQUE

In this and the following sections we give an introduction to a technique that allows us to find
the solution (in closed form) to certain kinds of partial differential equations. This is called
the method of separation of variables (Kreider et al., 1966; Tolstov, 1962; Constanda, 2002).
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To this end, we motivate the method by applying it to the heat equation with zero Dirichlet
boundary conditions. We examine the following initial boundary value problem for the heat
equation:

0 92

—uzaz—u, O<x<L, t>0
ot ax2

ux,0)=fx), 0<x=<L

uO,t)=u(L,t) =0, t>0

(4.15)

We seek a solution of this problem in the form
ux,t) = X@)T )
Substituting this representation into the partial differential equation gives

o _TO __p (4.16)
X(x)  &T@) '

The left-hand side of (4.16) is a function of x only and the right-hand side is a function of ¢
only. We then deduce that this is possible only when each side is equal to a so-called separation
constant. Rearranging terms in (4.16) gives us the following ordinary differential equations:

X'(x)+A2X(x)=0, 0<x<L

4.17
T'(t) + 22T () =0, >0 @17

Investigating the boundary conditions in (4.15) in relation to the representation u = XT
allows us to conclude that

X0)=X(L)=0
In general, the function X is the solution of a Sturm—Liouville problem whose eigenvalues
and eigenvectors are given by

nm . nmX

Ap = —, Xn(x):smT, n=12,... (4.18)
respectively (Constanda, 2002). Furthermore, from (4.17) we see that the solution of the time
component is given by

2,22

T,(t) = Ape~@Mt = A,e 2 ', A, constant (4.19)
The complete solution is then given by
[o¢]
(e, ) =Y un(x, 1) (4.20a)

n=1
where
2,22

u,(x,t) = A, sin % exp (_a ZZJT t> (4.20b)
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It only remains now to determine the constant A, in (4.20b). We achieve this end by using
the initial condition in (4.15) and the orthogonal property of the trigonometric sin function.
Thus

2 (L i
A,,:Z/O f(x)smzmdx, n=1,2,... 421

Summarising, we have produced a solution of the initial boundary value problem by the
method of separation of variables. For more information, we refer the reader to Tolstov (1962).
We can calculate (4.20a) and (4.21) numerically for each value of x and ¢# by summing the
series. We can use the value as a benchmark against the solution from a finite difference scheme.

4.4.1 Heat flow in a rod with ends held at constant temperature

Consider the problem (Tolstov, 1962)

ou 2 0%u
— =a"—, O<x<UL, t>0
ot ax?
u(r,0) = f), 0<x=<L *22)
u(0,t)=A, u(L,t) =B, (A, Bconstant), >0
The solution to this problem is given by
> nwx
)= ) T,()sin — 4.2
u(x, 1) ; (1) sin — (4.23)
where
2,22 A—(—=1"B
() = Ayexp( — "7 ) 42| AZCEV'B
L? n
and
2 [t i A—(-1)"B
A = _/ f(x)smmrxdx_2 (-1
L Jy L n
4.4.2 Heat flow in a rod whose ends are at a specified variable temperature
Consider the problem where the boundary conditions are time-dependent:
0 92
—uzaz—u, O<x<L, t>0
ot dx2
(4.24)

ux,00= f(x), 0<x<L
u(0, 1) = ¢(t), u(L,t)=v(@{), t>0

The solution to this problem is given by

a*n?n? 2a*mn a*n*n?
T, = Apexp | — 2 t)+ 2 exp| — Iz t

L a’m’n’s
X /0 exp <T> [o(s) — (—D)"¥(s)] ds 4.25)
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where

2 [t sin wnx
== [ foo——a
0

4.4.3 Heat flow in an infinite rod

We now consider the important case of a rod that extends to infinity in both directions:

ou 28214 ~ o 150

— =a"—, —00 <X <00, >

ot 9x2 (4.26)
ulx,0) = f(x), —oco<x<o0

In this case there are no boundary conditions but we do place some restrictions on the
solution, for example, that u# and its derivative with respect to the variable x should tend to
zero at plus and minus infinity. Again we can apply the separation of variables technique but in
contrast to a finite rod (where the eigenvalues are discrete), the eigenvalues vary continuously
in this case. After a lengthy analysis (Tolstov, 1962) we produce a solution to problem (4.26):

=9, 427
zr/ f(v)eXP< — )s @27)

From this equation we can see that the temperature approaches zero for very large x (the
heat ‘spreads’ out). We can also see how the initial temperature f(x) influences the subsequent
evolution of the temperature in the rod. Incidentally, the function

_e2
exp(— M) (4.28)

4a?t

ux,t) =

1
G(x,t;£,0) =
( 5.0) 2a/mt
is called the Gauss—Weierstrass kernel or influence function and it is important in stochastic
calculus and Brownian motion applications (see Karatzas and Shreve, 1991). Furthermore, this
function has the following properties (Varadhan, 1980):

/G(x,t;0,0)dx:l Vit >0

(4.29)
hm G(x,t;0,0)f(x)dx = f(0)
t—0
4.4.4 Eigenfunction expansions
In this section we discuss the non-homogeneous heat equation:
u 232“+(t) 0 L, t>0
— =a"— X, 1), <x <L, >
or a1
(4.30)

ux,0) = f(x), 0<x=<L
u0,)=u(L,t)=0, t>0

The separation of variables technique does not work in this case because of the term ¢ (x, 7).
Instead, we consider the solution of (4.30) in the form

u(x, 1) =Y ca(t)Xn(x) 431)

n=1
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where

sin nwx nm
X, (x) = . Ap=—, n=1,2,...

In this case we wish to determine the time-dependent coefficients appearing in (4.31). To
this end, differentiating the series term by term and noting that

X!+ 12X, =0

we get
o0
> lep () + P Ahen(D1Xn(x) = g(x. 1) (4.32)
n=1

Multiplying this equation by the nth eigenfunction and integrating between 0 and L gives us

L
fq(x,t)Xn(X)
O +atre,(t)=""0——— >0, n=12... (4.33)
in(x)dx
0

It is also easy to show that the initial condition for the time-dependent terms is given by:

L
/ FO)X,(x)dx
)y =290 (4.34)

L
f X2(x)dx
0

Thus, (4.33) and (4.34) constitute an initial-value problem whose solution can be found,
either analytically or numerically.

The discussion in this subsection is very important because many approximate methods use
a finite-dimensional variant of the series representation (4.31). For example, the finite element
method (FEM), collocation, spectral and Meshless methods are based on the assumption that
the approximate solution is represented as a series solution of some kind.

4.5 TRANSFORMATION TECHNIQUES
FOR THE HEAT EQUATION

We now discuss some more techniques for finding the solution of the heat equation. This
equation is a function of two independent variables. The essence of an integral transformation
method is to reduce the original problem to some kind of ordinary differential equation, finding
the solution of this problem and then applying the inverse transform to recover the solution
of the original problem. We discuss the Laplace and Fourier transforms as applied to the
heat equations. These are popular techniques in the financial engineering literature (Carr and
Madan, 1999; Fu et al., 1998; Craddock et al., 2000).
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4.5.1 Laplace transform

Consider the following initial boundary value problem equation on a bounded interval:
du 5 8%u
— =,
ot dx?2
ux,0)= f(x), O0<x<lL
u@,t)=u(L,t)=0, t>0

O<x<L, t>0
(4.35)

The Laplace transform of a function f is given by

EUKﬂ=F®%=A Fye di

Applying this transform to the initial boundary value problem (4.35) gives us the two-point
boundary value problem:

a?U"(x,s) —sU(x,s)+ f(x) =0, 0<x<o0
UQO,s)=U(L,S)=0 (4.36)
U(x, s) bounded as x — 00

where L [u](x,s) = U(x, s).

We can now apply well-known techniques to find the solution U (x, s) of (4.36). Having
done that we can then use Laplace transform tables to find the original solution of problem
(4.23) (Hochstadt, 1964).

4.5.2 Fourier transform for the heat equation

Consider the Cauchy problem on an infinite interval:

du ,0%u

— =a"—, —o0o<x<oo, >0

ot 0x2

ulx,0) = f(x), —oco<x<o0 4.37)

0
u(x,t), —u(x, t)y—>0asx - oo, t>0
ax

The Fourier transform is defined by

1 [ :
Af@ = 5 [ fwea (438)
27 J_o
We now apply the Fourier transform the initial value problem (4.37) to an initial value
problem for an ordinary differential equation in the transform domain.

Ulw,t) + a*0*U(w,t) =0, t>0

(4.39)
U(w,0) = F(w)

where

Flullw,t)=U(w,t) and F[fllw)=F(w)
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In order to recover the original solution we apply the inverse Fourier transform defined by

FUFIx) = f(x) = / F(w)e " dw
—00
to (4.39). After some calculations we find (Constanda 2002) that the solution of (4.39) is given
by

Uw,t) = F(w)e @ (4.40)
and then
1 o (x — £)?
u(x,t) = 2a«/H/oof(é;)exp(— 12 >d§ 4.41)

which is the same as the result we obtained by using the method of separation of variables
(see equation (4.27)).

4.6 SUMMARY AND CONCLUSIONS

In this chapter we have examined the one-dimensional heat equation. This is a prototype
example of a diffusion equation and an understanding of it will be of benefit when we discuss
more general equations. The focus in this chapter is on giving an overview of a number
of analytical methods that allow us to produce an exact solution to the heat equation. The
techniques are:

Separation of variables
Eigenfunction expansions
Laplace transform
Fourier transform.

These techniques are of interest in their own right and they have many applications in numerical
analysis and financial engineering. As good references we recommend Kreider et al. (1966),
Tolstov (1962) and Constanda (2002).



5
An Introduction to the Method

of Characteristics

5.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce the Method of Characteristics (MOC). This method is used in the
analysis of fluid flow applications; it is simple to use and to code in a programming language
and it has been used in financial engineering applications, for example, Asian options and
certain kinds of real options. The reader can skip this chapter on a first reading without loss of
continuity.

This chapter discusses the following topics. In section 2 we motivate MOC by applying
it to a first-order scalar hyperbolic equation. It is useful to understand this problem because
it is an essential component when studying certain classes of two-factor models in financial
engineering. In particular, convection terms are of this type. Section 3 is an extension of MOC
to second-order hyperbolic equations and we discuss how to solve these equations numerically.
We then move to a discussion of hyperbolic equations for financial engineering applications
in section 5.4, with special applications to real options (in this case the harvesting of wood).
In section 5.5 we show how to apply MOC to systems of equations and how to transform
such equations to systems of ordinary differential equations. Finally, section 5.6 deals with
the nasty world of discontinuous initial conditions and other problems (such as reflections at
downstream computational boundaries) and why discontinuous initial conditions always lead
to discontinuous solutions along the characteristic lines.

It can be proved that the solutions of parabolic equations are smooth even if the initial
conditions or boundary conditions are not smooth. Hyperbolic equations are different because
discontinuities in the initial conditions are propagated as discontinuities into the solution
domain.

The MOC is used in combination with convection—diffusion equations and for this reason
we consider it to be important to pay some attention to it.

5.2 FIRST-ORDER HYPERBOLIC EQUATIONS

In order to motivate how MOC works we consider the first-order scalar, quasilinear hyperbolic
equation

b— +a— =c¢ 5.1
X

where any of the coefficients a, b or ¢ is a function of x, ¢ and u (this latter dependence on the
unknown solution # makes equation (5.1) quasilinear). If b is not zero we can write (5.1) in
the form

ou aou

c
- =0 5.2
8t+b8x b (5-2)



48 Finite Difference Methods in Financial Engineering

Now, from the chain rule for differentiation we see that

du Ou  dxdu
ar " Tdrax
or
%8_u+3_u_d_u:0 (5.3)
dr ox  dr dt
By subtracting (5.3) from (5.2) and using a little bit of arithmetic we get

a dx\ ou ¢ du
———)=——=|-=——1]=0 (5.4)
b dt) ox b dt

This equation holds at arbitrary points in (x, ¢) space. We now define special points where

equation (5.4) reduces to an ordinary differential equation. To this end, if we define the so-called
characteristic curves

dx a

= _Z 5.5

dt b (5-5)
then (5.4) reduces to the ordinary differential equation

du c

- _Z 5.6

dr b (56)

Equation (5.6) can now be integrated by analytical methods or numerical methods (see
Dahlquist, 1974). For example, we can use an Euler scheme or some kind of predictor—corrector
to integrate (5.6) along the characteristic curves (5.5). Finally, we can write equations (5.5)
and (5.6) in the combined forms

dx dt du
- (5.7)
a b c

A discussion of ordinary differential equations, their numerical approximation and imple-

mentation in C++ is given in Duffy (2004).

5.2.1 An example

We give an example of how to use MOC (the example is taken from Huyakorn and Pinder,
1983). The equation is

0 0
W =0 (5.8)
ot dax
with initial condition
ux,00=1, 0<x <oo 5.9)

In this case equation (5.7) takes the form

dx dr  du
& _ 4 du (5.10)
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We now consider a point on the characteristic curve with x = A and t = 0. We wish
to integrate the first equation in (5.10) from this point to another arbitrary point (x, t) as

follows
/"' dy rdt
ANy Jou

2([—ﬂ)= Ot% (5.11)

or

We now use the second equation in (5.10) to evaluate the integral on the right-hand side of
(5.11); again, this equation is:

dr du du
—=—> or dt = ——
u —u u

/I u dl/l
dt=—-| —
0 Uuoy u

Integrating this equation and using the initial condition (5.9) we get
)
t=In(-
u

—
u

Thus

from which we deduce that

Substituting this equation into equation (5.11) and integrating in (0, ¢) we get

t:ln(2ﬁ+1—2«/2)
or
e —1=2(/x —VA)
Finally, along this characteristic direction the solution of equation (5.8) is given by

1
A+ 1-2VA

This example shows how to find the exact solution of a first-order quasilinear hyperbolic
differential equation using an analytical approach. To summarise the main steps, we first found
the characteristic direction and then found the solution of the equation along this direction. We
can use this technique in a number of quantitative finance applications relating to stochastic
volatility and bond models. In general, it can be difficult to find an analytical solution and for
this reason we resort to numerical methods.

—t
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5.3 SECOND-ORDER HYPERBOLIC EQUATIONS

We now extend MOC to the study of the second-order hyperbolic equation

3%u 3%u n 9%u n 0 (5.12)
a c— +te= .
0x2 oxot ot2
where the coefficients a, b, ¢ and e are functions of x, 7, u and the first derivatives of u. Define

p and g as follows

_Z)u _Bu
P=% 17 7%

Then using the chain rule we get

dp  9%u 9%u dt

d ~ o2 T aroxdr
dg 0%u 9%u dx
a = o axardr
Solving for the ‘pure’ second derivative terms in equation (5.13) in x and ¢, and inserting
the result into equation (5.12), shows that

(5.13)

3%u dr dx dp dg
—a—+b—c— 4T 4e=0 5.14
8x8t< YT Cdt>+adx+cdt+e .14
Multiplying (5.14) by —d¢/dx gives
32u de\* dr dp  dg dr
—) —b— —(a-L+c=2 — =0 5.15
ox o1 [a<dx> dx+c:| (adx+cdt+e>dx ©.13)

We now define the so-called characteristic curves so that the term in the square brackets in
(5.15) is zero. Since this term is a quadratic equation in dz /dx we get the following expression
for dt/dx:

> A
(g) _ b+ Vb% — 4ac (5.16)
dx /.

2a

Since (5.12) is hyperbolic we know that the square root term in (5.16) is positive and hence
the characteristic curves exist in real space (that is, they are not complex-valued).

5.3.1 Numerical integration along the characteristic lines

We now describe how to solve equation (5.12) by numerical integration along the two charac-
teristic lines (5.16). For convenience, we define the roots of equation (5.16) as follows

) - (2) -

We focus on an initial boundary-value problem and to this end we examine the situation as
shown in Figure 5.1. In particular, we give boundary conditions at x = 0 and at x = L as well
as the initial conditions at + = 0. To commence, let us assume that we are given the values
of u at the points P and Q because they are on the initial line + = 0. By moving along the
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t
dt
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Initial line

Figure 5.1 Grid points for MOC

characteristic lines passing through these points, the point R can be located as shown in the
figure. In other words, we determine complete information about point R by the following
two-stage procedure:

1. Find the coordinates of R by solving equation (5.16) by an application of the explicit Euler

method. We take the positive characteristic as an example. We can then rewrite the equation
as follows:

dt = dxf

R R R
/ dt=/ dxf*fp/ dx = fp(xr — xp)
P P P

R — tp = fp(xr — Xp)

or

or

A similar equation for the negative characteristic gives
IR — fq = gQ(Xr — XQ)
Solving for the coordinates of R in these last two equations (two equations in two unknowns
xR and tR) gives:
Jexp — goxq +1q — e

XR =

fr— g
IR = Ip + fp(xr — xp)

2. We find the first-order derivatives in x and ¢ of u at the point R. To this end, we now write
the non-bracketed part of equation (5.15) along the charateristic curve in the following form
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by multiplying it by dx:
dr
a|—)dp+cdg+edr=0 (5.17)
dx
in finite difference form (using the explicit Euler scheme) along the line (d#/dx); = f and
(dt/dx)_ = g, respectively:
! ap fp (PR = Pp) + Cplqr — qp) +ep (iR — 1p) =0

aqgq(Pr — PQ) + cqlgr — qq) +eq (iR — 1) =0
Some tedious but simple arithmetic gives the following needed information by solving the
above equation:
_ apfere/¢p — aqfoPo/Co +dp — qq + (epcp — eq/CQR + eptp/Cp — eqlq/cq
apfplcp —aqfa/cq

qrR = eP(ZP - tQ)/Cp + apfp(pp - pR)/Cp + qp
3. Having found the derivatives p and ¢ at the point R we find the value u by using the formula
du = pdx +qdt

We now integrate this equation using the midpoint scheme in order to achieve second-order
accurary. The formula that we use in going from P to R is

R R R
/du:/pdx+/th
P P P

ur — up ~ 1(pp + prIR — xp) + 3(qp + qr)(IR — 1p)

or

Similarly, in going from Q to R we get
ur — uq ~ 3(pq + prIGR — XQ) + 3(qq + qr)(iR — 1Q)

Adding these last two equations we then get the final representation for the value of u at
the point R

ur = 1 [u, + 2(pr + pp)(R — xp) + 2(gr + ¢t — tp)
+uq + 3(pr + PQ)(xr — XQ) + 3(gr + qQ)(iR — 1Q)] (5.18)

In general this is a quasilinear equation and we must use some kind of iteration to solve it
at R. To this end, improved values are obtained by solving

tr —tp = 5(fp + fR)(Xk — Xp)
tr —to = 3(fr + fo)xg — x0)
Improved values for pr and gg are obtained by solving

apfp(Pr —Pp) +Cplgr — qp) +ep(tr —tp) =0
aQgo(Pr — PQ) + Colgr — qqQ) +eqtr — 1g) =0
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where

a, = 3(ap + ag), Cp = 3(cp +cr). e = 3(er +er)
aq = 3(cq + ar), o = 5(cq + cr), 2q = (eq + er)

If Q is close to P the number of iterations should be small.

4. Having found the solution at R, we can then apply steps (1) to (3) to the point S (see
Figure 5.1). This point is the intersection of the characteristic lines through Q and another
initial point W. Notice that at the vertical boundaries x = 0 and x = L either the value u or
its derivative p are given.

A special case is when the hyperbolic equation (5.12) is linear; then the terms on the right-
hand side of (5.18) are known or can be calculated.

5.4 APPLICATIONS TO FINANCIAL ENGINEERING

Although hyperbolic equations are not as common as parabolic equations in financial engi-
neering applications, there are opportunities for the application of MOC to certain classes of
PDE that model two-factor equations. In general, we can employ MOC in cases where one
of the underlying quantities has no diffusion term and is in fact modelled as a deterministic
process.

A prototypical PDE is:

oV R 1% 1%
——l—m——i—m—y—l—bV:f (5.19)

In this case V is a derivative quantity based on the two state variables x and y. The PDE is
second-order parabolic in x and first-order hyperbolic in y. The PDE in y is a wave equation
and thus is deterministic. Some examples where this kind of equation is necessary up are:

1. Asian options (Ingersoll, 1987; Wilmott et al., 1993); in this case the variable x plays the
role of the underlying asset price S and y plays the role of some average (for example,
denoted by I or A) of the underlying:

I :/ S(r)dr (5.20)
0

2. Pricing Bermudan swaptions (Cheyette, 1992, Andreason, 2001); the Cheyette model is the
specification of the volatility structure of the continuously compounded forward rates in
the HIM (Heath—Jarrow—Morton) model. We do not go into the details of how the Cheyette
PDE is set up, but the basic PDE is given by

v LV v o, v
— 4+ 50" — + (—K — —2Ky)— —rV =0 5.21
o Tam 8x2+( Xty -+ y)ay r (5.21)

Equations of the form (5.21) can be used to model zero-coupon bonds, for example. Again,

we see that this equation has the same form as equation (5.19). As noted in Andreasen

(2001), standard ADI difference schemes are prone to spurious oscillations because of the

absence of a second-order derivative in the y direction. Using centred difference schemes
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in the y direction will also cause problems because these schemes are only weakly stable
(Peaceman, 1977). Some alternatives to these schemes are:

® Use one-sided difference schemes in the y direction (upwinding)

e Use ADI or splitting methods, using centred difference schemes in the x direction and the
method of characteristics in the y direction (since this is a first-order hyperbolic equation)

® Modern schemes, such as Implicit Explicit (IMEX) splitting schemes (Hundsdorfer and
Verwer, 2003).

We shall discuss each of these methods in later chapters.

3. Real options and forest harvesting decisions (Insley and Rollins, 2002). This is a two-factor
real options model of the harvesting decisions over infinite rotations with mean reverting
stochastic prices. The authors view the opportunity to harvest a stand of trees as a real
option similar to an American option that can be exercised at any time. The exercise price
is the cost of harvesting the trees and transporting them to the point of sale. Embedded in
the tree-harvesting opportunity is the option to choose the optimal harvest time based on
wood volume and price. There is also an option to abandon the investment if wood prices
are too low.

The mean reverting price process is given by
dP = n(Pyy — P)dt + o P dz (5.22)

where P = the price of saw logs
1 = mean reversion parameter
o = the constant variance rate

dz = increment of a Wiener process.

In general, this model tells us that the price reverts to a long run average of P,,,. We assume
the wood volume Q is deterministic and depends on the time since the last harvest

dQ = ¢(Q)dr

for some function ¢.
The basic PDE model for this problem is (Dixit and Pindyck, 1994; Insley and Rollins,
2002)

WV _ 2P232v + n(P. P)av V+A+TI(V) (5.23)
—— — QY — =50 Y avg — P .
o Pag T 207 ppr T we T Hyp TP

where V' = value of the opportunity to harvest
T = time to expiry of the option (v =T — 1)
QO = current volume of timber
¢ =dQ/dr
P = price of saw logs
A = the per-period amenity value of standing forest less any management costs

P = annual discount rate.
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Furthermore, the term I1(V') is a so-called penalty term that prevents the value of the option
V from ever falling below the payout from harvesting immediately. We shall encounter more
examples of penalty terms in the chapters on options with early exercise features.

We must now specify the boundary conditions for problem (5.23). The region of integration
is a two-dimensional semi-infinite region in (P, Q) space and we specify boundary conditions
as follows:

(a)As P - 0, dP — nP
(b) As P — oo, chose 227‘2 = 0 (linearity boundary condition)
(c) As O — 0, since ¢(Q) > 0 when Q > 0, no boundary condition is needed

and in this case we have a first-order hyperbolic equation in the Q direction.

(5.24)
aVv v
it Y90 T
We see that the outgoing characteristics are in the negative Q direction.
(d) As Q — oo, we assume ¢(Q) — 0, no boundary condition is needed.
The initial/terminal condition is given by
or equivalently

We then assume that V' = 0 when T is large, and thus we make T large enough that this
assumption has a negligible effect on the current V.

5.4.1 Generalisations

The details of the numerical approximation of this problem are given in Insley and Rollins
(2000). In short, they use central difference schems in the P direction and MOC in the Q
direction.

We return to the general equation (5.19). In financial terms, we reason that its solution
depends on the state variable x (which is stochastic) and hence we see a specific convective
term and volatility term o . This reflects the stochastic differential equation for the state variable
x. However, the variable y is deterministic and has no volatility terms. Hence we expect its
derivative quantity to have a more ‘wave-like’ property, and this is seen in the hyperbolic
component in equation (5.19).

5.5 SYSTEMS OF EQUATIONS

It is possible to apply the Method of Characteristics to system of equations. To this end, let us
consider the quasilinear system of first-order equations

& Buf d 814,‘
i bij—=F, i=1,..., 5.26
;a./ ox +; J 9t l n ( )
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in the two independent variables x and ¢. The coefficients appearing in (5.26) are functions of
x, t and u but they do not depend on the derivatives of u. Let us define the matrices and the
vectors

A=(aj)| . .
L,j=1,....,n (5.27a)
B = (b;})
U= "(uy,...,u,
Wit |y (5.27b)
F="F,...,Fy)

We can then write (5.26) in vector form

oU oU
A—+B—=F 5.28
ax + ot ( )

Definition 1. The system (5.28) is said to be hyperbolic if the eigenvalue problem
det(A —AB) =0 (5.29)

has n real roots corresponding n real directions in the (x, ¢) plane (we assume that these roots
are distinct).

We now find the characteristic lines for system (5.28) by a generalisation of the process for
the scalar case. As before, the total derivative of U is given by

dU = —dt + —dx (5.30)

We then see that equations (5.28) and (5.30) constitute a system of 2n equations in the 2n
unknowns

Buj 8uj )
- -, =1,..., 5.31
o1 ox 7 " 631
Formally, the system of equations is
aU aU
xa ’ o (5.32)
Idt— +1Tdx— =dU
ax ax
where / is the unit diagonal matrix of size n.
Define the matrix D by
A B
b= <Idt Idx) (5-33)
Then the system (5.32) has a solution if
det(D) =0 (5.34)

Thus, condition (5.34) allows us to find the characteristic directions for the system (5.26).
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5.5.1 An example

Let us consider the 2 x 2 system

du ov

—+a;— =0

ot dx ay, ar > 0 constant (5.35)
Jav n ou 0

Lt 4 — =

at | Cox

By calculating the determinant, the condition (5.34) reduces to

dr\? dx
- = — =4,/ 5.36
(dt ) a|dy or dar ajap ( )
A special case of (5.35) occurs with acoustic waves in a homogeneous medium

ou 19

u  Ldp _

at  pox

ap ,0u

— 4+ — =0

ar P ax

where u is the sound and p is the pressure. The variable p is the density and c is the local speed
of sound in the medium. In this case the local ordinary differential equations and characteristic
directions are

(5.37)

W gonct {( n: & +}
— =0on = X, L — =
dr dr
(5.38)
W ponc = &=
a0 T a T

5.6 PROPAGATION OF DISCONTINUITIES

A property of hyperbolic equations is that discontinuities in initial conditions lead to discon-
tinuous solutions at later times. We shall give an example that has a discontinuous initial value.
Consider the initial value problem

ou  Jdu
— 4+ —=1, y>0, —oc0o<x<o (5.39)
dx  dy

where u is known at point A(x,, 0) on the x-axis (see Figure 5.2). The characteristic direction

is given by dx = dy and u satisfies du = dy on this line. Hence the characteristic through A
is y = x — x, and the solution is # = u(A) + y. Now consider the initial condition

ux,0) = filx), —o0o<x<x
(5.40)
u(x,0) = fo(x), xp <x <o
To the left of the characteristic y = x — x;, the solution is
uwy = fi(xq) +y along y =x —x,

To the right of the characteristic y = x — x;, the solution is

uRy = fo(x.)+y along y = x — x,
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A(X2,0) B(x5,0) C(x20)

fi (%) f2(X)

Figure 5.2 Discontinuous initial condition

The jump in the solution to the left and right of B is

uw) —ur) = f1lx) — falxe)

Letting both A and C converge to B we see that the solution is discontinuous because we
have assumed that the initial condition (5.40) is not continuous, i.e. f1(xp) # f2(xp).

Hence we conclude that when the initial condition is discontinuous at a particular point B,
then the solution is discontinuous along the characteristic curve I' emanating from B. The
effect of this initial discontinuity does not diminish as we move away from B along I". The
situation with parabolic equations is quite different: initial discontinuities tend to be localised
and diminish rapidly with distance from the point of discontinuity.

5.6.1 Other problems

It is possible to analyse first-order hyperbolic problems in an infinite interval using Fourier
transforms, but this technique is not suitable for initial boundary value problems with discon-
tinuities at the boundaries or when we need to perform mesh refinement (Vichnevetsky and
Bowles, 1982). Let us consider the model hyperbolic problem

du 0 g 0 0.L)
5y Ta5. =0, a>0, xe(0,

and its semi-discretisation

du; Ujrr —Uj—1 .
- _— :0, :1,...,.1_1
dr +“< 2h /

The boundary conditions are: at x = 0,

u(0, 1) = g(r)

andatx = L,
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We thus impose the ‘real” boundary condition at x = 0, while at x = L we approximate the
differential equation itself by a one-sided difference scheme. As discussed in Vichnevetsky
and Bowles (1982), this approach leads to spurious reflections.

5.7 SUMMARY AND CONCLUSIONS

We have given an introduction to the Method of Characteristics (MOC), which is used mainly
for hyperbolic equations. Its added value is that a partial differential equation can be reduced
to an ordinary differential equation along so-called characteristic curves.

We discussed the application of MOC to financial engineering applications and it can be
seen as an alternative to the finite difference method in such situations.

First-order hyperbolic equations need to be studied in certain financial engineering applica-
tions, for example in two-factor models where one underlying has a deterministic behaviour.
Asian and Real options are typical examples. Then the derivative quantity will be modelled by
a partial differential equation, one of whose components has no diffusion term.
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6
An Introduction to the Finite

Difference Method

6.1 INTRODUCTION AND OBJECTIVES

Part I introduces the finite difference method (FDM). The chapters in this part focus on produc-
ing accurate and robust schemes for second-order parabolic and first-order hyperbolic partial
differential equations in two independent variables, usually called x and ¢. The first variable x
plays the role of a space coordinate and the second variable ¢ plays the role of time. We model
the partial differential equations by approximating the derivatives using divided differences.
These latter quantities are defined at so-called discrete mesh points. Having motivated FDM
in a generic setting we then apply the resulting finite difference schemes to the one-factor
Black—Scholes model in Part III.

In this chapter we investigate the application of FDM to ordinary differential equations
(ODEs). An ODE has one independent variable and hence it is conceptually easier to under-
stand and to approximate than equations in two or more variables. In particular, we examine a
special kind of problem in this chapter. This is called first-order initial value problems (IVP).
They are useful objects of study in their own right and our objective is to approximate them
using FDM in order to pave the way for more complex applications later in the book. In
particular, the added value is:

e Initial value problems provide the motivation for finite difference schemes that will be used
to approximate the time dimension in the Black—Scholes partial differential equation.

¢ In this chapter we introduce notation that will be used throughout the book. We aim to be as
consistent as possible in our use of notation.

We shall also introduce the concept of divided differences and how we use them to approximate
the first- and second-order derivatives of real-valued functions of one variable. The chapter
should be read and understood before embarking on the other chapters. It is fundamental.

6.2 FUNDAMENTALS OF NUMERICAL DIFFERENTIATION

In this section let us look at a real-valued function of a real variable, as follows:

y=f (6.1)

In general we are interested in finding approximations to the first and second derivatives
of the function f. This is needed because, in general, the form of the function f is unknown
and it is thus impossible to calculate its derivatives analytically. To this end, we must resort
to numerical approximations. Suppose that we wish to approximate the first derivative of y
at some point a (see Figure 6.1) and assume that / is a (small) positive number. The first
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y

Figure 6.1 Motivating divided differences

approximation (called the centred difference formula) is given by

fla+h) = fla—h)
2h

Another approximation is called the forward difference formula given by

fla+h)— f(a)

fla)~

fla)~ h
Finally, the backward difference formula is given by
, (@) — fla—h)
RN CEY ()

For future work, we use the following notation:

fla+h) — fla—h)

Dy f(a) = o

h) —
D, f(a) = fla+ Z f(a)
D_f(a)Ef(a)—]J:(a—h)

(6.2)

(6.3)

(6.4)

(6.5a)

(6.5b)

(6.5¢)

The next question is: How good are these approximations to the derivative of f ata and which
one should we use? The answer to the second question will be addressed in later sections. To
answer the first question, let us examine the centred difference case. We use Taylor’s expansion
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(Davis, 1975) to show that

h? n
flaxh)= f(a)xhf'(a)+ Ef”(a) + gf'"(ni)

(6.6)
n*e(a_haa)s n+e(a1a+h)
from which we conclude that in this particular case
: o ) + ()
Dof(a)= f'(@) + ( s ) 6.7)

We thus see that centred differences give a second-order approximation to the first deriva-
tive if A is small enough and if f has continuous derivatives up to order 3. Similarly, some
arithmetic shows that forward and backward differencing give first-order approximation to the
first derivative of f at the point a:

h
Dif(@)=f@ + 5 '), nv €@ at+h
(6.8)

h
D_f(a)= f'(a) — Ef”(n—L n-e(@a—h,a)

We see that these one-sided schemes are first-order accurate. On the other hand, they place
low continuity constraints on the function f, namely we only need to assume that its second
derivative is continuous.

We now discuss divided differences for the second derivative of f at some point a. To this
end, we propose the following popular and much used three-point formula (see Conte, 1980):

fla—h)=2f(a)+ fla+h)

D.D_f(a)= B

(6.9)

Thus, this divided difference is a second-order approximation to the second derivative of f
at the point @ and we assume that this function has continuous derivatives up to and including
order 4. The discretisation error is given by

h . .
DyD-_f(@ = f'@+ 35 (f"00)+ V0 (6.10)

In later chapters we shall apply the divided differences as defined in equations (6.5) to PDEs
whose solutions may not have the necessary degree of continuity. In general, you cannot get a
high-order approximation to a problem whose solution is discontinuous at certain points. For
example, trying to find the derivatives in the classical sense of a Heaviside function or Dirac
function is pointless.

6.3 CAVEAT: ACCURACY AND ROUND-OFF ERRORS

From the previous section we can deduce that it is possible (at least in theory) to approximate
the derivatives of a smooth function to any degree of accuracy by choosing the mesh distance
h to be as small as desired. In practice, however, the fact that computers have limited word
length and that loss of significant digits occurs when nearly equal quantities are subtracted
combine to make high accuracy difficult to obtain (Conte and de Boor, 1980; Dahlquist, 1974).
In particular, if the computer cannot handle numbers with more than s digits, then the exact
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Table 6.1 Approximating first derivatives

Single precision

h (float) Double
1 1.752 1.1752
107! 1.00167 1.00167
1072 1.00002 1.00002
1073 1.00001 1

1074 1.00006 1

1073 1.00068 1

10-° 0.976837 1

1077 1.09605 1

Table 6.2 Approximating second derivatives

Single precision

h (float) Double
1073 1 1

10~ 1 1

1073 1 0.999999
107° 1.00004 0.999962
1077 1.0107 0.994338

product of two s-digit numbers cannot be used in subsequent calculations, and in this case the
product must be rounded off. The effect of such rounding off can be noticeable in calculations.
The conclusion is that there is a critical size of 4 below which the results of calculations cannot
be trusted. Some authors resort to interval analysis techniques (see Moore, 1966, 1979) to
resolve this problem. The solution to a problem is no longer a single point estimate but is
situated in a range or interval.

Let us take an example (taken from Conte and de Boor, 1980). We discuss the application
of the divided differences in formulae (6.5) (the centred difference option) and (6.9) to ap-
proximating the derivatives of the exponential function at x = 0. Of course, all derivatives
have the value 1 at x = 0 and we investigate how well the divided differences approximate
these values as the mesh size & becomes progressively smaller. Furthermore, we investigate
the effect of round-off error when using single-precision float data type and double-precision
double data type. We first discuss approximating the first derivative and the results are shown
in Table 6.1. In the case of single-precision numbers we see that the approximation gets better
until the mesh size & becomes 0.0001, after which time the approximation becomes worse. No
appreciable degradation occurs in the double precision case. The results are shown in Table 6.2.
On the other hand, when applying the somewhat more complex formula (6.9) we see that the
accuracy becomes worse for values of /2 smaller than 0.0001 for both single-precision and
double-precision cases. It is possible to calculate the critical value of /& below which the round-
off errors start to play a role. See Conte and de Boor (1980) for the example in this section.
This optimum value of % is the value for which the sum of the magnitude of the round-off
error and of the discretisation error is minimised. In Conte and de Boor (1980) the authors
determine this value as 7 = 0.0033.
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We shall develop finite difference schemes in later chapters and in these cases we may need
to choose very small mesh sizes in order to improve accuracy. We must also be careful that we
do not introduce round-off errors, thus destroying accuracy rather than improving it!

6.4 WHERE ARE DIVIDED DIFFERENCES USED
IN INSTRUMENT PRICING?

This book is about approximating the solution of partial differential equations (PDEs) that
describe the behaviour of financial derivatives. In general, the PDE is multidimensional. It
has a time dimension and one or more space (or underlying) dimensions. The order of the
derivatives in the PDE are:

e First order in time
e First order and second order in space.

Since it is not possible or even desirable to search for an exact solution to the initial boundary
value problem for the PDE, we have to seek refuge in some kind of approximate method. In this
book we examine the applicability of the finite difference method (FDM) to such problems. If
we had to summarise FDM we would say that it is a method that approximates the derivatives in
a PDE (defined on a continuous region) by so-called divided differences defined on a discrete
mesh.

6.5 INITIAL VALUE PROBLEMS

In this section we consider a class of first-order linear systems of ordinary differential equations
in the independent variable ¢ (this is usually a time dimension):

dv(t

d—t() + ANV (@)=F(@), O0<t<T (6.11)
where V(1) = "(u1(t), ..., u,(t))

F(t) ="(fi(t), ..., fu(®))
A(t) = (a;j())1<i,j<n
(see Varga, 1962; Crouzeix, 1975; Le Roux, 1979). In this case the vector F(¢) and matrix

function A(#) are known quantities and the vector V (¢) is unknown. The system (6.11) will
have a unique solution if we give an initial condition for V' (#) when ¢ = 0:

V(0) = Uy, Uy = (uo, - - -, ton) (6.12)

where U is a given constant vector.

The initial value problem (IVP) is highly relevant to the material in this book and in particular
its applications to finite difference methods for parabolic initial boundary problems. For the
moment, we concentrate on two aspects of the problem:

e Analytical properties of IVP (6.11), (6.12)
¢ Finite difference approximations to IVP (6.11), (6.12).

We now discuss these two approaches.
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6.5.1 Padé matrix approximations

Let us assume for the moment that the matrix A in equation (6.11) is independent of 7. We
define (formally) the exponential of a matrix as follows:

2 o n

A
exp(A)=14+A+—+---= i
2! — n!
Jj=

(6.13)

where / is the identity matrix. This is the » X n matrix with the value 1 on the main diagonal
and zero everywhere else. Based on this definition, the solution of (6.11), (6.12) is given by:

V(t) = exp (—At)Up + exp (—At)/ exp(AMF(R)dr, >0 (6.14)
0

(see Varga, 1962). In general, it is difficult or undesirable to attempt to use (6.14) directly in
calculations. Furthermore, the matrix A can be a function of time, in which case formula (6.14)
needs to be modified. Thus, we resort to numerical techniques to approximate the IVP (6.11),
(6.12). Some examples are:

® One-step and multi-step finite difference method (FDM)
e Runge—Kutta methods (Stoer and Bulirsch, 1980)
® Predictor—corrector methods.

In this chapter we concentrate on one-step methods. To this end, we partition the interval [0, T']
into sub-intervals

O=ty<th<th<---<ty=T
0 1 2 N (6.15)
ky=ty1—t,, n=0,...,N—1

The sub-intervals do not necessarily have to be of the same size but for convenience we
partition [0, T'] into N equal sub-intervals as follows:

k=T/N

(6.16)
k=t 1—t, n=0,...,N—1

Having done this, we must approximate the solution of IVP (6.11), (6.12). The case n = 1
(the so-called scalar IVP) has been discussed in detail in Duffy (2004) and we extend some of
the results to the general case here.

The challenge is to approximate the derivative appearing in (6.11). To this end, some popular
schemes are:

Implicit Euler scheme

Un-H —_yn
—+
U’ =10,

Aty =l p=0,...,N —1
(6.17)

A" = Aty F'*l = F(tyg)



An Introduction to the Finite Difference Method 69

Explicit Euler scheme

Un+1 —_yn
T+A”U" =F", n=0,....N—1
U0 = U, (6.18)
A" = A(t), F" = F(t,)
Crank—Nicolson scheme
n+l _ grn n+1 n
%H\”*%% = F"™31, n=0,...,N—1
U = U, (6.19)

t

= l‘n+|+tu7 An-&-% = A(l‘”+%), Fn-‘r% = F(tﬂ+%)

n+% 2

Noting from these schemes that data is known at time level n we can then calculate new
values at time level n + 1. Formally, the new values are:

Implicit Euler scheme
(I + kA HU™ = Uy + kP! (6.20)

Explicit Euler scheme
U™ = —kAHU" + kF" (6.21)

Crank—Nicolson scheme
kAn+% \ kAn+% .
I+ > urtt=1(1- 7 U"+kF": (6.22)

where [ is the identity matrix.

The solution at time level n + 1 in equation (6.21) can be found directly while we must
solve a matrix system for the equations (6.20) and (6.22). We note that the implicit Euler
scheme is also called the backward-difference method and the explicit Euler method is called
the forward-difference method.

Let us now take the case of F(#) = 0 and where the matrix A is independent of time. We
can then write equations (6.20), (6.21) and (6.22) in the equivalent forms (at least formally)

Ut = +kA)T'U" (6.23a)
U™t = —kAU" (6.23b)
n+1 k - k n
U~ =(1+=A 1 —-A\|U (6.23¢)
2 2
If we compare these solutions with the exact solution, namely (see equation (6.14))
W) = exp (—1A)Uy (6.24)

we realise that the solutions in system (6.23) are essentially approximations to the exponential
matrix term in (6.24). We can show how well the approximate solutions agree with the series
in equation (6.13). To make this statement more clear, we look at the Crank—Nicolson scheme
because of its popularity in financial engineering applications (by the way, it does not always
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live up to its name, as we shall see in later chapters). Let us assume that the time-step k is
sufficiently small. Then we can formally expand the expression for the approximate solution
as follows (with A replaced by —A):

1 kA B 1 kA =1—kA kA kay 6.25
(o) (e

and we thus see that this series agrees with that in (6.13) to second order. Similarly it can be
shown that the other numerical solutions in equations (6.23) approximate the exponential term
to first order in k. However, the scheme for the explicit Euler scheme is only conditionally
stable, which means that £ must be chosen to be less than some critical value. The implicit
Euler and Crank—Nicolson schemes are unconditionally stable for any value of k. This means
that

10" = M||Uoll n=0,1,... (6.26)
in some norm. Here the constant M is independent of the step size k.

Theorem 6.1. (Stability of the explicit Euler scheme.) Let A be an n x n matrix whose eigen-
values Xj satisfy0 < oo <N A; < B, 1 < j < n(here W\, denotes the real part of the com-
plex number A ;)

Then, the explicit Euler scheme approximant I — k A is stable for

20N ;
0 <k < min ( 12>
1<j=n \| A; |

Looking at equations (6.23) again, we might ask ourselves how the approximations to the
exponential are generated. In fact, the approximations in (6.23) are special cases of Padé
rational approximations (Varga, 1962; de Bruin and Van Rossum, 1980). A rational function
is a quotient of two polynomials and we use such functions to approximate the exponential
function as follows:

np.q(2)
dp.q(2)

where n (the numerator) and d (the denominator) are polynomials of degrees ¢ and p in
z, respectively. In general, we select for each pair of non-negative integers p and g those
polynomials n and d such that the Taylor’s series expansion of n/d agrees with as many
leading terms of Taylor expansion of exp(—z). We can thus create a so-called Padé table for
exp(—z). Some of the first few terms in the table are shown in Table 6.3.

exp(—z) = (6.27)

Table 6.3 Padé table for exp(—z)

q=0 q=1 q="2
p=01]1 1—z 1—z+2%/2
_1 1 2—z 6 —4z + 22
P=2 1152 24z 6+ 2z
_5 1 6—2z 12— 6z 422
P= 14+z+22/2 | 64+4z+2%2 | 12+ 62+ 22




An Introduction to the Finite Difference Method 71

The reader can verify that the entries in Table 6.3 are correct. An important result concerning
Padé approximations and stability of difference schemes for IVP (6.11), (6.12) is that if the
eigenvalues of a matrix A are positive real numbers, then the Padé matrix approximation is
unconditionally stable if and only if p > ¢. The Padé matrix approximation technique can be
applied to other functions. A discussion, however, is outside the scope of this book and we
refer the reader to de Bruin (1980).

6.5.2 Extrapolation

Much of the financial engineering literature uses the Crank—Nicolson method, and many people
use it probably for the main reason that it is second-order accurate. However, as we shall see
in later chapters, it produces spurious (artificial) oscillations, especially near the strike price
and barriers.

In this section we discuss how to ’bootstrap’ the accuracy of the implicit Euler method from
first-order to second-order accuracy while also avoiding spurious oscillations. We motivate the
extrapolated scheme in two ways. Let

e U} be the solution of (6.23a)
e ¥ be the solution of (6.24)

where we have introduced the subscript k in the approximate solution to denote its dependence
on k. Then, we can prove (this will be discussed later) that

Ul =W + Mk + Ok (6.28)

where the constant M does not depend on k. By now taking a scheme with a mesh of size k/2
we also see that

Mk
Uiy =W + -+ 0k (6.29)
Some arithmetic shows that
Vi =200, — Ul =W + 0(K) (6.30)

Thus, we now get a second-order scheme with little extra effort. We have programmed
this method and the C++ code for the scalar case is given in Duffy (2004). We motivate the
extrapolated scheme based on Padé matrix approximations and the series form for exponential
matrices (based on Lawson and Morris, 1978 and Gourlay and Morris, 1980). Let us for
convenience denote the approximate solution by V and drop the dependence on the discrete
time level 7; we just take any time value ¢. Applying (6.23a) on a mesh of size k we see that

Vie+k=U+kA'V© (6.31)

Alternatively, we can progress from time ¢ to time ¢ + k in two steps, namely from ¢ to
t + k/2 and then from ¢t 4 k/2 to t 4 k and this combined step gives:

£\ £\l
V(i +k) = (1 + §A> (1 + EA) V() (6.32)

Expanding (6.31) and (6.32) in powers of k gives, respectively,
V(t+k)=U+kA+EAHV (@) + O(K) (6.33)
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and
V(t+k) = (1 + kA + §k2A2> V() + 0k>) (6.34)
If we now multiply equation (6.34) by a factor of 2 and subtract equation (6.33) we get
V(t+k)= (1 +kA+ %2A2> V(t)+ O>) (6.35)
Comparing this result with the series expansion in equation (6.13) we then get a second-order

approximation. This suggests the following algorithm:

VO +k) = I +kA)V (@)

k7! k!
V(z)(t+k)=(1+§A> <I+§A) V() (6.36)

Vit +k)y=2v® —yD

We thus have produced the second-order scheme!

Extrapolation techniques in conjunction with the implicit Euler scheme have been applied
to the Black—Scholes equation and good results have been obtained: i.e. second-order accuracy
and no spurious oscillations. For the details, we refer the reader to Cooney (1999).

6.6 NONLINEAR INITIAL VALUE PROBLEMS

The system (6.11), (6.12) is linear because neither the matrix function A(¢) nor the vector
function F'(¢) depends on the unknown solution V. If this is not the case, however, we need a
different scheme, which we describe as follows (Dalhquist, 1974). Let us consider the nonlinear
IVP:

dy _
E—f(t,y), 0<t=T 6.37)
y0)=A

where
y =y = "), ..., yu)
f =f(fvy)= t(fl(%)’)v--wfn(ﬁ)’))

A =1ay, ..., a,)is a constant vector

In this case the vector y is the unknown variable. The function f is a nonlinear vector-
valued function and it is not possible to apply the linear methods (such as Crank—Nicolson)
to (6.37); whereas for linear problems we can solve a system of linear equations at each time
level (using LU decomposition, for example), applying Crank—Nicolson leads to a nonlinear
system of equations that must be solved by Newton’s method, for example. Instead, we prefer
to linearise the IVP (6.37) in some way and then apply well-known finite difference schemes.
To this end, we discuss two techniques, namely the predictor—corrector and the Runge—Kutta
methods.

Nonlinear problems such as the IVP (6.37) are very important in financial engineering
applications. First, they form part of the theory of stochastic differential equations (SDEs).
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An SDE is similar to an I[VP but has a noise term added on. For a discussion of this topic see
Kloeden et al. (1994) and for an implementation in C++-, see Duffy (2004). Second, nonlinear
IVPs arise when we carry out a semi-discretisation of various kinds of nonlinear parabolic
partial differential equations. A number of generalisations of the Black—Scholes equation have
been proposed in the last few years (for example, passport options, nonlinear volatility and
problems with transaction costs) and they lead to nonlinear partial differential equations that
are then solved using the solvers in this section.

6.6.1 Predictor—corrector methods

The idea behind predictor—corrector methods is easy. In march