
Risk and Financial Management

Risk and Financial Management: Mathematical and Computational Methods. C. Tapiero
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84908-8



 

 

 

 
 

7700++  DDVVDD’’ss  FFOORR  SSAALLEE  &&  EEXXCCHHAANNGGEE  
  
 

wwwwww..ttrraaddeerrss--ssooffttwwaarree..ccoomm  
  

wwwwww..ffoorreexx--wwaarreezz..ccoomm  
  

wwwwww..ttrraaddiinngg--ssooffttwwaarree--ccoolllleeccttiioonn..ccoomm  
  

wwwwww..ttrraaddeessttaattiioonn--ddoowwnnllooaadd--ffrreeee..ccoomm  
  
  
 

CCoonnttaaccttss  
  

aannddrreeyybbbbrrvv@@ggmmaaiill..ccoomm  
aannddrreeyybbbbrrvv@@yyaannddeexx..rruu    

SSkkyyppee::  aannddrreeyybbbbrrvv 

http://www.traders-software.com/
http://www.forex-warez.com/
http://www.trading-software-collection.com/
http://www.tradestation-download-free.com/
mailto:andreybbrv@gmail.com
mailto:andreybbrv@yandex.ru


Risk and Financial
Management
Mathematical and Computational Methods

CHARLES TAPIERO
ESSEC Business School, Paris, France



Copyright C© 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988
or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher.
Requests to the Publisher should be addressed to the Permissions Department, John Wiley &
Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed
to permreq@wiley.co.uk, or faxed to (+44) 1243 770571.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the Publisher is not engaged
in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Tapiero, Charles S.
Risk and financial management : mathematical and computational methods / Charles Tapiero.

p. cm.
Includes bibliographical references.

ISBN 0-470-84908-8
1. Finance–Mathematical models. 2. Risk management. I. Title.

HG106 .T365 2004
658.15′5′015192–dc22 2003025311

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-84908-8

Typeset in 10/12 pt Times by TechBooks, New Delhi, India
Printed and bound in Great Britain by Biddles Ltd, Guildford, Surrey
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.



This book is dedicated to:

Daniel
Dafna
Oren
Oscar and
Bettina



Contents

Preface xiii

Part I: Finance and Risk Management

Chapter 1 Potpourri 03
1.1 Introduction 03
1.2 Theoretical finance and decision making 05
1.3 Insurance and actuarial science 07
1.4 Uncertainty and risk in finance 10

1.4.1 Foreign exchange risk 10
1.4.2 Currency risk 12
1.4.3 Credit risk 12
1.4.4 Other risks 13

1.5 Financial physics 15
Selected introductory reading 16

Chapter 2 Making Economic Decisions under Uncertainty 19
2.1 Decision makers and rationality 19

2.1.1 The principles of rationality and bounded rationality 20
2.2 Bayes decision making 22

2.2.1 Risk management 23
2.3 Decision criteria 26

2.3.1 The expected value (or Bayes) criterion 26
2.3.2 Principle of (Laplace) insufficient reason 27
2.3.3 The minimax (maximin) criterion 28
2.3.4 The maximax (minimin) criterion 28
2.3.5 The minimax regret or Savage’s regret criterion 28

2.4 Decision tables and scenario analysis 31
2.4.1 The opportunity loss table 32

2.5 EMV, EOL, EPPI, EVPI 33
2.5.1 The deterministic analysis 34
2.5.2 The probabilistic analysis 34

Selected references and readings 38



viii CONTENTS

Chapter 3 Expected Utility 39
3.1 The concept of utility 39

3.1.1 Lotteries and utility functions 40
3.2 Utility and risk behaviour 42

3.2.1 Risk aversion 43
3.2.2 Expected utility bounds 45
3.2.3 Some utility functions 46
3.2.4 Risk sharing 47

3.3 Insurance, risk management and expected utility 48
3.3.1 Insurance and premium payments 48

3.4 Critiques of expected utility theory 51
3.4.1 Bernoulli, Buffon, Cramer and Feller 51
3.4.2 Allais Paradox 52

3.5 Expected utility and finance 53
3.5.1 Traditional valuation 54
3.5.2 Individual investment and consumption 57
3.5.3 Investment and the CAPM 59
3.5.4 Portfolio and utility maximization in practice 61
3.5.5 Capital markets and the CAPM again 63
3.5.6 Stochastic discount factor, assets pricing

and the Euler equation 65
3.6 Information asymmetry 67

3.6.1 ‘The lemon phenomenon’ or adverse selection 68
3.6.2 ‘The moral hazard problem’ 69
3.6.3 Examples of moral hazard 70
3.6.4 Signalling and screening 72
3.6.5 The principal–agent problem 73

References and further reading 75

Chapter 4 Probability and Finance 79
4.1 Introduction 79
4.2 Uncertainty, games of chance and martingales 81
4.3 Uncertainty, random walks and stochastic processes 84

4.3.1 The random walk 84
4.3.2 Properties of stochastic processes 91

4.4 Stochastic calculus 92
4.4.1 Ito’s Lemma 93

4.5 Applications of Ito’s Lemma 94
4.5.1 Applications 94
4.5.2 Time discretization of continuous-time

finance models 96
4.5.3 The Girsanov Theorem and martingales∗ 104

References and further reading 108

Chapter 5 Derivatives Finance 111
5.1 Equilibrium valuation and rational expectations 111



CONTENTS ix

5.2 Financial instruments 113
5.2.1 Forward and futures contracts 114
5.2.2 Options 116

5.3 Hedging and institutions 119
5.3.1 Hedging and hedge funds 120
5.3.2 Other hedge funds and investment strategies 123
5.3.3 Investor protection rules 125

References and additional reading 127

Part II: Mathematical and Computational Finance

Chapter 6 Options and Derivatives Finance Mathematics 131
6.1 Introduction to call options valuation 131

6.1.1 Option valuation and rational expectations 135
6.1.2 Risk-neutral pricing 137
6.1.3 Multiple periods with binomial trees 140

6.2 Forward and futures contracts 141
6.3 Risk-neutral probabilities again 145

6.3.1 Rational expectations and optimal forecasts 146
6.4 The Black–Scholes options formula 147

6.4.1 Options, their sensitivity and hedging parameters 151
6.4.2 Option bounds and put–call parity 152
6.4.3 American put options 154

References and additional reading 157

Chapter 7 Options and Practice 161
7.1 Introduction 161
7.2 Packaged options 163
7.3 Compound options and stock options 165

7.3.1 Warrants 168
7.3.2 Other options 169

7.4 Options and practice 171
7.4.1 Plain vanilla strategies 172
7.4.2 Covered call strategies: selling a call and a

share 176
7.4.3 Put and protective put strategies: buying a

put and a stock 177
7.4.4 Spread strategies 178
7.4.5 Straddle and strangle strategies 179
7.4.6 Strip and strap strategies 180
7.4.7 Butterfly and condor spread strategies 181
7.4.8 Dynamic strategies and the Greeks 181

7.5 Stopping time strategies∗ 184
7.5.1 Stopping time sell and buy strategies 184

7.6 Specific application areas 195



x CONTENTS

7.7 Option misses 197
References and additional reading 204
Appendix: First passage time∗ 207

Chapter 8 Fixed Income, Bonds and Interest Rates 211
8.1 Bonds and yield curve mathematics 211

8.1.1 The zero-coupon, default-free bond 213
8.1.2 Coupon-bearing bonds 215
8.1.3 Net present values (NPV) 217
8.1.4 Duration and convexity 218

8.2 Bonds and forward rates 222
8.3 Default bonds and risky debt 224
8.4 Rated bonds and default 230

8.4.1 A Markov chain and rating 233
8.4.2 Bond sensitivity to rates – duration 235
8.4.3 Pricing rated bonds and the term structure

risk-free rates∗ 239
8.4.4 Valuation of default-prone rated bonds∗ 244

8.5 Interest-rate processes, yields and bond valuation∗ 251
8.5.1 The Vasicek interest-rate model 254
8.5.2 Stochastic volatility interest-rate models 258
8.5.3 Term structure and interest rates 259

8.6 Options on bonds∗ 260
8.6.1 Convertible bonds 261
8.6.2 Caps, floors, collars and range notes 262
8.6.3 Swaps 262

References and additional reading 264
Mathematical appendix 267

A.1: Term structure and interest rates 267
A.2: Options on bonds 268

Chapter 9 Incomplete Markets and Stochastic Volatility 271
9.1 Volatility defined 271
9.2 Memory and volatility 273
9.3 Volatility, equilibrium and incomplete markets 275

9.3.1 Incomplete markets 276
9.4 Process variance and volatility 278
9.5 Implicit volatility and the volatility smile 281
9.6 Stochastic volatility models 282

9.6.1 Stochastic volatility binomial models∗ 282
9.6.2 Continuous-time volatility models 00

9.7 Equilibrium, SDF and the Euler equations∗ 293
9.8 Selected Topics∗ 295

9.8.1 The Hull and White model and stochastic
volatility 296

9.8.2 Options and jump processes 297



CONTENTS xi

9.9 The range process and volatility 299
References and additional reading 301
Appendix: Development for the Hull and White model (1987)∗ 305

Chapter 10 Value at Risk and Risk Management 309
10.1 Introduction 309
10.2 VaR definitions and applications 311
10.3 VaR statistics 315

10.3.1 The historical VaR approach 315
10.3.2 The analytic variance–covariance approach 315
10.3.3 VaR and extreme statistics 316
10.3.4 Copulae and portfolio VaR measurement 318
10.3.5 Multivariate risk functions and the

principle of maximum entropy 320
10.3.6 Monte Carlo simulation and VaR 324

10.4 VaR efficiency 324
10.4.1 VaR and portfolio risk efficiency with

normal returns 324
10.4.2 VaR and regret 326

References and additional reading 327

Author Index 329

Subject Index 333



Preface

Another finance book to teach what market gladiators/traders either know, have
no time for or can’t be bothered with. Yet another book to be seemingly drowned
in the endless collections of books and papers that have swamped the economic
literate and illiterate markets ever since options and futures markets grasped our
popular consciousness. Economists, mathematically inclined and otherwise, have
been largely compensated with Nobel prizes and seven-figures earnings, compet-
ing with market gladiators – trading globalization, real and not so real financial
assets. Theory and practice have intermingled accumulating a wealth of ideas
and procedures, tested and remaining yet to be tested. Martingale, chaos, ratio-
nal versus adaptive expectations, complete and incomplete markets and whatnot
have transformed the language of finance, maintaining their true meaning to the
mathematically initiated and eluding the many others who use them nonetheless.

This book seeks to provide therefore, in a readable and perhaps useful manner,
the basic elements or economic language of financial risk management, mathe-
matical and computational finance, laying them bare to both students and traders.
All great theories are based on simple philosophical concepts, that in some cir-
cumstances may not withstand the test of reality. Yet, we adopt them and behave
accordingly for they provide a framework, a reference model, inspiring the re-
quired confidence that we can rely on even if there is not always something to
stand on. An outstanding example might be complete markets and options valua-
tion – which might not be always complete and with an adventuresome valuation
of options. Market traders make seemingly risk-free arbitrage profits that are in
fact model-dependent. They take positions whose risk and rewards we can only
make educated guesses at, and make venturesome and adventuresome decisions
in these markets based on facts, fancy and fanciful interpretations of historical
patterns and theoretical–technical analyses that seek to decipher things to come.

The motivation to write this book arose from long discussions with a hedge fund
manager, my son, on a large number of issues regarding markets behaviour, global
patterns and their effects both at the national and individual levels, issues regarding
psychological behaviour that are rendering markets less perfect than what we
might actually believe. This book is the fruit of our theoretical and practical
contrasts and language – the sharp end of theory battling the long and wily practice
of the market gladiator, each with our own vocabulary and misunderstandings.
Further, too many students in computational finance learn techniques, technical
analysis and financial decision making without assessing the dependence of such
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analyses on the definition of uncertainty and the meaning of probability. Further,
defining ‘uncertainty’ in specific ways, dictates the type of technical analysis and
generally the theoretical finance practised. This book was written, both to clarify
some of the issues confronting theory and practice and to explain some of the
‘fundamentals, mathematical’ issues that underpin fundamental theory in finance.

Fundamental notions are explained intuitively, calling upon many trading ex-
periences and examples and simple equations-analysis to highlight some of the
basic trends of financial decision making and computational finance. In some
cases, when mathematics are used extensively, sections are starred or introduced
in an appendix, although an intuitive interpretation is maintained within the main
body of the text.

To make a trade and thereby reach a decision under uncertainty requires an
understanding of the opportunities at hand and especially an appreciation of the
underlying sources and causes of change in stocks, interest rates or assets values.
The decision to speculate against or for the dollar, to invest in an Australian bond
promising a return of five % over 20 years, are risky decisions which, inordinately
amplified, may be equivalent to a gladiator’s fight for survival. Each day, tens
of thousands of traders, investors and fund managers embark on a gargantuan
feast, buying and selling, with the world behind anxiously betting and waiting
to see how prices will rise and fall. Each gladiator seeks a weakness, a breach,
through which to penetrate and make as much money as possible, before the
hordes of followers come and disturb the market’s equilibrium, which an instant
earlier seemed unmovable. Size, risk and money combine to make one richer
than Croesus one minute and poorer than Job an instant later. Gladiators, too,
their swords held high one minute, and history a minute later, have played to the
arena. Only, it is today a much bigger arena, the prices much greater and the losses
catastrophic for some, unfortunately often at the expense of their spectators.

Unlike in previous times, spectators are thrown into the arena, their money fated
with these gladiators who often risk, not their own, but everyone else’s money –
the size and scale assuming a dimension that no economy has yet reached.

For some, the traditional theory of decision-making and risk taking has fared
badly in practice, providing a substitute for reality rather than dealing with it.
Further, the difficulty of problems has augmented with the involvement of many
sources of information, of time and unfolding events, of information asymmetries
and markets that do not always behave competitively, etc. These situations tend to
distort the approaches and the techniques that have been applied successfully but
to conventional problems. For this reason, there is today a great deal of interest in
understanding how traders and financial decision makers reach decisions and not
only what decisions they ought to reach. In other words, to make better decisions,
it is essential to deal with problems in a manner that reflects reality and not only
theory that in its essence, always deals with structured problems based on specific
assumptions – often violated. These assumptions are sometimes realistic; but
sometimes they are not. Using specific problems I shall try to explain approaches
applied in complex financial decision processes – mixing practice and theory.
The approach we follow is at times mildly quantitative, even though much of
the new approach to finance is mathematical and computational and requires an
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extensive mathematical proficiency. For this reason, I shall assume familiarity
with basic notions in calculus as well as in probability and statistics, making the
book accessible to typical economics and business and maths students as well as
to practitioners, traders and financial managers who are familiar with the basic
financial terminology.

The substance of the book in various forms has been delivered in several in-
stitutions, including the MASTER of Finance at ESSEC in France, in Risk Man-
agement courses at ESSEC and at Bar Ilan University, as well as in Mathematical
Finance courses at Bar Ilan University Department of Mathematics and Computer
Science. In addition, the Montreal Institute of Financial Mathematics and the De-
partment of Finance at Concordia University have provided a testing ground
as have a large number of lectures delivered in a workshop for MSc students
in Finance and in a PhD course for Finance students in the Montreal consor-
tium for PhD studies in Mathematical Finance in the Montreal area. Through-
out these courses, it became evident that there is a great deal of excitement in
using the language of mathematical finance but there is often a misunderstanding
of the concepts and the techniques they require for their proper application. This
is particularly the case for MBA students who also thrive on the application of
these tools. The book seeks to answer some of these questions and problems
by providing as much as possible an interface between theory and practice and
between mathematics and finance. Finally, the book was written with the support
of a number of institutions with which I have been involved these last few years,
including essentially ESSEC of France, the Montreal Institute of Financial Math-
ematics, the Department of Finance of Concordia University, the Department
of Mathematics of Bar Ilan University and the Israel Port Authority (Economic
Research Division). In addition, a number of faculty and students have greatly
helped through their comments and suggestions. These have included, Elias Shiu
at the University of Iowa, Lorne Switzer, Meir Amikam, Alain Bensoussan, Avi
Lioui and Sebastien Galy, as well as my students Bernardo Dominguez, Pierre
Bour, Cedric Lespiau, Hong Zhang, Philippe Pages and Yoav Adler. Their help
is gratefully acknowledged.
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CHAPTER 1

Potpourri

1.1 INTRODUCTION

Will a stock price increase or decrease? Would the Fed increase interest rates,
leave them unchanged or decrease them? Can the budget to be presented in
Transylvania’s parliament affect the country’s current inflation rate? These and so
many other questions are reflections of our lack of knowledge and its effects on
financial markets performance. In this environment, uncertainty regarding future
events and their consequences must be assessed, predictions made and decisions
taken. Our ability to improve forecasts and reach consistently good decisions can
therefore be very profitable. To a large extent, this is one of the essential preoccu-
pations of finance, financial data analysis and theory-building. Pricing financial
assets, predicting the stock market, speculating to make money and hedging
financial risks to avoid losses summarizes some of these activities. Predictions,
for example, are reached in several ways such as:

� ‘Theorizing’, providing a structured approach to modelling, as is the case in
financial theory and generally called fundamental theory. In this case, eco-
nomic and financial theories are combined to generate a body of knowledge
regarding trades and financial behaviour that make it possible to price financial
assets.

� Financial data analysis using statistical methodologies has grown into a field
called financial statistical data analysis for the purposes of modelling, testing
theories and technical analysis.

� Modelling using metaphors (such as those borrowed from physics and other
areas of related interest) or simply constructing model equations that are fitted
one way or another to available data.

� Data analysis, for the purpose of looking into data to determine patterns or
relationships that were hitherto unseen. Computer techniques, such as neural
networks, data mining and the like, are used for such purposes and thereby
make more money. In these, as well as in the other cases, the ‘proof of the pud-
ding is in the eating’. In other words, it is by making money, or at least making

Risk and Financial Management: Mathematical and Computational Methods. C. Tapiero
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84908-8



4 POTPOURRI

it possible for others to make money, that theories, models and techniques are
validated.

� Prophecies we cannot explain but sometimes are true.

Throughout these ‘forecasting approaches and issues’ financial managers deal
practically with uncertainty, defining it, structuring it and modelling its causes,
explainable and unexplainable, for the purpose of assessing their effects on finan-
cial performance. This is far from trivial. First, many theories, both financial and
statistical, depend largely on how we represent and model uncertainty. Dealing
with uncertainty is also of the utmost importance, reflecting individual preferences
and behaviours and attitudes towards risk. Decision Making Under Uncertainty
(DMUU) is in fact an extensive body of approaches and knowledge that attempts
to provide systematically and rationally an approach to reaching decisions in
such an environment. Issues such as ‘rationality’, ‘bounded rationality’ etc., as
we will present subsequently, have an effect on both the approach we use and
the techniques we apply to resolve the fundamental and practical problems that
finance is assumed to address. In a simplistic manner, uncertainty is character-
ized by probabilities. Adverse consequences denote the risk for which decisions
must be taken to properly balance the potential payoffs and the risks implied by
decisions – trades, investments, the exercise of options etc. Of course, the more
ambiguous, the less structured and the more uncertain the situations, the harder
it is to take such decisions. Further, the information needed to make decisions is
often not readily available and consequences cannot be predicted. Risks are then
hard to determine. For example, for a corporate finance manager, the decision may
be to issue or not to issue a new bond. An insurance firm may or may not confer a
certain insurance contract. A Central Bank economist may recommend reducing
the borrowing interest rate, leaving it unchanged or increasing it, depending on
multiple economic indicators he may have at his disposal. These, and many other
issues, involve uncertainty. Whatever the action taken, its consequences may be
uncertain. Further, not all traders who are equally equipped with the same tools,
education and background will reach the same decision (of course, when they
differ, the scope of decisions reached may be that much broader). Some are well
informed, some are not, some believe they are well informed, but mostly, all
traders may have various degrees of intuition, introspection and understanding,
which is specific yet not quantifiable. A historical perspective of events may be
useful to some and useless to others in predicting the future. Quantitative training
may have the same effect, enriching some and confusing others. While in theory
we seek to eliminate some of the uncertainty by better theorizing, in practice
uncertainty wipes out those traders who reach the wrong conclusions and the
wrong decisions. In this sense, no one method dominates another: all are impor-
tant. A political and historical appreciation of events, an ability to compute, an
understanding of economic laws and fundamental finance theory, use of statistics
and computers to augment one’s ability in predicting and making decisions under
uncertainty are only part of the tool-kit needed to venture into trading speculation
and into financial risk management.
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1.2 THEORETICAL FINANCE AND DECISION-MAKING

Financial decision making seeks to make money by using a broad set of economic
and theoretical concepts and techniques based on rational procedures, in a consis-
tent manner and based on something more than intuition and personal subjective
judgement (which are nonetheless important in any practical situation). Gener-
ally, it also seeks to devise approaches that may account for departures from such
rationality. Behavioural and psychological reasons, the violation of traditional
assumptions regarding competition and market forces and exchange combine to
alter the basic assumptions of theoretical economics and finance.

Finance and financial instruments currently available through brokers, mutual
funds, financial institutions, commodity and stock markets etc. are motivated by
three essential problems:

� Pricing the multiplicity of claims, accounting for risks and dealing with the
negative effects of uncertainty or risk (that can be completely unpredictable,
or partly or wholly predictable)

� Explaining, and accounting for investors’ behaviour. To counteract the effects
of regulation and taxes by firms and individual investors (who use a wide
variety of financial instruments to bypass regulations and increase the amount
of money investors can make).

� Providing a rational framework for individuals’ and firms’ decision making
and to suit investors’ needs in terms of the risks they are willing to assume and
pay for. For this purpose, extensive use is made of DMUU and the construction
of computational tools that can provide ‘answers’ to well formulated, but
difficult, problems.

These instruments deal with the uncertainty and the risks they imply in many
different ways. Some instruments merely transfer risk from one period to another
and in this sense they reckon with the time phasing of events to reckon with. One of
the more important aspects of such instruments is to supply ‘immediacy’, i.e. the
ability not to wait for a payment for example (whereby, some seller will assume the
risk and the cost of time in waiting for that payment). Other instruments provide a
‘spatial’ diversification, in other words, the distribution of risks across a number
of independent (or almost independent) risks. For example, buying several types
of investment that are less than perfectly correlated, maitaining liquidity etc. By
liquidity, we mean the cost to instantly convert an asset into cash at its fair price.
This liquidity is affected both by the existence of a market (in other words, buyers
and sellers) and by the cost of transactions associated with the conversion of the
asset into cash. As a result, risks pervading finance and financial risk management
are varied; some of them are outlined in greater detail below.

Risk in finance results from the consequences of undesirable outcomes and
their implications for individual investors or firms. A definition of risk involves
their probability, individual and collective and consequences effects. These are
relevant to a broad number of fields as well, each providing an approach to the
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measurement and the valuation of risk which is motivated by their needs and
by the set of questions they must respond to and deal with. For these reasons,
the problems of finance often transcend finance and are applicable to the broad
areas of economics and decision-making. Financial economics seeks to provide
approaches and answers to deal with these problems. The growth of theoretical
finance in recent decades is a true testament to the important contribution that
financial theory has made to our daily life. Concepts such as financial markets,
arbitrage, risk-neutral probabilities, Black–Scholes option valuation, volatility,
smile and many other terms and names are associated with a maturing profession
that has transcended the basic traditional approaches of making decisions under
uncertainty. By the same token, hedging which is an important part of the practice
finance is the process of eliminating risks in a particular portfolio through a trade or
a series of trades, or contractual agreements. Hedging relates also to the valuation-
pricing of derivatives products. Here, a portfolio is constructed (the hedging
portfolio) that eliminates all the risks introduced by the derivative security being
analyzed in order to replicate a return pattern identical to that of the derivative
security. At this point, from the investor’s point of view, the two alternatives – the
hedging portfolio and the derivative security – are indistinguishable and therefore
have the same value. In practice too, speculating to make money can hardly be
conceived without hedging to avoid losses.

The traditional theory of decision making under uncertainty, integrating statis-
tics and the risk behaviour of decision makers has evolved in several phases
starting in the early nineteenth century. At its beginning, it was concerned with
collecting data to provide a foundation for experimentation and sampling theory.
These were the times when surveys and counting populations of all sorts began.
Subsequently, statisticians such as Karl Pearson and R. A. Fisher studied and set
up the foundations of statistical data analysis, consisting of the assessment of
the reliability and the accuracy of data which, to this day, seeks to represent large
quantities of information (as given explicitly in data) in an aggregated and sum-
marized fashion, such as probability distributions and moments (mean, variance
etc.) and states how accurate they are. Insurance managers and firms, for exam-
ple, spend much effort in collecting such data to estimate mean claims by insured
clients and the propensity of certain insured categories to claim, and to predict
future weather conditions in order to determine an appropriate insurance premium
to charge. Today, financial data analysis is equally concerned with these prob-
lems, bringing sophisticated modelling and estimation techniques (such as linear
regression, ARCH and GARCH techniques which we shall discuss subsequently)
to bear on the application of financial analysis.

The next step, expounded and developed primarily by R. A. Fisher in the 1920s,
went one step further with planning experiments that can provide effective in-
formation. The issue at hand was then to plan the experiments generating the
information that can be analysed statistically and on the basis of which a deci-
sion could, justifiably, be reached. This important phase was used first in testing
the agricultural yield under controlled conditions (to select the best way to grow
plants, for example). It yielded a number of important lessons, namely that the
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procedure (statistical or not) used to collect data is intimately related to the kind
of relationships we seek to evaluate. A third phase, expanded dramatically in the
1930s and the 1940s consisted in the construction of mathematical models that
sought to bridge the gap between the process of data collection and the need of
such data for specific purposes such as predicting and decision making. Linear re-
gression techniques, used extensively in econometrics, are an important example.
Classical models encountered in finance, such as models of stock market prices,
currency fluctuations, interest rate forecasts and investment analysis models, cash
management, reliability and other models, are outstanding examples.

In the 1950s and the 1960s the (Bayes) theory of decision making under un-
certainty took hold. In important publications, Raiffa, Luce, Schlaiffer and many
others provided a unified framework for integrating problems relating to data col-
lection, experimentation, model building and decision making. The theory was
intimately related to typical economic, finance and industrial, business and other
problems. Issues such as the value of information, how to collect it, how much
to pay for it, the weight of intuition and subjective judgement (as often used by
behavioural economists, psychologists etc.) became relevant and integrated into
the theory. Their practical importance cannot be understated for they provide
a framework for reaching decisions under complex situations and uncertainty.
Today, theories of decision making are an ever-expanding field with many ar-
ticles, books, experiments and theories competing to provide another view and
in some cases another vision of uncertainty, how to model it, how to represent
certain facets of the economic and financial process and how to reach decisions
under uncertainty. The DMUU approach, however, presumes that uncertainty
is specified in terms of probabilities, albeit learned adaptively, as evidence ac-
crues for one or the other event. It is only recently, in the last two decades, that
theoretical and economic analyses have provided in some cases theories and tech-
niques that provide an estimate of these probabilities. In other words, while in
the traditional approach to DMUU uncertainty is exogenous, facets of modern
and theoretical finance have helped ‘endogenize’ uncertainty, i.e. explain uncer-
tain behaviours and events by the predictive market forces and preferences of
traders. To a large extent, the contrasting finance fundamental theory and tra-
ditional techniques applied to reach decisions under uncertainty diverge in their
attempts to represent and explain the ‘making of uncertainty’. This is an important
issue to appreciate and one to which we shall return subsequently when basic no-
tions of fundamental theory including rational expectations and option pricing are
addressed.

Today, DMUU is economics, finance, insurance and risk motivated. There are
a number of areas of special interest we shall briefly discuss to better appreciate
the transformations of finance, insurance and risk in general.

1.3 INSURANCE AND ACTUARIAL SCIENCE

Actuarial science is in effect one of the first applications of probability theory
and statistics to risk analysis. Tetens and Barrois, already in 1786 and 1834
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respectively, were attempting to characterize the ‘risk’ of life annuities and fire
insurance and on that basis establish a foundation for present-day insurance.
Earlier, the Gambling Act of 1774 in England (King George III) laid the foun-
dation for life insurance. It is, however, to Lundberg in 1909, and to a group of
Scandinavian actuaries (Borch, 1968; Cramer, 1955) that we owe much of the
current mathematical theory of insurance. In particular, Lundberg provided the
foundation for collective risk theory. Terms such as ‘premium payments’ required
from the insured, ‘wealth’ or the ‘firm liquidity’ and ‘claims’ were then defined.
In its simplest form, actuarial science establishes exchange terms between the
insured, who pays the premium that allows him to claim a certain amount from
the firm (in case of an accident), and the insurer, the provider of insurance who
receives the premiums and invests and manages the moneys of many insured. The
insurance terms are reflected in the ‘insurance contract’ which provides legally
the ‘conditional right to claim’. Much of the insurance literature has concentrated
on the definition of the rules to be used in order to establish the terms of such a
contract in a just and efficient manner. In this sense, ‘premium principles’ and a
wide range of operational rules worked out by the actuarial and insurance profes-
sion have been devised. Currently, insurance is gradually being transformed to
be much more in tune with market valuation of insurable contracts and financial
instruments are being devised for this purpose. The problems of insurance are,
of course, extremely complex, with philosophical and social undertones, seeking
to reconcile individual with collective risk and individual and collective choices
and interests through the use of the market mechanism and concepts of fairness
and equity. In its proper time setting (recognizing that insurance contracts ex-
press the insured attitudes towards time and uncertainty, in which insurance is
used to substitute certain for uncertain payments at different times), this problem
is of course, conceptually and quantitatively much more complicated. For this
reason, the quantitative approach to insurance, as is the case with most financial
problems, is necessarily a simplification of the fundamental issues that insurance
deals with.

Risk is managed in several ways including: ‘pricing insurance, controls, risk
sharing and bonus-malus’. Bonus-malus provides an incentive not to claim when
a risk materializes or at least seeks to influence insured behaviour to take greater
care and thereby prevent risks from materializing. In some cases, it is used to
discourage nuisance claims. There are numerous approaches to applying each of
these tools in insurance. Of course, in practice, these tools are applied jointly, pro-
viding a capacity to customize insurance contracts and at the same time assuming
a profit for the insurance firm.

In insurance and finance (among others) we will have to deal as well with
special problems, often encountered in practical situations but difficult to analyse
using statistical and analytical techniques. These essentially include dependen-
cies, rare events and man-made risks. In insurance, correlated risks are costlier
to assume while insuring rare and extremely costly events is difficult to assess.
Earthquake and tornado insurance are such cases. Although, they occur, they do
so with small probabilities. Their occurrence is extremely costly for the insurer,
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however. For this reason, insurers seek the participation of governments for such
insurance, study the environment and the patterns in weather changes and turn to
extensive risk sharing schemes (such as reinsurance with other insurance firms
and on a global scale). Dependencies can also be induced internally (endoge-
nously generated risks). For example, when trading agents follow each other’s
action they may lead to the rise and fall of an action on the stock market. In this
sense, ‘behavioural correlations’ can induce cyclical economic trends and there-
fore greater market variability and market risk. Man-made induced risks, such as
terrorists’ acts of small and unthinkable dimensions, also provide a formidable
challenge to insurance companies. John Kay (in an article in the Financial Times,
2001) for example states:

The insurance industry is well equipped to deal with natural disasters in the developed world:
the hurricanes that regularly hit the south-east United States; the earthquakes that are bound
to rock Japan and California from time to time. Everyone understands the nature of these
risks and their potential consequences. But we are ignorant of exactly when and where they
will materialize. For risks such as these, you can write an insurance policy and assess a
premium.

But the three largest disasters for insurers in the past 20 years have been man-made, not
natural. The human cost of asbestos was greater even than that of the destruction of the World
Trade Center. The deluge of asbestos-related claims was the largest factor in bringing the
Lloyd’s insurance market to its knees.

By the same token, the debacle following the deregulation of Savings and Loans
in the USA in the 1960s led to massive opportunistic behaviours resulting in huge
losses for individuals and insurance firms. These disasters have almost uniformly
involved government interventions and in some cases bail-outs (as was the case
with airlines in the aftermath of the September 11th attack on the World Trade
Center). Thus, risk in insurance and finance involves a broad range of situations,
sources of uncertainty and a broad variety of tools that may be applied when
disasters strike. There are special situations in insurance that may be difficult to
assess from a strictly financial point of view, however, as in the case of man-
made risks. For example, environmental risks have special characteristics that are
affecting our approach to risk analysis:

� Rare events: Relating to very large disasters with very small probabilities that
may be difficult to assess, predict and price.

� Spillover effects: Having behavioural effects on risk sharing and fairness since
persons causing risks may not be the sole victims. Further, effects may be felt
over long periods of time.

� International dimensions: having power and political overtones.

For these reasons, some of the questions raised in conjunction with environmental
risk that are of acute interest today are numerous, including among others:
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� Who pays for it?
� What prevention if at all?
� Who is responsible if at all?

By the same token, the future of genetic testing promises to reveal informa-
tion about individuals that, hitherto has been unknown, and thereby to change
the whole traditional approach to insurance. In particular, randomness, an es-
sential facet of the insurance business, will be removed and insurance contracts
could/would be tailored to individuals’ profiles. The problems that may arise sub-
sequent to genetic testing are tremendous. They involve problems arising over the
power and information asymmetries between the parties to contracts. Explicitly,
this may involve, on the one hand, moral hazard (we shall elaborate subsequently)
and, on the other, adverse selection (which will see later as well) affecting the
potential future/non-future of the insurance business and the cost of insurance to
be borne by individuals.

1.4 UNCERTAINTY AND RISK IN FINANCE

Uncertainty and risk are everywhere in finance. As stated above, they result from
consequences that may have adverse economic effects. Here are a few financial
risks.

1.4.1 Foreign exchange risk

Foreign exchange risk measures the risk associated with unexpected variations in
exchange rates. It consists of two elements: an internal element which depends on
the flow of funds associated with foreign exchange, investments and so on, and
an external element which is independent of a firm’s operations (for example, a
variation in the exchange rates of a country).

Foreign exchange risk management has focused essentially on short-term de-
cisions involving accounting exposure components of a firm’s working capital.
For instance, consider the case of captive insurance companies that diversify their
portfolio of underwriting activities by reinsuring a ‘layer’ of foreign risk. In this
case, the magnitude of the transaction exposure is clearly uncertain, compound-
ing the exchange and exposure risks. Bidding on foreign projects or acquisitions
of foreign companies will similarly entail exposures whose magnitudes can be
characterized at best subjectively. Explicitly, in big-ticket export transactions or
large-scale construction projects, the exporter or contractor will first submit a bid
B(T ) of say 100 million which is denominated in $US (a foreign currency from
the point of view of the decision maker) and which, if accepted, would give rise
to a transaction exposure (asset or liability) maturing at a point in time T , say 2
years ahead. The bid will in turn be accepted or rejected at time t , say 6 months
ahead (0 < t < T ), resulting in the transaction exposure which is uncertain until
the resolution (time) standing at the full amount B(T ) if the bid is accepted, or
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being cancelled if the bid is rejected. Effective management of such uncertain
exposures will require the existence of a futures market for foreign exchange
allowing contracts to be entered into or cancelled at any time t over the bidding
uncertainty resolution horizon 0 < t < T . The case of foreign acquisition is a spe-
cial case of the above more general problem with uncertainty resolution being
arbitrarily set at t = T . Problems in long-term foreign exchange risk manage-
ment – that is, long-term debt financing and debt refunding – in a multi-currency
world, although very important, is not always understood and hedged. As global
corporations expand operations abroad, foreign currency-denominated debt in-
struments become an integral part of the opportunities of financing options. One
may argue that in a multi-currency world of efficient markets, the selection of
the optimal borrowing source should be a matter of indifference, since nominal
interest rates reflect inflation rate expectations, which, in turn, determine the pat-
tern of the future spot exchange rate adjustment path. However, heterogeneous
corporate tax rates among different national jurisdictions, asymmetrical capital
tax treatment, exchange gains and losses, non-random central bank intervention
in exchange markets and an ever-spreading web of exchange controls render the
hypothesis of market efficiency of dubious operational value in the selection pro-
cess of the least-cost financing option. How then, should foreign debt financing
and refinancing decisions be made, since nominal interest rates can be mislead-
ing for decision-making purposes? Thus, a managerial framework is required,
allowing the evaluation of the uncertain cost of foreign capital debt financing as
a function of the ‘volatility’ (risk) of the currency denomination, the maturity of
the debt instrument, the exposed exchange rate appreciation/depreciation and the
level of risk aversion of the firm.

To do so, it will be useful to distinguish two sources of risk: internal and
external. Internal risk depends on a firm’s operations and thus that depends on
the exchange rate while external risk is independent of a firm’s operations (such
as a devaluation or the usual variations in exchange rates). These risks are then
expressed in terms of:

� Transaction risk, associated with the flow of funds in the firm
� Translation risk, associated with in-process, present and future transactions.
� Competition risk, associated with the firm’s competitive posture following a

change in exchange rates.

The actors in a foreign exchange (risk) market are numerous and must be
considered as well. These include the firms that import and export, and the in-
termediaries (such as banks), or traders. Traders behave just as market makers
do. At any instant, they propose to buy and sell for a price. Brokers are inter-
mediaries that centralize buy and sell orders and act on behalf of their clients,
taking the best offers they can get. Over all, foreign exchange markets are com-
petitive and can reach equilibrium. If this were not the case, then some traders
could engage in arbitrage, as we shall discuss later on. This means that some
traders will be able to make money without risk and without investing any
money.
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1.4.2 Currency risk

Currency risk is associated with variations in currency markets and exchange
rates. A currency is not risky because its depreciation is likely. If it were to de-
preciate for sure and there were to be no uncertainty as to its magnitude and
timing-there would not be any risk at all. As a result, a weak currency can be less
risky than a strong currency. Thus, the risk associated with a currency is related to
its randomness. The problems thus faced by financial analysts consist of defining
a reasonable measure of exposure to currency risk and managing it. There may
be several criteria in defining such an exposure. First, it ought to be denominated
in terms of the relevant amount of currency being considered. Second, it should
be a characteristic of any asset or liability, physical or financial, that a given in-
vestor might own or owe, defined from the investor’s viewpoint. And finally, it
ought to be practical. Currency risks are usually associated with macroeconomic
variables (such as the trade gap, political stability, fiscal and monetary policy,
interest rate differentials, inflation, leadership, etc.) and are therefore topics of
considerable political and economic analysis as well as speculation. Further, be-
cause of the size of currency markets, speculative positions may be taken by
traders leading to substantial profits associated with very small movements in
currency values. On a more mundane level, corporate finance managers operat-
ing in one country may hedge the value of their contracts and profits in another
foreign denominated currency by assuming financial contracts that help to relieve
some of the risks associated with currency (relative or absolute) movements and
shifts.

1.4.3 Credit risk

Credit risk covers risks due to upgrading or downgrading a borrower’s creditwor-
thiness. There are many definitions of credit risk, however, which depend on the
potential sources of the risk, who the client may be and who uses it. Banks in
particular are devoting a considerable amount of time and thoughts to defining
and managing credit risk. There are basically two sources of uncertainty in credit
risk: default by a party to a financial contract and a change in the present value
(PV) of future cash flows (which results from changes in financial market con-
ditions, changes in the economic environment, interest rates etc.). For example,
this can take the form of money lent that is not returned. Credit risk considera-
tions underlie capital adequacy requirements (CAR) regulations that are required
by financial institutions. Similarly, credit terms defining financial borrowing and
lending transactions are sensitive to credit risk. To protect themselves, firms and
individuals turn to rating agencies such as Standard & Poors, Moody’s or others
(such as Fitch Investor Service, Nippon Investor Service, Duff & Phelps, Thomson
Bank Watch etc.) to obtain an assessment of the risks of bonds, stocks and finan-
cial papers they may acquire. Furthermore, even after a careful reading of these
ratings, investors, banks and financial institutions proceed to reduce these risks
by risk management tools. The number of such tools is of course very large. For
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example, limiting the level of obligation, seeking collateral, netting, recouponing,
insurance, syndication, securitization, diversification, swaps and so on are some
of the tools a financial service firm or bank might use.

An exposure to credit risk can occur from several sources. These include an
exposure to derivatives products (such as options, as we shall soon define) in expo-
sures to the replacement cost (or potential increases in future replacement costs)
due to default arising from market adverse conditions and changes. Problems of
credit risk have impacted financial markets and global deflationary forces. ‘Wild
money’ borrowed by hedge funds faster than it can be reimbursed to banks has
created a credit crunch. Regulatory distortions are also a persistent theme over
time. Over-regulation may hamper economic activity. The creation of wealth,
while ‘under-regulation’ (in particular in emerging markets with cartels and few
economic firms managing the economy) can lead to speculative markets and finan-
cial distortions. The economic profession has been marred with such problems.
For example:

One of today’s follies, says a leading banker, is that the Basle capital adequacy regime provides
greater incentives for banks to lend to unregulated hedge funds than to such companies as IBM.
The lack of transparency among hedge funds may then disguise the bank’s ultimate exposure
to riskier markets. Another problem with the Basle regime is that it forces banks to reinforce
the economic cycle – on the way down as well as up. During a recovery, the expansion of bank
profits and capital inevitably spurs higher lending, while capital shrinkage in the downturn
causes credit to contract when it is most needed to business. (Financial Times, 20 October
1998, p. 17)

Some banks cannot meet international standard CARs. For example, Daiwa
Bank, one of Japan’s largest commercial banks, is withdrawing from all overseas
business partly to avoid having to meet international capital adequacy standards.
For Daiwa, as well as other Japanese banks, capital bases have been eroded by
growing pressure on them to write off their bad loans and by the falling value of
shares they hold in other companies, however, undermining their ability to meet
these capital adequacy standards.

To address these difficulties the Chicago Mercantile Exchange, one of the
two US futures exchanges, launched a new bankruptcy index contract (for credit
default) working on the principle that there is a strong correlation between credit
charge-off rates and the level of bankruptcy filings. Such a contract is targeted at
players in the consumer credit markets – from credit card companies to holders
of car loans and big department store groups. The data for such an index will be
based on bankruptcy court data.

1.4.4 Other risks

There are other risks of course, some of which are defined below while others
will be defined, explained and managed as we move along to define and use the
tools of risk and computational finance management.



14 POTPOURRI

Market risk is associated with movements in market indices. It can be due to a
stock price change, to unpredictable interest rate variations or to market liquidity,
for example.

Shape risk is applicable to fixed income markets and is caused by non-parallel
shifts of interest rates on straight, default-free securities (i.e. shifts in the term
structure of interest rates). In general, rates risks are associated with the set
of relevant flows of a firm that depend on the fluctuations of interest rates.
The debt of a firm, the credit it has, indexed obligations and so on, are a few
examples.

Volatility risk is associated with variations in second-order moments (such
as process variance). It reduces our ability to predict the future and can induce
preventive actions by investors to reduce this risk, while at the same time leading
others to speculate wildly. Volatility risk is therefore an important factor in the
decisions of speculators and investors. Volatility risk is an increasingly important
risk to assess and value, owing to the growth of volatility in stocks, currency and
other markets.

Sector risk stems from events affecting the performance of a group of securi-
ties as a whole. Whether sectors are defined by geographical area, technological
specialization or market activity type, they are topics of specialized research. An-
alysts seek to gain a better understanding of the sector’s sources of uncertainty
and their relationship to other sectors.

Liquidity risk is associated with possibilities that the bid–ask spreads on security
transactions may change. As a result, it may be impossible to buy or sell an asset
in normal market conditions in one period or over a number of periods of time.
For example, a demand for an asset at one time (a house, a stock) may at one time
be oversubscribed such that no supply may meet the demand. While a liquidity
risk may eventually be overtaken, the lags in price adjustments, the process at
hand to meet demands, may create a state of temporary (or not so temporary)
shortage.

Inflation risk: inflation arises when prices increase. It occurs for a large number
of reasons. For example, agents, traders, consumers, sellers etc. may disagree on
the value of products and services they seek to buy (or sell) thereby leading to
increasing prices. Further, the separation of real assets and financial markets can
induce adjustment problems that can also contribute to and motivate inflation.
In this sense, a clear distinction ought to be made between financial inflation
(reflected in a nominal price growth) and real inflation, based on the real terms
value of price growth. If there were no inflation, discounting could be constant (i.e.
expressed by fixed interest rates rather than time-varying and potentially random)
since it could presume that future prices would be sustained at their current level.
In this case, discounting would only reflect the time value of money and not the
predictable (and uncertain) variations of prices. In inflationary states, discounting
can become nonstationary (and stochastic), leading to important and substan-
tial problems in modelling, understanding how prices change and evolve over
time.

Importantly inflation affects economic, financial and insurance related issues
and problems. In the insurance industry, for example, premiums and benefits
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calculations induced by real as well as nominal price variations, i.e. inflation, are
difficult to determine. These variations in prices alter over time the valuation of
premiums in insurance contracts introducing a risk due to a lack of precise knowl-
edge about economic activity and price level changes. At the same time, changes
in the nominal value of claims distributions (by insurance contract holders), in-
creased costs of living and lags between claims and payment render insurance
even more risky. For example, should a negotiated insurance contract include
inflation-sensitive clauses? If not, what would the implications be in terms of
consumer protection, the time spans of negotiated contracts and, of course, the
policy premium? In this simple case, a policyholder will gradually face declining
payments but also a declining protection. In case of high inflation, it is expected
that the policyholder will seek a renegotiation of his contract (and thereby in-
creased costs for the insurer and the insured). The insurance firm, however, will
obtain an unstable stream of payments (in real terms) and a very high cost of
operation due to the required contract renegotiation. Unless policyholders are ex-
tremely myopic, they would seek some added form of protection to compensate
on the one hand for price levels changes and for the uncertainty in these prices
on the other. In other words, policyholders will demand, and firms will supply,
inflation-sensitive policies. Thus, inflation clearly raises issues and problems that
are important for both the insurer and the insured. For this reason, protection from
inflation risk, which is the loss at a given time, given an uncertain variation of
prices, may be needed. Since this is not a ‘loss’ per se, but an uncertainty regarding
the price, inflation-adjusted loss valuation has to be measured correctly. Further-
more, given an inflation risk definition, the apportioning of this risk between the
policyholder and the firm is also required, demanding an understanding of risk
attitudes and behaviours of insured and insurer alike. Then, questions such as:
who will pay for the inflation risk? how? (i.e. what will be the insurance policy
which accounts expressly for inflation) and how much? These issues require that
insurance be viewed in its inter-temporal setting rather than its static actuarial
approach.

To clarify these issues, consider whether an insurance firm should a priori
absorb the inflation risk pass it on to policyholders by an increased load factor
(premium) or follow a posterior procedure where policyholders increase payments
as a function of the published inflation rate, cost of living indices or even the value
of a given currency. These are questions that require careful evaluation.

1.5 FINANCIAL PHYSICS

Recently, domains such Artificial Intelligence, Data Mining and Computational
Tools, as well as the application of constructs and themes reminiscent of financial
problems, have become fashionable. In particular, a physics-like approach has
been devised to deal with selected financial problems (in particular with option
valuation, volatility smile and so on). The intent of physical models is to explain
(and thereby forecast) phenomena that are not explained by the fundamental
theory. For example, trading activity bursts, bubbles and long and short cycles, as
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well as long-run memory, that are poorly explained or predicted by fundamental
theory and traditional models are typical applications. The physics approach is es-
sentially a modelling approach, using metaphors and processes/equations used in
physics and finding their parallel in economics and finance. For example, an indi-
vidual consumer might be thought to be an atom moving in a medium/environment
which might correspond in economics to a market. The medium results from an
infinite number of atoms acting/interacting, while the market results from an infi-
nite number of consumers consuming and trading among themselves. Of course,
these metaphors are quite problematic, modelling simplifications, needed to ren-
der intractable situations tractable and to allow aggregation of the many atoms
(consumers) into a whole medium (market). There are of course many techniques
to reach such aggregation. For example, the use of Brownian motion (to represent
the uncertainty resulting from many individual effects, individually intractable),
originating in Bachelier’s early studies in 1905, conveniently uses the Central
Limit Theorem in statistics to aggregate events presumed independent. However,
this ‘seeming normality’, resulting from the aggregation of many independent
events, is violated in many cases, as has been shown in many financial data
analyses. For example, data correlation (which cannot be modelled or explained
easily), distributed (stochastic) volatility and the effects of long-run memory
not accounted for by traditional modelling techniques, etc. are such cases. In
this sense, if there is any room for financial physics it can come only after the
failure of economic and financial theory to explain financial data. The contri-
bution of physics to finance can be meaningful only by better understanding of
finance – however complex physical notions may be. The true test is, as always, the
‘proof of the pudding’; in other words, whether models are supported by the evi-
dence of financial data or making money where no one else thought money could
be made.
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CHAPTER 2

Making Economic
Decisions under
Uncertainty

2.1 DECISION MAKERS AND RATIONALITY

Should we invest in a given stock whose returns are hardly predictable? Should
we buy an insurance contract in order to protect ourselves from theft? How much
should we be willing to pay for such protection? Should we be rational and reach
a decision on the basis of what we know, or combine our prior and subjective
assessment with the unfolding evidence? Further, do we have the ability to use a
new stream of statistical news and trade intelligently? Or ‘bound’ our procedures?
This occurs in many instances, for example, when problems are very complex,
outpacing our capacity to analyse them, or when information is so overbearing
or so limited that one must take an educated or at best an intuitive guess. In
most cases, steps are to be taken to limit and ‘bound’ our decision processes
for otherwise no decision can be reached in its proper time. These ‘bounds’ are
varied and underlie theories of ‘bounded rationality’ based on the premise that
we can only do the best we can and no better! However, when problems are
well defined, when they are formulated properly – meaning that the alternatives
are well-stated, the potential events well-established, and their conditional con-
sequences (such as payoffs, costs, etc.) are determined, we can presume that a
rational procedure to decision making can be followed. If, in addition, the uncer-
tainties inherent in the problem are explicitly stated, a rational decision can be
reached.

What are the types of objectives we may consider? Although there are several
possibilities (as we shall see below) it is important to understand that no criterion
is the objectively correct one to use. The choice is a matter of economic, individual
and collective judgement – all of which may be imbued with psychological and
behavioural traits. Utility theory, for example (to be seen in Chapter 3), provides
an approach to the selection of a ‘criterion of choice’ which is both consistent
and rational, making it possible to reconcile (albeit not always) a decision and its
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economic and risk justifications. It is often difficult to use, however, as we shall
see later on for it requires parameters and an understanding of human decision
making processes that might not be available.

To proceed rationally it is necessary for an individual decision-maker (an in-
vestor for example) to reach a judgement about: the alternatives available, the
sources of uncertainties, the conditional outcomes and preferences needed to
order alternatives. Then, combine them without contradicting oneself (i.e. by
being rational) in selecting the best course of action to follow. Further, to be ratio-
nal it is necessary to be self-consistent in stating what we believe or are prepared
to accept and then accept the consequences of our actions. Of course, it is possi-
ble to be ‘too rational’. For example, a decision maker who refuses to accept any
dubious measurements or assumptions will simply never make a decision! He
then incurs the same consequences as being irrational. To be a practical investor,
one must accept that there is a ‘bounded rationality’ and that an investment will
in the end bear some risk one did not plan on assuming. This understanding is
an essential motivation for financial risk management. That is, we can only be
satisfied that we did the best possible analysis we could, given the time, the in-
formation and the techniques available at the time the decision to invest (or not)
was made. Appropriate rational decision-making approaches, whether these are
based on theoretical and/or practical considerations, would thus recognize both
our capacities and their limit.

2.1.1 The principles of rationality and bounded rationality

Underlying rationality is a number of assumptions that assume (Ariel Rubinstein,
1998):

� knowledge of the problem,
� clear preferences,
� an ability to optimize,
� indifference to equivalent logical descriptions of alternative and choice sets.

Psychologists and economists have doubted these. The fact that decisions are
not always rational does not mean that there are no underlying procedures to the
decision-making process. A systematic approach to departures from rationality
has been a topic of intense economic and psychological interest of particular
importance in finance, emphasizing ‘what is’ rather than ‘what ought to be’.

For example, decision-makers often have a tendency to ‘throw good money
after bad’, also known as sunk costs. Although it is irrational, it is often practised.
Here are a few instances: Having paid for the movie, I will stay with it, even
though it is a dreadful and time-consuming movie. An investment in a stock,
even if it has failed repeatedly, may for some irrational reason generate a loyalty
factor. The reason we are so biased in favour of bringing existing projects to
fruition irrespective of their cost is that such behaviour is imbedded in our brains.
We resist the conceptual change that the project is a failure and refuse to change
our decision process to admit such failure. The problem is psychological: once we



DECISION MAKERS AND RATIONALITY 21

have made an irreversible investment, we imbue it with extra value, the price of
our emotional ‘ownership’. There are many variations of this phenomenon. One
is the ‘endowment effect’ in which a person who is offered $10 000 for a painting
he paid only $1000 for refuses the generous offer. The premium he refuses is
accounted for by his pride in an exceptionally good judgement—truly, perhaps
the owner’s wild fantasy that make such a painting wildly expensive. Similarly,
once committed to a bad project one becomes bound to its outcome. This is
equivalent to an investor to being OTM (on the money) in a large futures position
and not exercising it. Equivalently, it is an alignment, not bounded by limited
responsibility, as would be the case for stock options traders; and therefore it
leads to maintaining an irrational risky position.

Currently, psychology and behavioural studies focus on understanding and pre-
dicting traders’ decisions, raising questions regarding markets’ efficiency (mean-
ing: being both rational and making the best use of available information) and
thereby raising doubts regarding the predictive power of economic theory. For ex-
ample, aggregate individual behaviour leading to herding, black sheep syndrome,
crowd psychology and the tragedy of the commons, is used to infuse a certain
reality in theoretical analyses of financial markets and investors’ decisions. It is
with such intentions that funds such as ABN AMRO Asset Management (a fund
house out of Hong Kong) are proposing mutual investment funds based on ‘be-
havioural finance principles’ (IHT Money Report, 24–25 February 2001, p. 14).
These funds are based on the assumption that investors make decisions based on
multiple factors, including a broad range of identifiable emotional and psycho-
logical biases. This leads to market mechanisms that do not conform to or are
not compatible with fundamental theory (as we shall see later on) and therefore,
provide opportunities for profits when they can be properly apprehended. The
emotional/psychological factors pointed out by the IHT article are numerous.
‘Investors’ mistakes are not due to a lack of information but because of mental
shortcuts inherent in human decision-making that blinds investors. For example,
investors overestimate their ability to forecast change and they inefficiently pro-
cess new information. They also tend to hold on to bad positions rather than
admit mistakes.’ In addition, image bias can keep investors in a stock even when
this loyalty flies in the face of balance sheet fundamentals. Over-reaction to news
can lead investors to dump stocks when there is no rational reason for doing so.
Under-reaction is the effect of people’s general inability to admit mistakes. This is
a trait that is also encountered by analysts and fund managers as much as individ-
ual investors. These factors are extremely important for they underlie financial
practice and financial decision-making, drawing both on theoretical constructs
and an appreciation of individual and collective (market) psychology. Thus, to
construct a rational approach to making decisions, we can only claim to do the
best we can and recognize that, however thorough our search, it is necessarily
bounded.

Rationality is also a ‘bounded’ qualitative concept that is based on essen-
tially three dimensions: analysis of information, perception of risk and decision-
making. It may be defined and used in different ways. ‘Classical rationality’,
underlying important economic and financial concepts such as ‘rational
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expectations’ and ‘risk-neutral pricing’ (we shall attend to this later on in great
detail), suppose that the investor/decision maker uses all available information,
perceives risk without bias and makes the best possible investment decision he
can (given his ability to compute) with the information he possesses at the time
the decision is made. By contrast, a ‘Bayesian rationality’, which underlies this
chapter, has a philosophically different approach. Whereas ‘rational expectations’
supposes that an investor extrapolates from the available information the true dis-
tribution of payoffs, Bayesian rationality supposes that we have a prior subjective
distribution of payoffs that is updated through a learning mechanism with un-
folding new information. Further, ‘rational expectations’ supposes that this prior
or subjective distribution is the true one, imbedding future realizations while the
Bayes approach supposes that the investor’s belief or prior distribution is indeed
subjective but evolving through learning about the true distribution. These ‘dif-
ferences of opinion’ have substantive impact on how we develop our approach
to financial decision making and risk management. For ‘rational expectations’,
the present is ‘the present of the future’ while Bayesian rationality incorporates
learning from one’s bias (prejudice or misconception) into risk measurement and
hence decision making, the bias being gradually removes uncertainty as learning
sets in. In this chapter we shall focus our attention on Bayes decision making
under uncertainty.

2.2 BAYES DECISION MAKING

The basic elements of Bayes rational decision making involve behaviours includ-
ing:

(1) A decision to be taken from a set of known alternatives.
(2) Uncertainty defined in terms of events with associated known (subjective)

probabilities.
(3) Conditional consequences resulting from the selection of a decision and the

occurrence of a specific event (once uncertainty, ex-post, is resolved).
(4) A preference over consequences, i.e. there is a well-specified preference

function or procedure for selecting a specific alternative among a set of
given alternatives.

An indifferent decision maker does not really have a problem. A problem arises
when certain outcomes are preferred over others (such as making more money
over less) and when preferences are sensitive to the risks associated with such
outcomes. What are these preferences? There are several possibilities, each based
on the information available – what is known and not known and how we balance
the two and our attitude toward risk (or put simply, how we relate to the probabili-
ties of uncertain outcomes, their magnitude and their adverse consequences). For
these reasons, risk management in practice is very important, impacting events’
desirability and their probabilities. There are many ways to do so, as we shall see
below.
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2.2.1 Risk management

Risk results from the direct and indirect adverse consequences of outcomes and
events that were not accounted for, for which we are ill-prepared, and which
effects individuals, firms, financial markets and society at large. It can result
from many reasons, both internally induced and occurring externally. In the for-
mer case, consequences are the result of failures or misjudgements, while, in
the latter, these are the results of uncontrollable events or events we cannot pre-
vent. As a result, a definition of risk involves (i) consequences, (ii) their prob-
abilities and their distribution, (iii) individual preferences and (iv) collective,
market and sharing effects. These are relevant to a broad number of fields as
well, each providing an approach to measurement, valuation and minimization
of risk which is motivated by psychological needs and the need to deal with
problems that result from uncertainty and the adverse consequences they may
induce.

Risk management is broadly applied in finance. Financial economics, for ex-
ample, deals intensively with hedging problems in to order eliminate risks in a
particular portfolio through a trade or a series of trades, or through contractual
agreements reached to share and induce a reduction of risk by the parties in-
volved. Risk management consists then in using financial instruments to negate
the effects of risk. It might mean a judicious use of options, contracts, swaps,
insurance contracts, investment portfolio design etc. so that risks are brought to
bearable economic costs. These tools cost money and, therefore, risk management
requires a careful balancing of the numerous factors that affect risk, the costs of
applying these tools and a specification of (or constraints on) tolerable risks an
economic optimization will be required to fulfil. For example, options require
that a premium be paid to limit the size of losses just as the insured are required
to pay a premium to buy an insurance contract to protect them in case an adverse
event occurs (accidents, thefts, diseases, unemployment, fire, etc.). By the same
token, ‘value at risk’ (see Chapter 10) is based on a quantile risk constraint, which
provides an estimate of risk exposure. Each profession devises the tools it can
apply to manage the more important risks to which it is subjected.

The definition of risk, risk measurement and risk management are closely
related, one feeding the other to determine the proper/optimal levels of risk. In
this process a number of tools are used based on:

� ex-ante risk management,
� ex-post risk management and
� robustness.

Ex-ante risk minimization involves the application of preventive controls; pre-
ventive actions of various forms; information seeking, statistical analysis and
forecasting; design for reliability; insurance and financial risk management etc.
Ex-post risk minimization involves by contrast control audits, the design of op-
tional, flexible-reactive schemes that can deal with problems once they have
occurred and limit their consequences. Robust design, unlike ex-ante and ex-post
risk minimization, seeks to reduce risk by rendering a process insensitive to its



24 MAKING ECONOMIC DECISIONS UNDER UNCERTAINTY

adverse consequences. Thus, risk management consists of altering the states a
system many reach in a desirable manner (financial, portfolio, cash flow etc.),
and their probabilities or reducing their consequences to planned or economi-
cally tolerable levels. There are many ways to do so, however, each profession
devises the tools it can apply or create a market for. For example, insurance firms
use reinsurance to share the risks insured while financial managers use derivative
products to contain unsustainable risks.

Risk management tools are applied in insurance and finance in many ways.
Control seeks to ascertain that ‘what is intended occurs’. It is exercised in a number
of ways rectifying decisions taken after a nonconforming event or problem has
been detected. For example, auditing a trader, controlling a portfolio performance
over time etc. are such instances. The disappearance of $750 million at AIB
(Allied Irish Bank) in 2002 for example, accelerated implementation of control
procedures within the bank and its overseas traders.

Insurance is a medium or a market for risk, substituting payments now for po-
tential damages (reimbursed) later. The size of such payments and the potential
damages that may occur with various probabilities, can lead to widely dis-
tributed market preferences and thereby to a possible exchange between decision-
makers of various preferences. Insurance firms have recognized the opportuni-
ties of such differences and have, therefore, provided mechanisms for pooling,
redistributing and capitalizing on the ‘willingness to pay to avoid losses’. It is
because of such attitudes, combined with goals of personal gain, social welfare
and economic efficiency, that markets for fire and theft insurance, as well as
sickness, unemployment, accident insurance, etc., have come to be as impor-
tant as they are today. It is because of persons’ or institutions’ desires to avoid
too great a loss (even with small probabilities), which would have to be borne
alone, that markets for reinsurance (i.e., sub-selling portions of insurance con-
tracts) and mutual protection insurance (based on the pooling of risks) have also
come into being. Today, risk management in insurance has evolved and is much
more in tune with the valuation of insurance risks by financial markets. Under-
standing the treatment of risk by financial markets; the ‘law of the single price’
(which we shall consider below); risk diversification (when is is possible) and
risk transfer techniques using a broad set of financial instruments currently used
and traded in financial markets; the valuation of risk premiums and the estimation
of yield curves (see also Chapter 8); mastering financial statistical and simula-
tion techniques; and finally devising applicable risk metrics and measurement
approaches for insurance firms – all have become essential for insurance risk
management.

While insurance is a passive form of risk management, based on exchange
mechanisms only (or, equivalently, ‘passing the buck’ to some willing agent),
loss prevention and technological innovations are active means of managing risks.
Loss prevention is a means of altering the probabilities and the states of undesir-
able, damaging states. For example, maintaining one’s own car properly is a form
of loss prevention seeking to alter the chances of having an accident. Similarly,
driving carefully, locking one’s own home effectively, installing fire alarms, etc.
are all forms of loss prevention. Of course, insurance and loss prevention are, in
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fact, two means to the similar end of risk protection. Car insurance rates tend,
for example, to be linked to a person’s past driving record. Certain clients (or
areas) might be classified as ‘high risk clients’, required to pay higher insurance
fees. Inequities in insurance rates will occur, however, because of an imperfect
knowledge of the probabilities of damages and because of the imperfect distribu-
tion of information between the insured and insurers. Thus, situations may occur
where persons might be ‘over-insured’ and have no motivation to engage in loss
prevention. Such outcomes, known as ‘moral hazard’ (to be seen in greater detail
in Chapter 3), counter the basic purposes of insurance. It is a phenomenon that
can recur in a society in widely different forms, however. Over-insuring unem-
ployment may stimulate persons not to work, while under-insuring may create
uncalled-for social inequities. Low car insurance rates (for some) can lead to
reckless driving, leading to unnecessary damages inflicted on others, on public
properties, etc. Risk management, therefore, seeks to ensure that risk protection
does not become necessarily a reason for not working. More generally, risk man-
agement in finance considers both risks to the investor and their implications
for returns, ‘pricing one at the expense of the other’. In this sense, finance, has
gone one step further in using the market to price the cost an investor is willing
to sustain to prevent the losses he may incur. Financial instruments such as op-
tions provide a typical example. For this reason, given the importance of financial
markets, many insurance contracts have to be reassessed and valued using basic
financial instruments.

Technological innovation means that the structural process through which a
given set of inputs is transformed into an output is altered. For example, building
a new six-lane highway can be viewed as a way for the public to change the
‘production-efficiency function’ of transport servicing. Environmental protection
regulation and legal procedures have, in fact, had a technological impact by
requiring firms to change the way in which they convert inputs into outputs,
by considering as well the treatment of refuse. Further, pollution permits have
induced companies to reduce their pollution emissions in a given by-product and
sell excess pollution to less efficient firms.

Forecasting, learning, information and its distribution is also an essential in-
gredient of risk management. Banks learn every day how to price and manage risk
better, yet they are still acutely aware of their limits when dealing with complex
portfolios of structured products. Further, most non-linear risk measurement and
assessment are still ‘terra incognita’ asymmetries. Information between insured
and insurers, between buyers and sellers, etc., are creating a wide range of op-
portunities and problems that provide great challenges to risk managers and, for
some, ‘computational headaches’ because they may be difficult to value. These
problems are assuming added importance in the age of internet access for all
and in the age of ‘total information accessibility’. Do insurance and credit card
companies have access to your confidential files? Is information distribution now
swiftly moving in their favour? These are issues creating ‘market inefficiencies’
as we shall see in far greater detail in Chapter 9.

Robustness expresses the insensitivity of a process to the randomness of pa-
rameters (or mis-specification of the model) on which it is based. The search for
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robust solutions and models has led to many approaches and techniques of opti-
mization. Techniques such as VaR (Value at Risk), scenario optimization, regret
and ex-post optimization, min-max objectives and the like (see Chapter 10) seek
to construct robust systems. These are important tools for risk management; we
shall study them here at length. They may augment the useful life of a portfolio
strategy as well as provide a better guarantee that ‘what is intended will likely
occur’, even though, as reality unfolds over time, working assumptions made
when the model was initially constructed turn out to be quite different.

Traditional decision problems presume that there are homogeneous decision
makers, deciding as well what information is relevant. In reality, decision makers
may be heterogeneous, exhibiting broadly varying preferences, varied access to
information and a varied ability to analyse (forecast) and compute it. In this envi-
ronment, decision-making becomes an extremely difficult process to understand
and decisions become difficult to make. For example, when there are few major
traders, the apprehension of each other’s trades induces an endogenous uncer-
tainty, resulting from a mutual assessment of intentions, knowledge, knowhow
etc. A game may set in based on an appreciation of strategic motivations and
intentions. This may result in the temptation to collude and resort to opportunistic
behaviour.

2.3 DECISION CRITERIA

The selection of a decision criterion is an essential part of DMUU, expressing
decision-makers’ impatience and attitudes towards uncertain outcomes and valu-
ing them. Below we shall discuss a few commonly used approaches.

2.3.1 The expected value (or Bayes) criterion

Preferences for decision alternatives are expressed by sorting their expected out-
comes in an increasing order. For monetary values, the Expected Monetary Value
(or EMV) is calculated and a choice is made by selecting the greatest EMV. For
example, given an investment of 3 million dollars yielding an uncertain return
one period hence (with a discount rate of 7%), and given in the returns in the table
below, what is the largest present expected value of the investment? For the first,
alternative we calculate the EMV of the investment one period hence and obtain:
EMV = 4.15. The current value of the investment is thus equal to the present
value of the expected return (EMV less the cost of the investment) or:

V (I ) = (1 + r )−1EMV − I = 4.15 * (1 + 0.07)−1 − 3 = 0.878

Probability 0.10 0.20 0.30 0.15 0.15 0.10

Return −4 −1 5 7 8 10

When there is more than one alternative (measured by the initial outlay and
forecasting of future cash flows), a decision is then reached by comparing the



DECISION CRITERIA 27

economic properties of each investment alternative. For example, consider another
investment proposal consisting of an initial outlay of 1 million dollars only (rather
than 3) with a prospective cash flow given by the following:

Probability 0.10 0.20 0.30 0.15 0.15 0.10

Return −8 −3 5 3 4 8

If we maintain the same EMV criterion, we note that:

V (I ) = (1 + r )−1EMV − I = 1.95 * (1 + 0.07)−1 − 1 = 0.822

which clearly ranks the first investment alternative over the second (in terms of
the EMV criterion). In both cases the EMV is positive and therefore both projects
seem to be economically worthwhile. There may be other considerations, for
example, an initial outlay of 3 (rather than 1) million dollars for sure compared
to an uncertain cash flow in the future (with prospective potential losses, albeit
probabilistic, in the future). The attidude towards these losses are often important
considerations to consider as well. Such considerations require the application
of other criteria for decision making, as we shall briefly outline below. Note that
it is noteworthy that such an individual approach does not deal with the market
valuation of such cash flow streams and expresses only an individual’s judgement
(and not market valuation of the cash flow, that is the consensus of judgements
of participants on a market price). Financial analysis, as we shall see subse-
quently, provides a market-sensitive discounting to these uncertain streams of
cash.

2.3.2 Principle of (Laplace) insufficient reason

The Laplace principle states that, when the probabilities of the states of nature
in a given problem are not known, we assume they are equally likely. In other
words, a state of utmost ignorance will be replaced by assigning to each potential
state the same probability! In this case, when we return to our first investment
project, we are faced with the following prospect:

Probability 0.166 0.166 0.166 0.166 0.166 0.166

Return −4 −1 5 7 8 10

and its present EMV is,

V (I ) = (1 + r )−1EMV − I = 5 * (1 + 0.07)−1 − 3 = 1.672

which implies that ‘not knowing’ can be worth money! This is clearly not the case,
since reaching a decision on this basis can lead to losses since the probability we
have assumed are not necessarily the true ones. Gathering information in these
cases may be useful, since it may be used to reduce the potential (miscalculated)
expected losses.
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2.3.3 The minimax (maximin) criterion

The criterion consists in selecting the decision that will have the least maximal loss
regardless of what future (state) may occur. It is used when we seek protection from
the worst possible events and expresses generally an attitude of abject pessimism.
Consider again the two investment projects with cash flows I and II specified
below and for simplicity, assume that they require initially the same investment
outlay. The flows to compare are:

Probability 0.10 0.20 0.30 0.15 0.15 0.10

Return I −4 −1 −5 −7 8 10

Return II −8 −1 5 7 8 10

The worst prospect in the first project is −7 million dollars while it is –8 million
dollars in the second project. The minimum of the maximum loss is therefore −7
million dollars, which provides a criterion (albeit very pessimistic) justifying the
selection of the first investment project.

The minimax criterion takes the smallest of the available maximums. In this
case, the projects have an equal maximum value and the investor is indifferent
between the two. It is a second-best objective. Who cares about getting the gold
medal as long as we get the silver! Honour is safe and the player satisfied. This
criterion can be extended using this sporting analogy. A bronze is third best, good
enough; while fourth best may be just participating, providing a reward in itself.
Maximin is a loss-averse mindset. As long as we do get the best of all worst
possible outcomes the investor is satisfied.

2.3.4 The maximax (minimin) criterion

This is an optimist’s criterion, banking on the best possible future, yielding the
hoped for largest possible profits. It is based on the belief or the urge to profit as
much as possible, regardless of the probability of desirable or other events. Again,
returning to our previous example, we note that both projects have a maximal
gain of 10 million dollars and therefore the maximum–maximum gain (maximax
criterion) will indicate indifference in selecting one or the other project, as was
the case for the minimax criterion. As Voltaire’s Candide would put it: ‘We live
in the best of all possible worlds’ as he travelled in a world ravaged by man, as a
prelude story to the French Revolution.

The minimin criterion is a pessimist’s point of view. Regardless of what hap-
pens, only the worst case can happen. On the upside, such a point of view, leads
only to upbeat news. My house has not burned today! Amazing!

2.3.5 The minimax regret or Savage’s regret criterion

The previous criteria involving maximums and minimums were evaluated ex-ante.
In practice, payoffs and probabilities are not easily measured. Thus, these criteria
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express a philosophical outlook rather than an objective to base a decision on. Ex-
post, unlike ex-ante, decision-making is reached once information is revealed and
uncertainty is resolved. Each decision has then a regret defined by the difference
between the gain made and the gain that could have been realized had we selected
the best decision (associated with the event that actually occurs). An expected
‘regret’ decision-maker would then seek to minimize the expectation of such a
regret, while a minimax regret decision-maker would seek to select the decision
providing the least maximal regret.

The cost of a decision’s regret represents the difference between the ex-ante
payoffs that would be received with a given outcome compared to the maximum
possible ex-post payoff received. Savage, Bell and Loomes and Sugden (see ref-
erences) have pointed out the relevance of this criterion to decision-making under
uncertainty by suggesting that decision makers may select an act by minimizing
the regrets associated with potential decisions. Behaviourally, such a criterion
would be characteristic of people attached to their past. Their past mistakes haunt
their present day, hence, they do the best they can to avoid them in the future.
Specifically, assume that we select an action (decision) and some event occurs.
The decision/event combination generates a payoff table, expressing the condi-
tional consequences of that decision when, ex-post, the event occurs. For example,
the following table gives the payoff on a portfolio dependent on two different de-
cisions on the portfolio allocation.

Event A Event B Event C Event D Event E Event F

Probability 0.10 0.20 0.30 0.15 0.15 0.10

Return I −3 −1 −5 −7 8 10

Return II −8 1 6 7 8 12

The decision/event combination may then generate a ‘regret’ for the decision –
for it is possible that we could have done better! Was decision 1 the better one?
This is an opportunity loss, since a profit could have been made – had we known
what events were to occur. If event B is the one that happens then clearly, based
on an ex-post basis, decision 2 is the better one. If decisions were reversible then
it might be possible to compensate (at least partially) for the fact that we took, a
posteriori, a ‘wrong’ decision. Such a characteristic is called ‘flexibility’ and is
worth money that decision makers are willing to pay for. What would I be willing
to pay to have taken effectively decision 1 instead of 2 when event B happens?
Options for example, provide such an opportunity, as we shall see in Chapter 6.
An option would give us the right but not the obligation to make a decision in the
future, once uncertainty is resolved. In most cases, these are decisions to sell or
buy. But applications to real world problems have led to options to switch from
one technology to another for example.

For example, say that we expect the demand for a product to grow significantly,
and as a result we decide to expand the capacity of our plants. Assume that in
fact, this expectation for demand growth does not materialize and we are left with
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a large excess capacity, unable to reduce it except at a substantial loss. What can
we do then, except regret our decision! Similarly, assume that we expect peace
to come on earth and decide to spend less on weapons development. Optimism,
however much it may be wanted, may not, unfortunately, be justified and instead
we find ourselves facing a war for which we may be ill-prepared. What can we
do? Not much, except regret our decision. The regret (also called the Savage
regret) criterion, then, seeks to minimize the regret we may have in adopting
a decision. This explains why some actions are taken to reduce the possibility
of such extreme regrets (as with the buying of insurance, steps taken to reduce
the risks of bankruptcy, buying options to limit downside risk, in times of peace
prepare for war – Sun-Tze and so on). Examples to this effect will be considered
below using the opportunity loss table in the next section (Table 2.3).

Example: Regret and the valuation of firms
Analysts’ valuation of stocks are growing in importance. Analyst recommenda-
tions have a great impact on investors, but their effects are felt particularly when
analysts are ‘disappointed’ by a stock performance and revise their recommenda-
tions downwards. In these cases, the effects can be disastrous for the stock price
in consideration. In practice, analysts use a number of techniques that are based
on firms’ reports. Foremost is the net return multiple factor. It is based on the ratio
of the stock value of the firm to its net return. The multiple factor is then selected
by comparing firms that have the same characteristics. It is then believed that the
larger the risk, the smaller the multiple factor. In practice, analysts price stocks
quite differently. A second technique is based on the firm’s future discounted (at
the firm’s internal rate of return) cash flow. In practice, the future cash flow is
based on forecasts that may not be precise. Finally, the third technique is based
on assets value (which is the most conservative one). In other words, there is not
a uniform agreement regarding which objective to use in valuing a firm’s stock.
Financial fundamental theory has made an important contribution by providing
a set of proper circumstances to resolve this issue. This will be considered in
Chapter 6 in particular.

Example: The firm and risk management
Consider a firm operating in a given industry. Evidently, competition with other
firms, as well as explicit (or implicit) government intervention through regulation,
tax rebates for special environmental protection investments, grants or subsidized
capital budgets in distress areas, etc., are instances where firms are required to
be sensitive to uncertainty and risk. Managers, of course, will seek to reduce
and manage the risk implied by such uncertainty and seek ways to augment the
market control (by vertical integration, acquisition of competition, etc.), or they
may diversify risks by seeking activities in unrelated markets.

In the example Table 2.1 we have constructed a list of uncertainties and risks
faced by firms and how these may be met. The list provided is by no means exhaus-
tive and provides only an indication of the kind of problems that we can address.
For example, competition can be an important source of risk which may be met by
many means such as strategic M & A, collusion practices, diversification an so on.
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Table 2.1 Sources of uncertainty and risks.

Uncertainty and risks Protective actions taken

Long-range changes in market
growth

Research and development on new products,
diversification to other markets

Inflation Indexation of assets, and accounts receivable

Price uncertainty of
input materials

Building up inventory, contract with suppliers
(essentially futures), buying options and hedging techniques

Competition Mergers and acquisition, cartels, price-fixing,
advertising and marketing effort, diversification

2.4 DECISION TABLES AND SCENARIO ANALYSIS

Decision tables and trees are simple mechanisms for structuring some decision
problems involving uncertainty and solving them. It requires that an objective,
the problem’s states and probabilities be given. To construct a payoff table we
proceed as follows:

� Identify the alternative courses of action, mutually exclusive, and collectively
exhaustive, which are variables (at least two) we can control directly.

� Consider all possible and relevant states of a problem. Each state represents one
and only one potential event; each state may itself be defined in terms of multi-
ple other states, however; states represent events which are mutually exclusive;
they are collectively exhaustive; one and only one state will actually result.

� Assign to each state a probability of occurrence. This probability should be
based on the information we have regarding the problem and, since states are
mutually exclusive and collectively exhaustive, these probabilities (summed
over all states) should be equal to one.

All conditional (payoff or cost) consequences are then assembled in a table for-
mat – see Table 2.2 where [ci j ] are the conditional costs of alternative i if event
j occurs.

Table 2.2 The payoff table.

States 1 2 3 . . . . . . . . . n

Probabilities p1 p2 p3 . . . . . . . . . pn

A1 c11 c12 c13 . . . . . . . . . c1n

A2 c21 c22 c23 . . . . . . . . . c2n

A3 c31 c32 c33 . . . . . . . . . c3n

. . . . . . . . . . . . . . . . . . . . . . . .

Am cm1 cm2 cm3 cmn
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For example, for a credit manager, what are the relevant states to consider
when a customer comes in and demands a loan? Simply grant the loan (state 1)
or not (state 2). If the loan is not reimbursed on time (and reimbursement delays
are introduced) there may be other ways to express these states. For example,
a first state would stand for no delay, a second, would stand for a one-period
delay, a third state for a two-period delay, and so on. The entries in the table tell
us what will be the conditional payoffs (or costs) associated with each action.
The sample Table 2.2 specifies n states 1, 2, 3, 4, . . . n and m alternatives. When
alternative Ai , i = 1, 2, . . . , m is taken and say state j occurs with probability
p j , j = 1, 2, . . . , n, then the cost (or payoff) is ci j (orπi j ). Thus, in such a decision
problem, there are:

(1) n potential, mutually exclusive and exhaustive states,
(2) m alternative actions, one of which only can be selected,
(3) nm conditional consequences we should be able to define.

If we use an expected cost (or expected payoff) criterion, then the decision selected
would be the one yielding the least expected cost (or, equivalently, the largest
expected payoff). The expected monetary cost of alternative i is then:

EMCi =
n∑

j=1

pi j ci j

while the least cost alternative k selected is:

k ∈ Mini∈[1,..n] {EMCi }
Problem
Cash management consists of managing the short-term flow of funds in order to
meet a potential need or demand for cash. Cash is kept primarily because of its
need in the future. Assume, for example, that an investor has the following needs
for money:

Quantities 100 300 500 700 900

Probabilities 0.05 0.25 0.50 0.15 0.05

(1) What are the potential courses of action?
(2) What are the problem states? And their probabilities?
(3) What are the conditional costs if the bank rate is 20 % yearly?

2.4.1 The opportunity loss table

Say that action i has been selected and event j occurs and thus payoff πi j is gained.
If we were equipped with this knowledge prior to making a decision, it is possible
that another decision would bring greater profits. Assume such knowledge and
let the maximum payoff, based on the best decision be

Max
j

[πi j ]
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Table 2.3 Opportunity loss table.

States 1 2 3 . . . . . . . . . n

Probabilities p1 p2 p3 . . . . . . . . . pn

A1 l11 l12 l13 . . . . . . . . . l1n

A2 l21 l22 l23 . . . . . . . . . l2n

A3 l31 l32 l33 . . . . . . . . . l3n

. . . . . . . . . . . . . . . . . . . . . . . .

Am lm1 lm2 lm3 lmn

The difference between this maximum payoff and the payoff obtained by taking
any other decision is called the opportunity loss, denoted by:

li j = Max
j

[πi j ] − πi j

The opportunity loss table is therefore a matrix as given in Table 2.3.
Thus, the opportunity loss is the difference between the costs or profits actually

realized and the costs or profits which would have been realized if the decision
had been the best one possible. A project might seem like a good investment, but
it means that we have lost the opportunity to do something else that might be more
profitable. This loss may be likened to the additional income a trader would have
realized had he been an inside trader, benefiting from information regarding stock
prices before they reach the market! As a result, we can verify that the difference
between the expected profits of any two acts is equal in magnitude but opposite
in sign to the difference between their expected losses. By the same token, the
difference between the expected costs of any two acts is equal in magnitude
and identical in sign to the difference between their expected opportunity losses.
With these definitions on hand we can also state that: the cost of uncertainty is the
expected opportunity loss of the best possible decision under a given probability
distribution.

2.5 EMV, EOL, EPPI, EVPI

EMV, EOL, EPPI and EVPI are terms associated with a decision; they will be
elucidated through an application. Assume that data supplied by a Port Authority
points to a number of development alternatives for the port. Uncertainty regard-
ing the economic state of the country, geopolitical developments and so on, lead
to a number of scenarios to be considered and against which each of these al-
ternatives must be assessed. Each alternative can generate, ex-post, a sense of
satisfaction at having followed the proper course of action as well as a sense that
a suboptimal alternative was taken. Four scenarios are assumed each to lead to
the following results, summarized in the table below where entries are payoffs
(losses):
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Scenario 1 2 3 4 5 6

Probability 0.1 0.15 0.25 0.05 0.3 0.15

Alternative 1 –200 –100 150 400 –300 700

Alternative 2 300 –150 300 600 100 500

Alternative 3 –500 300 400 –100 400 100

Alternative 4 400 600 –100 –250 –300 100

2.5.1 The deterministic analysis

An alternative is selected irrespective of the probabilities of forthcoming events.
Given a number of alternatives and specified events, a decision can be taken. A
number of criteria are used, such as maximax, maximin, minimax regret and the
‘equally likely’ (Laplace) criteria as stated earlier. Under these criteria, we see
that alternatives 1 and 2 are always better than alternatives 3 and 4. Explicitly, the
following results are obtained:

Criterion Decision Payoff

Maximax Alternative 1 700

Maximin Alternative 2 −150

Minimax regret Alternative 1 700

Equally likely Alternative 2 275

2.5.2 The probabilistic analysis

Probabilistic analysis characterizes the likelihood of forthcoming events by asso-
ciating a probability with each event. It uses a number of potential criteria but we
shall be concerned essentially with the EMV – expected monetary value index of
performance. The results for our example are given by the following:

Probabilistic analysis: The Port Authority
Expected value – Summary report
Decision Expected payoff
Alternative 1 37.50
Alternative 2 217.50
Alternative 3 225.00 *
Alternative 4 17.50

Calculations were made as follows:
Alternative 1: 0.1(−200) + 0.15(−100) + 0.25(150) + 0.05(400) + 0.3(−300) + 0.15(700) = 37.50
Alternative 2: 0.1(300) + 0.15(−150) + 0.25(300) + 0.05(600) + 0.3(100) + 0 .15(500) = 217.50
Alternative 3: 0.1(−500) + 0.15(300) + 0.25(400) + 0.05(−100) + 0.3(400) + 0.15(100) = 225.00
Alternative 4: 0.1(400) + 0.15(600) + 0.25(−100) + 0.05(−2500) + 0.3(−300) + 0.15(100) = 17.50
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The EMV (expected monetary value) consists of valuing each alternative by its
EMV. The ‘best’ choice (in an EMV context) is 225. In other words, ex-ante, the
best decision we can take is alternative 3. By contrast, if a decision could be taken
ex-post, once uncertainty is revealed and removed, the cost of each decision is
given by its opportunity loss, whose expectation is the EOL (expected opportunity
loss). This value is calculated explicitly through the opportunity loss table below:

Table of opportunity losses, calculations

Scenario 1 2 3 4 5 6

Probability 0.1 0.15 0.25 0.05 0.3 0.15

Alternative 1 400 − ( −200) 600 − ( −100) 400 − 150 600 − 400 400 − ( −300) 700 − 700

Alternative 2 400 − 300 600 − ( −150) 400 − 300 600 − 600 400 − 100 700 − 500

Alternative 3 400 − ( −500) 600 − 300 400 − 400 600 − ( −100) 400 − 400 700 − 100

Alternative 4 400 − 400 = 0 600 − 600 400 − ( −100) 600 − ( −250) 400 − ( −300) 700 − 100

Table of opportunity losses

Scenario 1 2 3 4 5 6

Probability 0.1 0.15 0.25 0.05 0.3 0.15

Alternative 1 60 105 62.5 10 210 0

Alternative 2 10 110.5 25 0 90 30

Alternative 3 90 45 0 35 0 90

Alternative 4 0 0 125 42.5 210 90

Entries are calculated as follows. Say that scenario 1 realizes itself. The best
alternative would then be alternative 4 yielding a payoff of 400. We replace in
the table the entry 400 by 0 and then calculate in the first column corresponding
to Scenario 1 the relative losses had we selected a suboptimal alternative. Now
compute for each alternative the expected opportunity loss, which is the sum
of columns for each row. Verify that the sums EMV + EOL are equal for each
alternative, called the EPPI, or the Expected Profit under Perfect Information.
Further, note that the recommended alternative under an EOL criterion is also
alternative 3 as in the expected payoff (EMV) case. This is always the case and
should not come as any surprise, since selecting the largest EMV is equivalent to
the smallest EOL. Since,

EMV + EOL = EPPI

Note that the EOL for the third alternative equals 260 and, therefore, note that
the EPPI is 485, which is the same for all alternatives. The EPPI means that if,
ex-post, we always have the best alternative, then in expectation our payoff would
be 485. Since, ex-ante, it is only 225 (=EMV), the potential for improving the
ex-ante payoff EMV by better forecasts of the scenarios, by a better management
of uncertainty (through contracts of various sorts that manage risk) cannot be
larger than the EOL or 260. Such an approach would be slightly more complex if
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we were to introduce sample surveys, information guesses etc. used to improve
our assessment of the states, the probabilities and the economic value of such an
assessment.

Optimal Decision: Alternative 3; Expected payoff : 225.00
Probabilistic analysis
Expected value of perfect information

State Prob. Decision Payoff Prob.*Payoff
Scenario 1 0.1000 Alternative 4 400.00 40.00
Scenario 2 0.1500 Alternative 4 600.00 90.00
Scenario 3 0.2500 Alternative 3 400.00 100.00
Scenario 4 0.0500 Alternative 2 600.00 30.00
Scenario 5 0.3000 Alternative 3 400.00 120.00
Scenario 6 0.1500 Alternative 1 700.00 105.00

Expected payoff with perfect information (EPPI) 485.00
Expected payoff without perfect information (EMV) 225.00
Expected value of perfect information (EVPI) 260.00

If we integrate other sources of information, it is possible to improve the prob-
ability estimates and, therefore, improve the optimal decision. The value of in-
formation, of a sample on the basis of which such information is available, is
called EVSI (or the expected value of sample information). It is a gain obtained
by improving our assessment of the events/states probabilities. Finally, if gains
and losses are weighted in a different manner, then we are led to approaches based
on disappointment (giving greater weight to losses, relative to gains) and elation
(when the prospects of ‘doing better than expected’ is more valued because of the
self-gratification it produces). Avoidance of losses, motivated by disappointment,
can also lead to selecting alternatives that have smaller gain expectation but re-
duce the probability of having made the ‘wrong choice’, in the sense of ending the
development project with losses. We shall return to this approach in Chapter 3.

Problem
The Corporate Financial Officer Vice of HardKoor Co. has the problem of raising
some additional capital. To do so, it is possible to sell 10 000 convertible bonds.
A preliminary survey of the capital market indicates that they could be sold at the
present time for $100 per bond. However, the company is currently engaged in a
union contract dispute and there is a possibility of a strike. If the strike were to
take place, the selling price of the bonds would be decreased by 20 %. There is
also a possibility of winning a large, exclusive contract which, if obtained, would
mean the bonds could be sold for 30 % more. The VP Finance would like to raise
the maximum amount of capital, and so must decide whether to offer the bonds
now or wait for the situation to become clearer.

(a) What are the alternatives?
(b) What are the sources and the types of uncertainty?
(c) What action should be taken if an EMV criterion is used? – if a minimax

criterion is taken? – if a maximin criterion is taken? – if a regret criterion is
taken?
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(d) If the probability of a strike is felt to be 0.4, while the probability of the
contract being awarded is 0.8, what action is best if the EMV criterion is
applied (note that it is necessary to calculate the proceeds for the various
outcomes), and if the expected opportunity loss (EOL) criterion is used?

(e) Give one example of how the principle of bounded rationality was apparently
used in formulating the problem?
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CHAPTER 3

Expected Utility

3.1 THE CONCEPT OF UTILITY

When the expected monetary value (EMV) is used as the sole criterion to reach
a decision under uncertainty, it can lead to results we might not have intended.
Outstanding examples to this effect are noted by observing people gambling in a
casino or acquiring insurance. For example, in Monte Carlo, Atlantic City or Las
Vegas, we might see people gambling (investing!) their wealth on ventures (such as
putting $100 on number 8 in roulette), knowing that these ventures have a negative
expected return. To explain such an ‘irrational behaviour’, we may argue that not
all people value money evenly. Alternatively we may rationalize that the prospect
of winning 36 ∗ 100 = $3600 in a second at the whim of the roulette is worth
taking the risk. After all, someone will win, so it might as well be me! Both an
attitude towards money and the willingness to take risks, originating in a person’s
initial wealth, emotional state and the pleasure to be evoked in some way by such
risk, are reasons that may justify a departure from the Bayes EMV criterion. If
all people were ‘straight’ expected payoff decision-makers, then there would be
no national lotteries and no football or basketball betting. Even the mafia might
be much smaller! People do not always use straight expected payoffs to reach
decisions, however. The subjective valuation of money and people’s attitudes
towards risk and gambling provide the basic elements that characterize gambling
and the utility of money associated with such gambling. Utility theory seeks to
represent how such subjective valuation of wealth and attitude towards risk can
be quantified so that it may provide a rational foundation for decision-making
under uncertainty.

Just as in Las Vegas we might derive ‘pleasure from gambling’, we may be also
concerned by the loss of our wealth, even if it can happen with an extremely small
probability. To protect ourselves from large losses, we often turn to insurance.
Do we insure our house against fire? Do we insure our belongings against theft?
Should we insure our exports against currency fluctuations or against default pay-
ment by foreign buyers? Do we invest in foreign lands without seeking insurance
against national takeovers? And so on. In these situations and in order to avoid
large losses, we willingly pay money to an insurance firm – the premium needed
to buy such insurance. In other words, we transfer our risk to the insurer who in
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Figure 3.1 A lottery.

turn makes money by collecting the premium. Of course, how much premium to
pay for how much risk insured underscores our ability to sustain a great loss and
our attitude towards risk. Thus, just as our gambler was willing to pay a small
amount of money to earn a very large one (albeit with a very small probability),
we may be willing to pay a small amount (the premium) to prevent and protect
ourselves from having to face a large loss, even if it occurs with a very small
probability. In both cases, the Bayes expected payoff (EMV) criterion breaks
down, for otherwise there would be no casinos and no insurance firms. Yet, they
are here and provide an important service to society. Due to the importance of
utility theory to economics and finance, providing a normative framework for
decision-making under uncertainty and risk management, we shall outline its ba-
sic principles. Subsequently, we shall see how the concepts of expected utility
have been used importantly in financial analysis and financial decision-making.

3.1.1 Lotteries and utility functions

Lotteries consist of the following: we are asked to pay a price π (say it is $5)
for the right to participate in a lottery and earn, potentially, another amount, R,

called the reward (which is say $1 000 000), with some probability, p. If we do not
win the lottery, the loss is π . If we win, the payoff is R. This lottery is represented
graphically in Figure 3.1 where all cash expenditures are noted. Lotteries of this
sort appear in many instances. A speculator buys a stock expecting to make a
profit (in probability) or losing his investment. Speculators are varied, however,
owning various lotteries and possessing varied preferences for these lotteries. It
is the exchange between speculators and investors that create a ‘financial market’
which, once understood, can provide an understanding and a valuation of lotteries
pricing.

If we use an EMV criterion for valuing the lottery, as seen in the previous
chapter, then the value of the lottery would be:

Expected value of lottery = p(R − π ) − (1 − p)π = pR − π < 0

By participating in the lottery, we will be losing money in an expected sense.
In other words, if we had ‘an infinite amount of money’ and were to play the
lottery forever, then in the long run we would lose $(π − pR)! Such odds for
lotteries are not uncommon, and yet, however irrational they may seem at first,
many people play such lotteries. For example, people who value the prospect
of ‘winning big’ even with a small probability much more than the prospect of
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‘losing small’ even with a large probability, buy lottery tickets. This uneven
valuation of money means that we may not be able to compare two sums of
money easily. People are different in many ways, not least in their preferences
for outcomes that are uncertain. An understanding of human motivations and
decision making is thus needed to reconcile observed behaviour in a predictable
and theoretical framework. This is in essence what expected utility theory is
attempting to do. Explicitly, it seeks to define a scale that values money by some
function, called the utility function U (.), whose simple expectation provides the
scale for comparing alternative financial and uncertain prospects. The larger the
expected utility, the ‘better it is’.

More precisely, the function U (.) is a transformation of the value of money that
makes lotteries of various sums comparable. Namely, the two sums (R − π ) and
(−π ), can be transformed into U (R − π ) and U (−π ), and then the lottery would
be,

� Make U (R − π ) with a probability p.
� Make (lose) U (−π ) with a probability 1 − p.

while its expected value, which tells how valuable it is compared to other lotteries,
is:

Expected utility = EU = pU (R − π ) + (1 − p)U (−π )

This means that:

� If EU = 0, we are indifferent whether we participate in the lottery or not.
� If EU > 0, we are better off participating in the lottery.
� If EU < 0, we are worse off participating in the lottery.

Thus, participation in a lottery is measured by its expected utility. Further, the
price $π we will be willing to pay – the premium, for the prospect of winning $R
with probability p – is the price that renders the expected utility null, or EU = 0,
found by the solution to

EU = 0 = pU (R − π ) + (1 − p)U (−π )

which can be solved for π when the utility function is specified.
By the same token, expected utility can be used by an investor to compare

various lotteries, various cash flows and payments, noting that the value of each
has an expected utility, known for certain and used to scale the uncertain prospects.
The ‘expected utility’ approach to decision-making under uncertainty is thus
extremely useful, providing a rational approach ‘eliminating the uncertainty from
decision-making’ and bringing it back to a problem under certainty, which we can
solve explicitly and numerically. But there remains the nagging question: how can
we obtain such utility functions? And how justified are we in using them? Von
Neumann and Morgenstern, two outstanding mathematicians and economists,
concluded in the late 1940s, that for expected utility to be justified as a scaling
function for uncertain prospects the following holds:



42 EXPECTED UTILITY

(1) The higher the utility the more desirable the outcome. This makes it possible
to look for the best decision by seeking the decision that makes the expected
utility largest.

(2) If we have three possibilities (such as potential investment alternatives), then
if possibility ‘1’ is ‘better’ than ‘2’ and ‘2’ is better than ‘3’, then necessarily
‘1’ is better than ‘3’. This is also called the transitivity axiom.

(3) If we are indifferent between two outcomes or potential acts, then necessarily
the expected utilities will be the same.

These three assumptions, underlie the rational framework for decision making
under uncertainty that expected utility theory provides.

3.2 UTILITY AND RISK BEHAVIOUR

An expected utility provides a quantitative expression of a decision makers’ de-
sires for higher rewards as well as his attitude towards the ‘risks’ of such rewards.
Say that {R, P(.)} is a set of rewards R assumed to occur with probability P(.) and
let u(.) define a utility function. The basic utility theorem states that the expected
utility provides an objective index to evaluate the desirability of rewards, or:

E (u(R)) =
∫

u(R)P(R) dR; R ∈ 


Given uncertain prospects, a rational decision-maker will then select that prospect
whose expected utility is largest. For example, the EU of an alternative prospect
i with probability outcomes (πij, pij) is:

EUi =
n∑

j=1

piju(πij)

and the optimal alternative k is found by:

k ∈ Maxi∈[1,n] {EUi }
In this decision approach, the function u(.), stands for the investor’s psychology.
For example, we might construe that u′(.) > 0 implies greed, u′′(.) < 0 implies
fear, while risk tolerance and prudence are implied by the signs of the third
derivative u′′′(.) > 0 and u′′′(.) < 0 respectively. Given a probability distribution
for rewards, P(R), the basic assumptions regarding continuous utility functions
are that alternative rewards:

(1) can be compared (comparability).
(2) can be ranked such that preferred alternatives have greater utility.
(3) have strong independence.
(4) have transitive preferences (transitivity).
(5) are indifferent if their utilities are equal.
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3.2.1 Risk aversion

Expected utility provides an investor preference for uncertain payoffs, expressing
thereby his attitude toward the risk associated with such payoffs. Three attitudes
are defined: (1) risk aversion (2) risk loving and (3) risk neutrality. Risk aversion
expresses a risk-avoidance preference and thus a preference for more conservative
gambles. For example, a risk-averse investor may be willing to pay a premium to
reduce risk. A risk lover would rather enjoy the gamble that an investment risk
provides. Finally, risk neutrality implies that rewards are valued at their objective
value by the expectation criterion (EMV). In other words, the investor would be
oblivious to risk. For risk-averse investors, the desire for greater rewards with
smaller probabilities will decrease (due to the increased risk associated with such
rewards); such an attitude will correspond to a negative second derivative of the
utility function or equivalently to an assumption of concavity, as we shall see
below. And, vice versa, for a risk loving decision-maker the second derivative of
the utility function will be positive. To characterize quantitatively a risk attitude,
two approaches are used:

� Risk aversion directly relates to the risk premium, expressed by the difference
between the expected value of a decision and its certainty (riskless) equivalent
reward.

� Risk aversion is expressed by a decreasing preference for an increased risk,
while maintaining a mean preserving spread.

These two definitions are equivalent for concave utility functions, as we shall see
below.

Certainty equivalence and risk premium
Assume an uncertain reward R̃ whose expected utility is E(u(R̃)). Its equivalent
sure amount of money, given by the expected utility of that amount, is called the
certainty equivalent which we shall denote here by R̄ and is given by

u(R̄) = E(u(R̃)) and R̄ = u−1{E[u(R̃)]}
Note that the certainty equivalent is not equal to the expected value R̂ = E(R̃) for
it embodies as well the cost of risk associated with the uncertain prospect valued
by its expected utility. The difference ρ = R̂ − R̄, expresses the risk premium a
decision maker would be willing to pay for an outcome that provides for sure the
expected return compared to the certainty equivalent. It can be null, positive or
negative. In other words, the risk premium is:

Risk premium (ρ) = Expected return (R̂) − The certainty equivalent (R̄)

An alternative representation of the risk premium can be reached by valuing the
expected utility of the random payoff: R̃ = R̂ + ε̃ where E(ε̃) = 0, var(ε̃) = σ 2

and σ 2 denotes the payoff spread. In this case, note that a Taylor series expansion
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around the mean return yields:

Eu(R̃) = Eu(R̂ + ε̃) = u(R̂) + σ 2 u′′(R̂)

2

Similarly, a first-order Taylor series expansion of the certainty equivalent utility
around the mean return (since there are no uncertain elements associated with it)
yields:

u(R̄) = u(R̂ − ρ) = u(R̂) − ρu′(R̂)

Equating these two equations, we obtain the risk premium calculated earlier but
expressed in terms of the derivatives of the utility function and the return variance,
or:

ρ = −1

2
σ 2 u′′(R̂)

u′(R̂)

This risk premium can be used as well to define the index of risk behaviour
suggested by Arrow and Pratt. In particular, Pratt defines an index of absolute risk
aversion expressing the quantity by which a fair bet must be altered by a risk-
averse decision maker in order to be indifferent between accepting and rejecting
the bet. It is given by:

ρa(R̃) = ρ

σ 2/2
= −u′′(R̂)

u′(R̂)

Prudence and robustness
When a decision-maker’s expected utility is not (or is mildly) sensitive to other
sources of risk, we may state that the expected utility is ‘robust’ or expresses
a prudent attitude by the decision-maker. A prudent investor, for example, who
adopts a given utility function to reach an investment decision, expresses both his
desire for returns and the prudence he hopes to assume in obtaining these returns,
based on the functional form of the utility function he chooses. Thus, an investor
with a precautionary (prudence) motive will tend to save more to hedge against
the uncertainty that arises from additional sources of risk not accounted for by
the expected utility of uncertain returns. This notion of prudence was first defined
by Kimball (1990) and Eeckoudt and Kimball (1991) and is associated with
the optimal utility level (measured by the relative marginal utilities invariance),
which is, or could be, perturbed by other sources of risk. Explicitly, say that
(w, R̃) is the wealth of a person and the random payoff which results from some
investment. If we use the expected marginal utility, then at the optimum investment
decision:

Eu′(w + R̃) > u′(w) if u′ is convex

Eu′(w + R̃) < u′(w) if u′ is concave

The risk premium ψ that the investor pays for ‘prudence’ is thus the amount of
money required to maintain the marginal utility for sure at its optimal wealth
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level. Or:

u′(w − ψ) = Eu′(w + R̃) and ψ = w − u′−1[Eu′(w + R̃)]

Proceeding as before (by using a first term Taylor series approximation on the
marginal utility), we find that:

ψ = 1

2
var(R̃)

[
−u′′′(w)

u′′(w)

]

The square bracket term is called the degree of absolute prudence. For a risk-
averse decision maker, the utility second-order derivative is negative (u′ ≤ 0) and
therefore prudence will be positive (negative) if the third derivative u′′′ is positive
(negative). Further, Kimball also shows that if the risk premium is positive and
decreases with wealth w, then ψ > π . As a result, ψ − π is a premium an investor
would pay to render the expected utility of an investment invariant under other
sources of risks.

The terms expected utility, certainty equivalent, risk premium, Arrow–Pratt
index of risk aversion and prudence are used profusely in insurance, economics
and financial applications, as we shall see later on.

3.2.2 Expected utility bounds

In many instances, calculating the expected utility can be difficult and therefore
bounds on the expected utility can be useful, providing a first approximation to the
expected utility. For risk-averse investors with utility function u(.) and u′′(.) ≤ 0,
the expected utility has a bound from above, known as Jensen’s inequality. It is
given by:

Eu(R̃) ≤ u(R̂) when u′′(.) ≤ 0

Eu(R̃) ≥ u(R̂) when u′′(.) ≥ 0

and vice versa when it is the utility function of a risk-loving investor (i.e. u′′(.) ≥
0). When rewards have known mean and known variance however, Willasen
(1981, 1990) has shown that for risk-averse decision-makers, the expected utility
can be bounded from below as well. In this case, we can bound the expected
utility above and below by:

u(R̂) ≥ Eu(R̃) ≥ R̂2u(α2/R̂)/α2; α2 = E(R̃2)

The first bound is, of course, Jensen’s inequality, while the second inequality
provides a best lower bound. It is possible to improve on this estimate by using
the best upper and lower Tchebycheff bounds on expected utility (Willasen, 1990).
This inequality is particularly useful when we interpret and compare the effects
of uncertainty on the choice of financial decisions, as we shall see in the example
below. Further, it is also possible to replace these bounds by polynomials such
that:

Eu(R̃) ≤ E A(R̃); Eu(R̃) ≥ E B(R̃)
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where A(.) and B(.) are polynomials of the third degree. To do so, second- and
third-order Taylor series approximations are taken for the utility functions (using
thereby the decision-makers’ prudence). For example, consider the following
portfolio prospect with a mean return of R̂ and a variance σ 2. Say that mean
returns are also a function of the variance, expressing the return-risk substitution,
with:

R̂ = R̂(σ ), ∂ R̂(σ )/∂σ>, R̂(0) = R f

where R f denotes the riskless rate of return. It means that the larger the returns
uncertainty, the larger the required expected payoff. Using the Jensen and Willasen
inequalities, we have for any portfolio, the following bounds on the expected
utility:

u(R̂(σ )(1 + ν))

1 + ν
≤ Eu(R̃) ≤ u(R̂(σ )); ν=σ 2

R̂2
; E(R̃2) = R̂2 + σ 2

Thus, lower and upper bounds of the portfolio expected utility can be constructed
by maximizing (minimizing) the lower (upper) bounds over feasible (R̂, σ ) port-
folios. Further, if we set R̂ = R f + λσ where λ is used as a measure for the price of
risk (measured by the return standard deviation and as we shall see subsequently),
we have equivalently the following bounds:

u((R f + λσ )(1 + ν))

1 + ν
≤ Eu(R̃) ≤ u(R f + λσ )

The definition of an appropriate utility function is in general difficult. For this
reason, other means are often used to express the desirability of certain outcomes.
For example, some use targets, expressing the desire to maintain a given level of
cash, deviations from which induce a dis-utility. Similarly, constraints (as they are
defined by specific regulation) as well as probability constraints can also be used
to express a behavioural attitude towards outcomes and risks. Such an approach
has recently been found popular in financial circles that use ‘value at risk’ (VaR)
as an efficiency criterion (see Chapter 10 in particular). Such assumptions re-
garding decision-makers’ preferences are often used when we deal with practical
problems.

3.2.3 Some utility functions

A utility function is selected because it represents the objective of an investor
faced with uncertain payoffs and his attitude towards risk. It can also be selected
for its analytical convenience. In general, such a selection is difficult and has
therefore been one of the essential reasons in practice for seeking alternative
approaches to decision making under uncertainty. Below we consider a number
of analytical utility functions often used in theoretical and practical applications.

(1) The exponential utility function: u(w) = 1 − e−aw, a > 0 is a concave
function. For this function, u′(w) = a e−aw > 0, u′′(w) = −a2 e−aw < 0 while
the index of absolute risk aversion RA is constant and given by: RA(w)



UTILITY AND RISK BEHAVIOUR 47

= −u′′/u′ = a > 0. Further u′′′(w) = a3 e−aw > 0 and therefore the degree of
prudence is a while the prudence premium is, ψ = 1

2 a var(R̃).
(2) The logarithmic utility function: u(w) = log(β + γw), with β > 0, γ > 0

is strictly increasing and strictly concave and has a strictly decreasing absolute
risk aversion. Note that, u′(w) = γ /(β + γw) > 0, u′′(w) = −γ 2/(β + γw)2 <

0 while, RA(w) = γ /(β + γw) = u′(w) which is decreasing in wealth.
(3) The quadratic utility function: u(w) = w − ρw2 is a concave function for

all ρ ≥ 0 since u′ = 1 − 2ρw, u′ ≥ 0 → w ≤ 1/2ρ and u′′ = −2ρ ≤ 0. As a
result, the Arrow–Pratt index of absolute risk aversion is

RA(w) = −u′′[E(w)]

u′[E(w)]
= 2ρ

1 − 2ρw

and the prudence is null (since the third derivative is null).
(4) The cubic utility function: u(w) = w3 − 2kw2 + (k2 + g2)w, k2 > 3g2 is

strictly increasing and strictly concave and has a decreasing absolute risk aversion
if 0 ≤ w ≤ 2

3 k − 1
2

√
k2 − 3g2.

(5) The power utility function: u(w) = (w − δ)β , 0 < β < 1 is strictly increas-
ing and has a strictly absolute risk aversion on [δ, ∞) since: u′ = β (w − δ)β−1 ,

and u′′ = −(1 − β)β (w − δ)β−2. The risk aversion index is thus, RA(w) =
−(1 − β) (w − δ)−1.

(6) The HARA (hyperbolic absolute risk aversion) has a utility function given
by:

u(w) = 1 − γ

γ

[
aw

1 − γ
+ b

]γ

while its first and second derivatives as well as its index of absolute risk aversion
are given by:

u′ = a

[
aw

1 − γ
+ b

]γ−1

> 0, u′′ = −a2

[
aw

1 − γ
+ b

]γ−2

< 0;

Ra(w) = −u′′

u′ = a

b + aw/(1 − γ )
> 0

This utility function includes a number of special cases. In particular, when γ

tends to one, we obtain the logarithmic utility.

3.2.4 Risk sharing

Two firms sign an agreement for a joint venture. A group of small firms organize
a cooperative for marketing their products. The major aerospace companies in
the US west coast set up a major research facility for deep space travel. A group
of 70 leading firms form a captive insurance firm in the Bahamas to insure their
managers against kidnappings, and so on. These are all instances of risk sharing.
Technically, when we combine together a number of (independent) participants
and split among them a potential loss or gain, the resulting variance of the loss
or gain for each of the participants will be smaller. Assuming that this variance
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is an indicator of the ‘risk’, and if decision makers are assumed to be risk averse,
then the more partners in the venture the smaller the individual risk sustained by
each partner. Such arguments underly the foundations of insurance firms (that
create the means for risk sharing), of major corporations based on numerous
shareholders etc. Assuming that our preference is well defined by a utility function
U(.), how would we know if it is worthwhile to share risk? Say that the net
benefits (profits less costs) of a venture is $X̃ whose probability distribution is
p(X̃ ). If we do nothing, nothing is gained and nothing is lost and therefore the
‘value’ of doing nothing is U(0). The venture with its n participants, however, will
have an expected utility EU (X̃/n). Thus, if sharing is worthwhile the expected
utility of the venture ought to be greater than the utility of doing nothing! Or,
EU (X̃/n) > U (0).

Problems
(1) Formulate the problem of selecting the optimal size of a risk-sharing pool.
(2) How much does a member of the pool benefit from participating in sharing.

3.3 INSURANCE, RISK MANAGEMENT AND EXPECTED UTILITY

How much would it be worth paying for car insurance (assuming that there is
such a choice)? This simple question highlights an essential insurance problem.
If we are fully insured and the premium is $π , then the expected utility is, for
sure, U (w − π ) where w is our initial wealth. If we-self-insure for a risk whose
probability distribution is p(X̃ ), then using the expected utility theory paradigm,
we should be willing to pay a premium π as long as U (w − π ) > EU (w − X̃ ).
In fact the largest premium we would be willing to pay solves the equation above,
or

π∗ = w − U−1(EU (w − X̃ ))

Thus, if the utility function is known, we can find out the premium π∗ above
which we would choose to self-insure.

Problem
For an exponential, HARA and logarithmic utility function, what is the maximal
premium an individual will be willing to pay for insurance?

3.3.1 Insurance and premium payments

Insurance risk is not reduced but is transferred from an individual to an insurance
firm that extracts a payment in return called the premium and profits from it by
investing the premium and by risk reducing aggregation. In other words, it is the
difference in risk attitudes of the insurer and the insured, as well as the price
insured, and insurers are willing to pay for that to create an opportunity for the
insurance business.
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Say that X̃ is a risk to insure (a random variable) whose density function is
F(X̃ ). Insurance firms, typically, seek some rule to calculate the premium they
ought to charge policyholders. In other words, they seek a ‘rule’ ϒ such that a
premium can be calculated by:

P = ϒ(F(X̃ ))

Although there are alternative ways to construct this rule, the more prominent
ones are based on the application of the expected utility paradigm and traditionally
based on a factor loading the mean risk insured. The expected utility approach
seeks a ‘fair’ premium P which increases the firm expected utility, or:

U (W ) ≤ EU (W + P − X̃ )

where W is the insurance firm’s capital. The loading factor approach seeks, how-
ever, to determine a loading parameter λ providing the premium to apply to the
insured and calculated by P/n = (1 + δ)E(x̃), where x̃ denotes the individual
risk in a pool of n insured, i.e. x̃ = X̃/n and P/n is an individual premium share.
For the insured, whose utility function is u(.) and whose initial wealth is w, the
expected utility of insurance ought to be greater than the expected utility of self-
insurance. As a result, a premium P is feasible if the expected utilities of both the
insurer and the insured are larger with insurance, or:

u(w − P/n) ≥ Eu(w − x̃i ), X̃ =
n∑

i=1

x̃i ; U (W ) ≤ EU (W + P − X̃ )

Note that in this notation, the individual risk is written as x̃i which is assumed to be
identically and independently distributed for all members of the insurance pool.
Of course, since an insurance firm issues many policies, assumed independent, it
will profit from risk aggregation. However, if risks are correlated, the variance of
X̃ will be much greater, prohibiting in some cases the insurance firm’s ability or
willingness to insure (as is the case in natural disaster, agricultural and weather
related insurance).

Insurance ‘problems’ arise when it is necessary to resolve the existing dispari-
ties between the insured and the insurer, which involves preferences and insurance
terms that are specific to both the individual and the firm. These lead to extremely
rich topics for study, including the important effects of moral hazard, adverse
selection resulting from information asymmetry which will be studied subse-
quently, risk correlation, rare events with substantive damages, insurance against
human-inspired terrorists acts etc.

Risk sharing, risk transfer, reinsurance and other techniques of risk management
are often used to spread risk and reduce its economic cost. For example, let x̃
be the insured risk; the general form of reinsurance schemes associated with an
insurer (I), an insured (i) and a reinsurer (r) and consisting in sharing risk can be
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written as follows:

Insured: Ri (x̃ |a , q) =
{

x̃ x̃ ≤ a
(1 − q)x̃ x̃ ≥ a

Insurer: RI (x̃ |a, b, c, q ) =





0 x̃ ≤ a
q(x̃ − a) a < x̃ ≤ b

c b > x̃

Reinsurer: Rr (x̃ |b, c, q ) =
{

0 x̃ ≤ b
q(b − x̃) − c x̃ ≥ b

Here, if a risk materializes and it is smaller than ‘a’, then no payment is made
by the insurance firm while the insured will be self-insured up to this amount.
When the risk is between the lower level ‘a’ and the upper one ‘b’, then only a
proportion q is paid where 1−q is a co-participation rate assumed by the insured.
Finally, when the risk is larger than ‘b’, then only c is paid by the insurer while
the remaining part x̃ − c is paid by a reinsurer. In particular for a proportional
risk scheme we have R(x̃) = qx̃ while for an excess-loss reinsurance scheme we
have:

RI (x̃ |a ) =
{

0 x̃ ≤ a
x̃ − a x̃ > a

where a is a deductible specified by the insurance contract. A reinsurance scheme
is thus economically viable if the increase in utility is larger than the premium
Pr to be paid to the reinsurer by the insurance firm. In other words, for utility
functions uI (.), ui (.), ur (.) for the individual, the insurance and the reinsurance
firms with premium payments: Pi , PI , Pr , the following conditions must be held:

ui (w − Ri (x̃ |a, q ) − Pi ) ≥ Eui (w − x̃) (the individual condition)

uI (W ) ≤ EuI (W + Pi − PI − RI (x̃ |a, b, c, q )) (the insurance firm condition)

ur (Wr ) ≤ Eur (Wr + PI − Rr (x̃ |b, c, q )) (the reinsurer condition)

Other rules for premium calculation have also been suggested in the insurance
literature. For example, some say that in insurance ‘you get what you give’. In
this sense, the premium payments collected from an insured should equal what
he has claimed plus some small amounts to cover administrative expenses. These
issues are in general much more complex because the insurer benefits from risk
aggregation over the many policies he insures, a concept that is equivalent to
portfolio risk diversification. In other words, if the insurance firm is large enough it
might be justified in using a small (risk-free) discount rate in valuing its cash flows,
compared to an individual insured, sensitive with the uncertain losses associated
with the risk insured. For this reason, the determination of the loading rate is often
a questionable parameter in premium determination. Recent research has greatly
improved the determination of insurance premiums by indexing insurance risk
to market risk and using derivative markets (such as options) to value insurance
contracts (and thereby the cost of insurance or premium).



CRITIQUES OF EXPECTED UTILITY THEORY 51

3.4 CRITIQUES OF EXPECTED UTILITY THEORY

Theory and practice do not always concur when we use expected utility theory.
There are many reasons for such a statement. Are decision-makers irrational? Are
they careless? Are they uninformed or clueless? Do they lack the proper incentives
to reach a rational decision. Of course, the axioms of rationality that underlie
expected utility theory may be violated. Empirical and psychological research has
sought to test the real premises of decision-makers under uncertainty. To assess
potential violations, we consider a number of cases. Consider first the example
below called the St Petersburg Paradox that has motivated the development of the
utility approach.

3.4.1 Bernoulli, Buffon, Cramer and Feller

Daniel Bernoulli in the early 1700s suggested a problem whose solution was
not considered acceptable in practice, albeit it seemed to be appropriate from a
theoretical viewpoint. This is called the St Petersburg Paradox. The paradox is
framed in a tossing game stating how much one would be willing to pay for a
game where a fair coin is thrown until it falls ‘heads’. If it occurs at the r th throw,
the player receives 2r dollars from the bank. Thus, the gain doubles at each throw.
In an expected sense, the probability of obtaining ‘heads’ at the kth throw is 1/2k ,
since the pay-out is also equal to 2k , the expected value of the game is:

∞∑

k=1

(1/2k)2k = 1 + 1 + · · · = ∞

Thus, the fair amount to pay to play this game is infinite, which clearly does not
reflect the decision makers’ behaviour. Bernoulli thus suggested a logarithmic
utility function whose expected utility:

Eu(x) =
∞∑

i=1

p(i)u(2i−1) =
∞∑

i=1

(
1

2i

)
log(2i−1) =

∞∑

i=1

(
i − 1

2i

)
log(2)

Since
∞∑

i=1

(
1

2i

)
= 1 and

∞∑

i=1

(
i − 1

2i

)
= 1

The expected utility of the game equals Eu(x) = log(2).
Mathematicians such as Buffon, Cramer, Feller and others have attempted to

provide a solution that would seem to be appropriate. Buffon and Cramer suggest
that the game be limited (in the sense that the bank has a limited amount of money
and, therefore, it can only pay a limited amount). Say that the bank has only a
million dollars. In this case, we will have the following amounts,

19∑

k=1

(1/2k)2k + 106
∞∑

k=20

(1/2k) = 1 + 1 + · · · 1 + 1.19 ≈ 21
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Therefore, the fair amount to play this game is 21 dollars only. Any larger amount
would be favourable to the bank.

Gabriel Cramer, on the other hand, suggested a square root utility function.
Then for the St Petersburg game, we have:

Eu(x) =
∑

i=1

∞
p(i)u(i) =

∞∑

i=1

(
1

2i

) √
2i − 1

= 1

2
+

√
2

22
+ (

√
2)2

22
+ · · · + (

√
2) j

2 j+1
+ · · · = 1

2

1

1 − √
2/2

= 1

2 − √
2

And therefore, for Cramer, the value of the game is 1/(2 − √
2). Feller suggests

another approach however, seeking a mechanism for the gains and payments to
be equivalent in the long run. In other words, a lottery will be fair if:

Accumulated gains

Accumulated fees
= Nn

Rn
→ 1 as n → ∞

or P

{∣∣∣∣
Nn

Rn
− 1

∣∣∣∣ < ε

}
→ ∞ as n → ∞

Feller noted that the game is fair if Rn = n log2 (n). Thus if the accumulated
entrance fee to the game is proportional to the number of games, it will not be a
fair game.

3.4.2 Allais Paradox

The strongest attack on expected utility theory can be found in Allais’ Paradox,
which doubts the strong independence assumption needed for consistent choice
in expected utility. Allais proved that the assumption of linearity in probabilities
applied in calculating the expected utility is often doubtful in practice. Explicitly,
the independence axiom also called the ‘sure-thing’ principle asserts that two
alternatives that have a common outcome under a particular state of nature should
imply that ordering should be independent of the value of their common outcome.
This is not always the case and counter examples abound, in particular due to
Allais.

For example, let us confront people with two lotteries. First, we have to pick
one of the two gambles given by (p1, p2) below. The first gamble consists of
$100 000 for sure (probability 1) while the other is $5 000 000 with probability
0.1, 1 million with probability 0.89 and nothing with probability 0.01 as stated
below.

p1 ⇒ {1 100 000 and p2 ⇒





0.1 5 000 000
0.89 1 000 000
0.01 0

A second set of gambles (p3, p4) consists of:

p3 ⇒
{

0.1 5 000 000
0.9 0 and p4 ⇒

{
0.11 1 000 000
0.89 0
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Confronted with choosing between p1 and p2, people chose p1 while confronting
p1, p3 and p4, people preferred p3 which is in contradiction with the strong
independence axiom of utility theory. In other words, if gamble 1 is selected
over gamble 2, while in presenting people with gambles 1, 3 and 4 results in their
selecting 3 over 1, there is necessarily a contradiction, since if we were to compare
gambles 3 and 2, clearly, 3 is not as good as 2. This contradiction means, therefore,
that application of expected utility theory does not always represent investors’
and decision-maker’s psychology. Since then, a large number of studies have been
done, seeking to bridge a gap between investors’ psychology and the concepts of
utility theory. Some essential references include Kahnemann and Tverski (1979),
Machina on anticipated utility (1982, 1987) and Quiggin (1985) as well as many
other others. In these approaches, the expected utility framework is ‘extended’
by stating that an uncertain prospect can be measured by an ‘expected utility’
u(.) interpreted either as the choice of a utility function (as was the case in
traditional expected utility) or by a preferred probability distribution (P) (or a
function g (P) assumed over the probability distribution). Then, the probabilities
used to calculate the expected utility would be ‘subjective’ estimates, or beliefs,
about the probabilities of returns, imbedding ‘something else’ above and beyond
the objective assessment of uncertain prospects. Thus, the objective index used to
value the relative desirability of uncertain prospects is also a function of the model
used for probabilities P(.). This is in contrast to the utility function, expressing a
behaviour imbedded in the choice of the function u(.) only, which stands solely
for the investor’s psychology, as we saw above. For example, what if we were to
determine probabilities P∗(.) such that the price of random prospects R̃ could be
uniquely defined by the following expected value?

π =
∫



R̃ dP∗(R̃)

In this case, once such a well-defined transformation of these probabilities is
reached, all uncertain prospects may be valued uniquely, thereby simplifying
greatly the problem of financial valuation of risk assets such as stocks, default
bonds and the like. This approach, defined in terms of economic exchange mar-
ket mechanisms (albeit subject to specific assumptions regarding markets and
individual behaviours), underlies the modern theories of finance and ‘risk-neutral
pricing’. This is also an essential topic of our study in subsequent chapters.

3.5 EXPECTED UTILITY AND FINANCE

Finance provides many opportunities for applications of expected utility. For
example, portfolio management consists essentially of selecting an allocation
strategy among n competing alternatives (stocks, bonds, etc.), each yielding an
uncertain payoff. Each stock purchase is an alternative which can lead to a (spec-
ulative) profit or loss with various (known or unknown) probabilities. When se-
lecting several stocks and bonds to invest in, balancing the potential gains with
the risks of losing part or all of the investment, the investor in effect constructs a
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portfolio with a risk/reward profile which is preferred in an expected utility sense.
Similarly, to evaluate projects, contracts, investments in real estate, futures and
forward contracts, etc. financial approaches have been devised based directly on
(or inspired by) expected utility. Below, we shall review some traditional tech-
niques for valuing cash flows and thereby introduce essential notions of financial
decision making using expected utility. Typical models include the CAPM (Cap-
ital Asset Pricing Model) as well the SDF (Stochastic Discount Factor) approach.

3.5.1 Traditional valuation

Finance values money and cash flow, the quantity of it, the timing of it and the risk
associated with it. A number of techniques and approaches that are subjective –
defined usually by corporate financial officers or imposed by managerial require-
ments – have traditionally been used. For example, let C0, C1, C2, . . . , Cn be a
prospective cash flow in periods i = 1, 2, . . . , n. Such a cash flow may be known
for sure, may be random, payments may be delayed unexpectedly, defaulted etc.
To value these flows, various techniques can be used, each assuming a body of
presumptions regarding the cash flow and its characteristics. Below, we consider
first a number of ‘traditional’ approaches including ‘the payback period’, ‘the
accounting rate of return’ and the traditional ‘NPV’ (Net Present Value).

Payback period
The payback period is the number of years required for an investment to be
recovered by a prospective cash flow. CFOs usually specify the number of years
needed for recovery. For example, if 4 years is the specified time to recover an
investment, then any project with a prospective cash flow of recovery less or equal
to 4 years is considered acceptable. While, any investment project that does not
meet this requirement is rejected. This is a simple and an arbitrary approach,
although in many instances it is effective in providing a first cut approach to
multiple investment opportunities. For example, say that we have an investment of
$100 000 with a return cash flow (yearly and cumulatively) given by the following
table:

Year 1 2 3 4 5 6 7 8 9

Return −5 5 10 20 40 30 20 10 10

Cumulative −5 0 10 30 70 100 120 130 140

Thus, only after the sixth year is the investment is recovered. If management
specifies a period of 4 years payback, then of course the investment will be
rejected.

The accounting rate of return (ARR)
The ARR is a ratio of average profit after depreciation and average investment
book value. There are, of course, numerous accounting procedures in calcu-
lating these terms, making this approach as arbitrary as the payback period.
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A decision may be made to specify a required ARR. Any such ratio ‘better’
than the ARR selected would imply that the investment project is accepted.

The internal rate of return (IRR)
The net present value (NPV) approach uses a discount rate R for the time value
of money, usually called the rate of return. This discount rate need not be the
risk-free rate (even if future cash flows are known for sure). Instead, they are
specified by CFOs and used to provide a firm’s valuation of the prospective cash
flow. Typically, it consists of three components: the real interest rate, the inflation
rate and a component adjusting for investment risk.

Discount (Nominal) Rate = (Real + Inflation + Risk Compensating) Rates

Each of these rates is difficult to assess and, therefore, much of finance theory
and practice seeks to calculate these rates. The NPV of a cash flow over n periods
is given by:

NPV = C0 + C1

1 + R
+ C2

(1 + R)2
+ C3

(1 + R)3
+ · · · + Cn

(1 + R)n

where R is the discount rate applied to value the cash flow. The IRR, however, is
found by finding the rate that renders the NPV null (NPV = 0), or by solving for
R∗ is:

0 = C0 + C1

1 + R∗ + C2

(1 + R∗)2
+ C3

(1 + R∗)3
+ · · · + Cn

(1 + R∗)n

Each project may therefore have its own IRR which in turn can be used to rank
alternative investment projects. In fact, one of the essential problems CFOs must
deal with is selecting an IRR to enable them to select /accept investment alterna-
tives. If the IRR is larger than a strategic discount factor, specified by the CFO,
then investment is deemed economical and therefore can be made. There are,
of course, many variants of the IRR, such as the FIE (fixed equivalent rate of
return) which assumes a fixed IRR with funds, generated by the investment, rein-
vested at the IRR. Such an assumption is not always realistic, however, tending
to overvalue investment projects. Additional approaches based on ‘risk analysis’
and the market valuation of risk have therefore been devised, seeking to evaluate
the probabilities of uncertain costs and uncertain payoffs (and thereby uncertain
cash flows) of the investment at hand. In fact, the most significant attempt of
fundamental finance has been to devise a mechanism that takes the ‘arbitrariness’
out of investment valuation by letting the market be the mechanism to value risk
(i.e. by balancing supply and demand for risky assets at an equilibrium price for
risky assets). We shall turn to this important approach subsequently.

Net present value (NPV) and random cash flows
When cash flows are random we can use the expected utility of the random
quantities to calculate the NPV. We consider first a simple two-period example.
Let C̃ be an uncertain cash flow whose expected utility is Eu(C̃). Its certainty
equivalent, is CE where Eu(C̃) = u(CE) or CE = u−1(Eu(C̃)). Since CE is a sure
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quantity, the discount rate applied to value the reception of such a quantity for
one period hence is the risk free rate R f . In other words, for a one-period model
the PV is:

PV = C E

1 + R f
= u−1(Eu(C̃))

1 + R f
= E(C̃) − P

1 + R f

where P is the risk premium. Equivalently we can calculate the PV by using the
expected cash flow but discounted at a rate k (incorporating the risk inherent in
the cash flow). Namely,

PV = E(C̃) − P

1 + R f
= E(C̃)

1 + k

As a result, we see that the risk-free rate and the risk premium combine to deter-
mine the risk adjusted rate as follows:

1 − P

E(C̃)
= 1 + R f

1 + k
→ k − R f = (1 + k)

P

E(C̃)
or k = 1 + R f

1 − P/E(C̃)
− 1

In particular note that k − R f defines the ‘excess discount rate’. It is the rate of
return needed to compensate for the uncertainty in the cash flow C̃ . To calculate the
appropriate discount rate to apply, a concept of equilibrium reflecting investors’
homogeneity is introduced. This is also called ‘the capital market equilibrium’
which underlies the CAPM as we shall see below. Over multiple periods of time,
calculations of the PV for an uncertain future cash stream, yields similarly:

PV = C0 + E(C̃1)

(1 + k)1
+ E(C̃2)

(1 + k)2
+ E(C̃3)

(1 + k)3
+ · · ·

However, interest rates (and similarly, risk-free rates, risk premiums, etc.) may
vary over time – reflecting the effects of time (also called the term structure)
either in a known or unknown manner. Thus, discounting must reflect the discount
adjustments to be applied to both uncertainties in the cash flow and the discount
rate to apply because of the timing of payments associated with these cash flows.
If the discount (interest) rates vary over time, and we recognize that each instant of
time discounting accounts for both time and risk of future cash flows, the present
value is then given by:

PV = C0 + E(C̃1)

(1 + k1)1
+ E(C̃2)

(1 + k2)2
+ E(C̃3)

(1 + k3)3
+ · · · =

∑

i=0

E(C̃ i )

(1 + ki )i

where k1, k2, k3, . . . , kn . . . express the term structure of the risk-adjusted rates.
Finally, note that if we use the certainty cash equivalents Ci , associated with a
utility u(Ci ) = Eu(C̃ i ), then:

PV =
∑

i=0

Ci

(1 + R f,i )i

where R f,i is the risk-free term structure of interest rate for a discount over i
periods. In Chapter 7, we shall discuss these issues in greater detail.
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3.5.2 Individual investment and consumption

A number of issues in finance are stated in terms of optimal consumption prob-
lems and portfolio holdings. Say that an individual maximizes the expected utility
of consumption, separable in time and state and is constrained by his wealth accu-
mulation equation (the returns on savings and current wage income). Technically,
assume that an individual investor has currently a certain amount of money in-
vested in a portfolio consisting of N0 shares of a stock whose current price is p0

and a riskless investment in a bond whose current price is B0. In addition, the
investor has a wage income of s0. Thus, current wealth is:

W0 = N0 p0 + B0 + s0

Let c0 be a planned current consumption while the remaining part W0 − c0 is
reinvested in a portofolio consisting of N1 shares of a stock whose price is p0 and
a bond whose current price is B1. At the next time period, time ‘1’, the investor
consumes all available income. Disposable savings W0 − c0 are thus invested in
a portfolio whose current wealth is N1 p0 + B1, or initially:

W0 − c0 = N1 p0 + B1

At the end of the period, the investor’s wealth is random due to a change in the
stock price � p̃ and is wholly consumed, or:

W̃1 = N1(p0 + � p̃) + B1(1 + R f ) and c1 = W̃1

Given the investor’s utility function, there are three decisions to reach: how much
to consume now, how many shares of stock to buy and how much to invest in
bonds. The problem can be stated as the maximization of:

U = u0(c0) + 1

1 + R
Eu1(W̃1)

with, u0(.) and u1(.) the utilities of the current and next (final) period consumption.
An individual’s preference is expressed here twice. First we use an individual
discount rate R for the expected utility of consumption at retirement Eu1(W̃1).
And, second, we have used the expected utility as a mechanism to express the
effects of uncertainty on the value of such uncertain payments. Define a cash
(certainty) equivalent to such expected utility by C1 or C1 = u−1

1 (Eu1(W̃1)). Since
this is a ‘certain cash equivalent’, we can also write in terms of cash worth:

U = C0 + C1

1 + R f
, C0 = u−1

0 (u0(c0)) = c0

Note that once we have used a certain cash amount we can use the risk-free rate
R f to discount that amount. As a result,

1 + R f

1 + R
= u1

−1(Eu1(W̃1))

Eu1(W̃1)



58 EXPECTED UTILITY

which provides a relationship between the discounted expected utility and the
risk-free discount rate for cash. Using the expected utility discount rate, we have:

U = u0(N0 p0 + B0 + s0 − N1 p0 − B1) + 1

1 + R
Eu1(N1(p0 + � p̃)

+B1(1 + R f ))

A maximization of the current utility provides the investment strategy (N1, B1),
found by the solution of:

p0
∂u0(c0)

∂ N1
= 1

1 + R
E

(
∂u1(c1)

∂ N1
(p0 + � p̃)

)
,

∂u0

∂ B1
= E

(
∂u1

∂ B1

)

This portfolio allocation problem will be dealt with subsequently in a general
manner but has already interesting implications. For example, if the utility of
consumption is given by a logarithmic function, u0(c) = ln(c) and u1(c) = ln(c),
we have:

p0

c0
= 1

1 + R
E

(
p0 + � p̃

c1

)
or η0 = 1

1 + R
E(η1), ηi = pi

ci
, i = 0, 1

meaning that the price per unit consumption ηi is an equilibrium whose value is
the rate R. Further, the condition for the bond yields

∂u0(c0)

∂c0
= E

(
∂u1(c1)

∂c1

)
or

1

c0
= E

(
1

c1

)

It implies that the current marginal utility of consumption equals the next period’s
expected marginal consumption. The investment policy is thus a solution of the
following two equations for (N1, B1) (where W̃1 = N1(p0 + � p̃) + B1(1 + R f )):

p0

(N0 p0 + B0 + s0 − N1 p0 − B1)
= 1

1 + R
E

(
p0 + � p̃

W̃1

)

1

N0 p0 + B0 + s0 − N1 p0 − B1
= E

(
1

W̃1

)

or p0 RE(1/W̃1) = E(� p̃/W̃1). To solve this equation numerically, we still need
to specify the probability of the stock price.

Problem
Assume that

� p̃ =
{

H p0 w.p. π

Lp0 w.p. 1 − π

where w.p. means with probability, and find the optimal portfolio. In particular, set
π = 0.6, H=0.3, L = −0.2 and R f = 0.1, then show that the optimal investment
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policy is an all-bond investment. However, if H = 0.5, we have:

B∗
1 = 0.085(N0 p0 + B0 + s0), N ∗

1 = −0.6444

(
N0 + B0 + s0

p0

)

3.5.3 Investment and the CAPM

Say that an investor has an initial wealth level W0. Let k̃ be a random rate of
return of a portfolio with known mean and known variance given respectively by
k̂, σ 2

k respectively. Say that part of the individual wealth, S1, is invested in the
risky asset while the remaining part B1 = W0 − S1 is invested in a non-risky asset
whose rate of return is the risk-free rate R f . The wealth one period hence is thus:

W̃1 = B1(1 + R f ) + S1(1 + k̃)

The demand for the risky asset is thus given by optimizing the expected utility
function:

Max
S1≥0

Eu[B1(1 + R f ) + S1(1 + k̃)] or Max
S1≥0

Eu[W0(1 + R f ) + S1(k̃ − R f )]

The first two derivatives conditions are:

d(Eu(W̃1))

dS1
= E(u′(W̃1)(k̃ − R f )) = 0

d2(Eu(W̃1))

d(S1)2
= E(u′′(W̃1)(k̃ − R f )2) < 0

This is always satisfied when the investor is risk-averse. Consider the first-order
condition, which we rewrite for convenience as follows:

E[u′(W̃1)k̃] = E[u′(W̃1)R f ]

By definition of the covariance, we have:

E(u′(W̃1)k̃) = k̂ E(u′(W̃1)) + cov(u′(W̃1), k̃)

Thus,

k̂ E(u′(W̃1)) + cov(u′(W̃1), k̃) = R f E(u′(W̃1))

Since the derivative of the expected utility is not null, we divide this expression
by it and obtain:

k̂ + cov(u′(W̃1), k̃)

E(u′(W̃1))
= R f

which clearly outlines the relationship between the expected returns of the risky
and the non-risky asset and provides a classical result called the Capital Asset
Pricing Model (CAPM). If we write the CAPM regression equation (to be seen
below) by:

k̂ = R f + β(Rm − R f )
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then, we can recuperate the beta factor often calculated for stocks and risky
investments:

β = − cov(u′(W̃1), k̃)

(Rm − R f )E(u′(W̃1))

where Rm is the expected rate of return of a market portfolio or the stock market
index. However, the beta found in the previous section implies:

β = cov(R̃m, k̃)

σ 2
m

= − cov(u′(W̃1), k̃)

(Rm − R f )E(u′(W̃1))

and therefore:

k̂ − R f = (Rm − R f )
cov(R̃m, k̃)

σ 2
m

= −cov(u′(W̃1), k̃)

E(u′(W̃1))

This sets a relationship between individuals’ utility of wealth, the market mech-
anism and a statistical estimate of market parameters.

An equivalent approach consists in constructing a portfolio consisting of a
proportional investment yi = Si/W0 in a risky asset i with a rate of return k̃i

while the remaining part is invested in a market index whose rate of return is R̃m

(rather than investing in a riskless bond). The rate of return of the portfolio is then
k̃ p = yi k̃i + (1 − yi )R̃m with mean and variance:

k̂ p = yi k̂i + (1 − yi )Rm, Rm = E R̃m

σ 2
p = y2

i σ 2
i + (1 − yi )

2σ 2
m + 2yi (1 − yi )σim ; σim = cov(k̃i , k̃m)

where variances σ 2 are appropriately indexed according to the return variable
they represent. The returns–risk substitution is found by calculating by chain
differentiation:

dk̂ p

dσp
= dk̂ p/dyi

dσp/dyi

where:

dk̂ p

dyi
= k̂i − Rm ;

dσp

dyi
= yi

(
σ 2

i + σ 2
m − 2σim

) + σim − σ 2
m

σp

A portfolio invested only on the market index (i.e. yi = 0) will lead to:
(

dσp

dxi

)

m

=
(

dσp

dxi

)

xi =0

= σim − σ 2
m

σp
and

(
dk̂ p

dσp

)

m

= (k̂i − Rm)σm

σim − σ 2
m

However since for all investors, the preference for returns is a linear function of
the returns’ standard deviation, (assuming they all maximize a quadratic utility
function!), we have:

k̂ = R f + λσ



EXPECTED UTILITY AND FINANCE 61

where σ is the volatility of the portfolio. For all assets we have equivalently:
k̂i = R f + λσi and for the portfolio as well, or:

k̂ p = R f + λσp → dk̂i

dσi
= λ and

(
dk̂ p

dσp

)

m

= (k̂i − Rm)σm

σim − σ 2
m

and therefore,
(

dk̂ p

dσp

)

m

= (k̂i − Rm)σm

σim − σ 2
m

= λ which leads to: k̂i = Rm − λσm + λσim

σm

But also Rm = R f + λσm which we insert in the previous equation, leading
thereby to a linear expression for risk discounting which assumes the form of
the (CAPM) or:

k̂i = R f + λσim

σm
and explicitly, k̂i = R f + λ cov(k̃i , R̃m)

σm

as seen earlier. Note that this expression can be written in a form easily amenable
to a linear regression in returns and providing an estimate for the βi factor:

k̂i = R f + βi (Rm − R f ); βi = λ cov(k̃i , R̃m)

(Rm − R f )σm

Since λ = (Rm − R f )/σm is the market price of risk, we obtain also the following
expression for the beta factor,

βi = cov (k̃i , R̃m)

σ 2
m

With this ‘fundamental’ identity on hand, we can calculate the risk premium of
an investment as well as the betas for traded securities.

3.5.4 Portfolio and utility maximization in practice

Market valuation of a portfolio and individual valuation of a portfolio are not the
same. The latter is based on an individual preference for the assets composition
of the portfolio and responding to specific needs. For example, denote by $W
a budget to be invested and let yi , i = 1, 2, 3, . . . , n be the dollars allocated to
each of the available alternatives with a resulting uncertain payoff

R̃ =
n∑

i=1

r̃i (yi )

The portfolio investment problem is then formulated by solving the following
expected utility maximization problem:

Maximize
y1,y2,y3,...,yn

Eu(R̃) = Eu

(
n∑

i=1

r̃i (yi )

)
subject to :

n∑

i=1

yi ≤ W, yi ≥ 0, i

= 1, 2, · · · , n
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where u(.) is the individual utility function, providing a return risk ordering over
all possible allocations. This problem has been solved in many ways. It clearly
sets up a transformation of an uncertain payoffs problem into a problem which is
deterministic and to which we can apply well-known optimization and numerical
techniques. If u(.) is a quadratic utility function and the rates of return are linear
in the assets allocation (i.e. r̃i (yi ) = r̃i yi ), then we have:

Maximize
y1,y2,y3,...,yn

Eu(R̃) = Eu

(
n∑

i=1

r̃i (yi )

)
=

n∑

i=1

r̂i yi − µ

n∑

j=1

n∑

i=1

ρi j yi y j ;

ρi j = cov(r̃i , r̃ j )

where r̂i is the mean rate of return on asset i, ρi j is the covariance between the
returns on two assets (i, j) and µ is a parameter expressing the investor’s risk
aversion (µ > 0) or risk loving (µ < 0). This defines a well known quadratic
optimization problem that can be solved using standard computational software
when the index of risk aversion is available. There are many other formulations of
this portfolio problem due to Harry Markowitz, as well as many other techniques
for solving it, such as scenario optimization, multi-criterion optimization and
others.

The Markowitz approach had a huge impact on financial theory and practice.
Its importance is due to three essential reasons. First, it justifies the well-known
belief that it is not optimal to put all one’s eggs in one basket (or the ‘principle of
diversification’). Second, a portfolio value is expressed in terms of its mean return
and its variance, which can be measured by using statistical techniques. Further,
the lower the correlation, the lower the risk. In fact, two highly and negatively
correlated assets can be used to create an almost risk-free portfolio. Third and
finally, for each asset there are two risks, one diversifiable through a combination
of assets and the other non-diversifiable to be borne by the investor and for which
there may be a return compensating this risk.

Markowitz suggested a creative approach to solving the quadratic utility portfo-
lio problem by assuming a specific index of risk aversion. The procedure consists
in solving two problems. The first problem consists in maximizing the expected
returns subject to a risk (variance) constraint (Problem 1 below) and the second
problem consists in minimizing the risk (measured by the variance) subject to a
required expected return constraint (Problem 2 below). In other words,

Problem 1:

Maximize
y1,y2,y3,...,yn

n∑

i=1

r̂i yi

Subject to:
n∑

j=1

n∑

i=1

ρi j yi y j ≤ λ

Problem 2:

Minimize
y1,y2,y3,...,yn

n∑

j=1

n∑

i=1

ρi j yi y j

Subject to:

n∑

i=1

r̂i yi ≥ µ

An optimization of these problems provides the efficient set of portfolios defined
in the (λ, µ) plane.
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The importance of Markowitz’s (1959) seminal work cannot be overstated. It
laid the foundation for portfolio theory whereby rational investors determine the
optimal composition of their portfolio on the basis of the expected returns, the
standard deviations of returns and the correlation coefficients of rates of return.
Sharpe (1964) and Lintner (1965) gave it an important extension leading to the
CAPM to measure the excess premium paid to hold a risky financial asset, as we
saw earlier.

3.5.5 Capital markets and the CAPM again

The CAPM for the valuation of assets is essentially due to Markowitz, James Tobin
and William Sharpe. Markowitz first set out to show that ‘diversification pay’,
in other words an investment in more than one security, provides an opportunity
to ‘make money with less risk’, compared to the prior belief that the optimal
investment strategy consists of putting all of one’s money in the ‘best basket’. For
risk-averse investors this was certainly a strategy to avoid. Subsequently, Tobin
(1956) showed that when there is a riskless security, the set of efficient portfolios
can be characterized by a ‘two-fund separation theorem’ which showed that an
efficient portfolio can be represented by an investor putting some of his money
in the riskless security and the remaining moneys invested in a representative
fund constructed from the available securities. This led to the CAPM, stated
explicilty by Sharpe in 1964 and Lintner in 1965. Both assumed that investors are
homogeneous and mean-variance utility maximizers (or, alternatively, investors
are quadratic utility maximizers). These assumptions led to an equilibrium of
financial markets where securities’ risks are measured by a linear function (due
to the quadratic utility function) given by the risk-free rate and a beta multiplied
by the relative returns of the ‘mutual fund’ (usually taken to be the market average
rate of return). In this sense, the CAPM approach depends essentially on quadratic
utility maximizing agents and a known risk-free rate. Thus, the returns of an asset
i can be estimated by a linear regression given explicitly by:

ki = αi + βi Rm + εi

where Rm is the market rate of return calculated by the rate of return of the stock
market as a whole, βi is an asset specific parameter while εi is the statistical error.
The CAPM has, of course, been subject to criticism. Its assumptions may be too
strong: for example, it implies that all investors hold the same portfolio – which is
the market portfolio, by definition fully diversified. In addition, in order to invest,
it is sufficient to know the beta associated with a stock, since it is the parameter
that fully describes the asset /stock return. Considerable effort has been devoted
to estimating this parameter through a statistical analysis of stocks’ risk–return
history. The statistical results obtained in this manner should then clarify whether
such a theory is applicable or not. For example, for one-factor models (market
premium in the CAPM) the following regression is run:

(k j − R f ) = α j + β j [Rm − R f ] + ε j
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where k j is the stock (asset) j rate of return at time t, when the risk-free rate at
that time was R f , (α j , β j ) are regression parameters, while Rm is the market rate
of return. Finally, ε j is the residual value, an error term, assumed to be normally
distributed with mean zero and known variance. Of course, if (α j �= 0) then this
will violate a basic assumption of no excess returns of the CAPM. In addition, Rm

must also, according to the CAPM theory, capture the market portfolio. If, again,
this is not the case, then it will also violate a basic assumption of the CAPM.
Using the regression equation above, the risk consists now of (assuming perfect
diversification, or equivalently, no correlation):

var(k j − R f ) = β2
j σ

2
m + σ 2

ε , σ 2
m = var(Rm); σ 2

ε = var(ε j )

expressing risk as a summation of beta-squared times the index-market plus the
residual risk.

The problems with a one-factor model, although theory-independent (since it is
measured by simple financial statistics), are its assumptions. Namely, it assumes
that the regression is stable and that nonstationarities and residual risks are known
as well. Further, to estimate the regression parameters, long time series are needed,
which renders their estimate untimely (and, if used carefully, it is of limited
value). The generalization of the one-factor model into a multiple-factor model
is also known as APT, or arbitrage pricing theory. Dropping the time index, it
leads to:

(k j − R f ) = α j + β j1[Rm − R f ] + · · · + β j K [RK − R f ] + ε j

where RK − R f is the expected risk premium associated with factor K . The
number of factors that can be used is large, including, among many others, the
yield, interest-rate sensitivity, market capitalization, liquidity, leverage, labour
intensity, recent performance (momentum), historical volatility, inflation, etc.
This model leads also to risks defined by the matrices calculated (the orthogonal
factors of APT) using the multivariate regression above, or

Σ = B′ Γ B + Φ

where Σ is the variance–covariance matrix of assets returns, B is the matrix
of assets’ exposures to the different risk factors, Γ is the vector of factor risk
premiums (i.e. in excess of the risk-free rate for period t) and finally, Φ is the
(diagonal) matrix of asset residual risks. These matrices, unfortunately involve
many parameters and are therefore very difficult to estimate.

A number of approaches based on the APT are available, however. One ap-
proach, the fundamental factor model assumes that the matrix B is given and
proceeds to estimate the vector Γ. A second approach, called the macroeconomic
approach, takes Γ as given and estimates the matrix B. Finally, the statistical
approach seeks to estimate (B,Γ) simultaneously. These techniques each have
their problems and are therefore used in varying circumstances, validated by the
validity of the data and the statistical results obtained.



EXPECTED UTILITY AND FINANCE 65

3.5.6 Stochastic discount factor, assets pricing and the Euler equation

The financial valuation of assets is essentially based on defining an approach
accounting for the time and risk of future payoffs. To do so, financial practice and
theories have sought to determine a discounting mechanism that would, appropri-
ately, reflect the current value of uncertain payoffs to be realized at some future
time. Thus, techniques such as classical discounting based on a pre-specified dis-
count rate (usually a borrowing rate of return provided by banks or some other
interest rate) were used. Subsequently, a concept of risk-adjusted discount rate
applied to discounting the mean value of a stream of payoffs was used. A par-
ticularly important advance in determining an appropriate discount mechanism
was ushered in, first by the CAPM approach, as we saw above, and subsequently
by the use of risk-neutral pricing, to be considered in forthcoming chapters. Both
approaches use ‘the market mechanism’ to determine the appropriate discount-
ing process to value an asset’s future payoffs. We shall consider these issues at
length when we seek a risk-neutral approach to value options and derivatives in
general. These approaches are not always applicable, however, in particular when
markets are incomplete and the value of a portfolio may not be determined in a
unique manner. In these circumstances, attempts have been made to maintain the
framework inspired by rational expectations and at the same time be consistent
theoretically and empirically verifiable. The SDF approach, or the generalized
method of moments, seeks to value an asset generally in terms of its future values
using a stochastic discount factor. This development follows risk-neutral pricing,
which justified a risk-free rate discounting process with respect to some proba-
bility measure, as we shall see later on (in Chapter 6).

Explicitly, the SDF approach for a single asset states that the price of an asset
equals the expected value of the asset payoff, times a stochastic discount factor.
This approach has the advantage that it leads to some of the classical results of
financial economics and at the same time it can be used by applying financial
statistics in asset pricing by postulating such a relationship. Define:

pt = asset price at time t that an investor may wish to buy

x̃ t = asset returns, a random variable

m̃t = a stochastic discount factor to be defined below

The SDF postulates:

pt = E(m̃t+1 x̃t+1), m̃t+1 = 1

1 + R̃t+1

where R̃t+1 is a random discounting. The rationality for such a postulate is based
on the expected utility of a consumption-based model. Say that an investor has
a utility function for consumption u(.), which remains the same at times t and
t + 1. We let the discount factor be ρ, expressing the subjective discount rate of
the consumer. Current consumption is certain, while next period’s consumption
is uncertain and discounted. Thus, in terms of expected utility we have:

U (ct , ct+1) = u(ct ) + ρEt u(ct+1)
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where Et is an expectation operator based on the information up to time t . Now
assume that st is a consumer’s salary at time t, part of which may be invested for
future consumption in an asset whose price is pt (for example, buying stocks). Let
y be the quantity of an asset bought (say a stock). Current consumption left over
after such an investment equals: ct = st − ypt . If the asst price one period hence is
x̃t+1, then the next period consumption is simply equal to the sum of the period’s
current income and the return from the investment, namely ct+1 = st+1 + yx̃t+1.
As a result, the consumer problem over two periods is reduced to:

U (ct , ct+1) = u(st − ypt ) + βEt u(st+1 + yx̃t+1)

The optimal quantity to invest (i.e. the number of shares to buy), found by maxi-
mizing the expected utility with respect to y, leads to:

∂U

∂y
= −pt u

′(st − pt y) + βEt [x̃t+1u′(st+1 + x̃t+1 y)]

= −pt u
′(ct ) + βEt [x̃t+1u′(ct+1)] = 0

which yields for an optimum portfolio:

pt = Et

[
β

u′(ct+1)

u′(ct )
x̃t+1

]

Thus, if we set the stochastic discount factor, m̃t+1, expressing the inter-temporal
substitution of current and future marginal utilities of consumption, then:

m̃t+1 = β
u′(ct+1)

u′(ct )
and therefore R̃t+1 =

1 − β
u′(ct+1)
u′(ct )

β
u′(ct+1)
u′(ct )

the pricing equation becomes pt = Et [m̃t+1 x̃t+1], which is the desired SDF
asset-pricing equation. This equation is particularly robust and therefore it
is also very appealing. For example, if the utility function is of the loga-
rithmic type, u(c) = ln(c), then, u′(c) = 1/c and m̃t+1 = βct/ct+1, or R̃t+1 =
β[(1/β)ct+1 − ct ]/ct and further, pt/ct = βEt [x̃t+1/ct+1]. In other words, if we
write πt = pt/ct ; π̃t+1 = x̃t+1/ct+1, then we have: πt = βEt (π̃t+1).

The results of such an equation can be applied to a broad a number of situations,
which were summarized by Cochrane (2001) and are given in Table 3.1. This
approach is extremely powerful and will be considered subsequently in Chapter 8,
since it is applicable to a broad number of situations and financial products. For
example, the valuation of a call option would be (following the information in
Table 3.1) given as follows (where the time index is ignored):

C = E [m Max(ST − K , 0)]

This approach can be generalized in many ways, notably by considering multiple
periods and various agents (heterogeneous or not) interacting in financial markets

Administrator
ferret
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Table 3.1 Selected examples.

Price pt Payoff xt+1

Dividend paying stock pt pt+1 + dt+1

Investment return 1 Rt+1

Price/dividend ratio
pt

dt

(
pt+1

dt+1
+ 1

)
dt+1

dt

Managed portfolio zt zt Rt+1

Moment condition E(pt zt ) xt+1zt

One-period bond pt 1

Risk-free rate 1 R f

Option C Max[ST − K , 0]

to buy, sell and transact financial assets. Cochrane (2001) in particular suggests
many such situations. An inter-temporal framework uses the Euler conditions for
optimality to generate an equilibrium discount factor and will be considered in
Chapter 9.

Example
Consider a one-dollar investment in a risk-free asset whose payoff is R f . Thus,
1/

(
1 + R f

) = E(m̃ * 1) and therefore we have 1/(1 + R f ) = E(m̃) as expected.

3.6 INFORMATION ASYMMETRY

Uncertainty and information asymmetry have special importance because of their
effects on decision-makers. These result also in markets being ‘incomplete’ since
the basic assumptions regarding ‘fair competition’ are violated. In general, the
presumption that information is commonly shared is also, often, violated. Some
information may be truthful, some may not be. Truth-in-lending for example, is
an important legislation passed to protect consumers, which is, in most cases,
difficult to enforce. Courts are filled with litigation on claims and counter-claims,
leading to a battle of experts on what the truth is and where it may lie. Envi-
ronmental litigation has often led to a ‘battle of PhDs’ expounding alternative
and partial pearls of knowledge. In addition, positive, negative, informative, par-
tial, asymmetric, etc. information has different effects on both decision-makers
and markets. For example, firms and funds are extremely sensitive to negative
information regarding their stock, their products as well as their services. Phar-
maceutical firms may be bankrupted upon adverse publicity, whether true or not,
regarding one of their products. For example, the Food and Drug Administration
warning on the content of benzene in Perrier’s sparkling water has more than
tainted the company’s image, its bottom-line profits and, at a certain time, its
future prospects. Of course, the tremendous gamble Perrier has taken to meet
these claims (that were not entirely verified) is a sign of the importance Perrier
attached to its reputation and to the effects of negative information.
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Information asymmetry and uncertainty can open up the possibility of cheating,
however. For example, some consumer journals may receive money in various
forms (mostly advertising dollars) not to publish certain articles and thereby
manage information in a way that does not benefit the public. For this reason,
regulatory authorities are needed in certain areas. A used-car salesman may be
tempted to sell a car with defects unknown to the prospective buyer. In some
countries, importers are not required to inform clients of the origin and the qual-
ity (state) of the product and parts used in the product sold. As a result, a product
claimed to be new by the seller may not in fact be new, opening up many possibil-
ities for cheating legally. These questions arise on Wall Street in many ways. In
an article in the Wall Street Journal the question was raised by Hugo Dixon with
respect to analysts’ claims and the conflict of interest when they act according to
their own edicts:

Shouldn’t analysists put their money where their mouth is? That is the contrarian response to
Merrill Lynch’s decision to ban its analysts from buying shares of companies they cover. It
might be said that researchers will have an incentive to give better opinions if they stand to make
money if they are right – and lose money if they are wrong. Clients might also be comforted
to know that the analysts who are peppering them with ‘buy’ recommendations are following
their own advice. Under this contrarian position, the fact that some analysts buy shares in
companies they follow isn’t a conflict of interest all. Quite the reverse! It is an alignment of
interests . . . this contrarian view cannot be dismissed as a piece of errant nonsense. But it is
nevertheless misconceived. There is a better way of aligning analyst’s financial interests with
those of their clients. And there are potential conflicts caused by an analyst trading stocks he
or she covers!

These ‘information problems’ are the subject of extensive study, both for prac-
tical and theoretical reasons. A number of references are included at the end
of this chapter. Below, we only consider some of the outstanding implications
information asymmetry may create.

3.6.1 ‘The lemon phenomenon’ or adverse selection

In a seminal paper, Akerlof (1970) pointed out that goods of different qualities may
be uniformly priced when buyers cannot realize that there are quality differences.
This is also called ‘adverse selection’ because some of the information associated
with the choice problem may be hidden. For example, one may buy a used car, not
knowing its true state, and therefore be willing to pay a price that would not truly
reflect the value of the car. In fact, we may pay an agreed-upon market price even
though this may be a lemon. The used-car salesman may have such information
but, for some obvious reason, he may not be amenable to revealing the true state
of the car. In such situations, price is not an indicator of quality and informed
sellers can resort to opportunistic behaviour (the used-car salesman phenomenon
stated above). While Akerlof demonstrated that average quality might still be a
function of price, individual units may not be priced at that level. By contrast,
people who discovered in the 1980s that they had AIDS were very quick in taking
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out very large life insurance (before insurance firms knew what it really entailed
and therefore were at first less informed than the insured). Bonds or stocks of
various qualities (but of equal ratings) are sometimes difficult to discern for an
individual investor intending to buy. For this reason, rating agencies, tracking and
following firms have an important role to play, compensating for the problems of
information asymmetry and making markets more efficient. This role is not always
properly played, as evidenced by the Enron debacle, where changing accounting
practices had in fact hidden information from the public.

Information asymmetry and uncertainty can largely explain the desires of con-
sumers to buy service or product warranties to protect themselves against fail-
ures or to favour firms who possess service organizations (in particular when
the products are complex or involve some up-to-date technologies). Generally in
transactions between producers and suppliers, uncertainty leads to constructing
long-term trustworthy relationships and contractual engagements to assure that
‘what is contracted is also delivered’. The potential for adverse selection may also
be used to protect national markets. Anti-dumping laws, non-tariff trade barriers,
national standards and approval of various sorts are some of the means used to
manage problems of adverse selection on the one hand and to manage market en-
tries to maintain a competitive advantage on the other. Finance and insurance are
abound with applications and examples where asymmetry induces an uncertainty
which has nothing to do with ‘what nature does’ but with ‘what people do’.

Problems of adverse selection can sometimes be overcome by compulsory
insurance regulation requiring all homeowners to insure their homes or requiring
everyone to take out medical insurance, for example. Some employers insure all
their employees as one package to avoid adverse selection problems. If everyone
is insured, high-risk individuals will be better off (since they will be insured at
a lower premium than justified by the risks they have in fact). Whether low-risk
individuals are better off under this scheme depends on how risk-averse they are
as the insurance they are offered is not actuarially fair.

3.6.2 ‘The moral hazard problem’

For many situations, the cost of providing a product or a service depends on the
behaviour of the purchaser. For example, the cost of insurance depends on the
amount of travel done by the purchaser and by the care he takes in driving. Simi-
larly, the cost of warranties depends on the care of the purchaser in using the com-
modity. Such behaviour cannot always be observed directly by the supplier/seller.
As a result, the price cannot depend on the behaviour of the purchaser that af-
fects costs. In this case, equilibrium cannot always be the first-best-optimum and
some intervention is required to reach the best solution. Questions are of course,
how and how much. For example, should car insurance be obligatory? How do
purchasers react after buying insurance? How do markets behave when there is
moral hazard and how can it be compensated?

Imperfect monitoring of fund managers, for example, can lead to moral hazard.
What does it mean? It implies that when the fund manager cannot be observed,
there is a possibility that the provider, the fund manager, will use that fact to his
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advantage and not deliver the right level of performance. Of course, if we contract
the delivery of a given level of returns and if the fund manager knowingly does
not maintain the terms of the contract, he would be cheating. We can deal with
such problems with various sorts of controls combined with incentive contracts to
create an incentive not to cheat or lie and to perform in the interest of the investor.
If a fund manager were to cheat or lie, and if he were detected, he would then be
penalized accordingly (following the terms agreed on by the contract).

For some, transparency (i.e. sharing information) is essential to provide a ‘sig-
nal’ that they operate with the best of intentions. For example, some restaurants
might open their kitchen to their patrons to convey a message of truthfulness
in so far as cleanliness is concerned. A supplier would let the buyer visit the
manufacturing facilities as well as reveal procedures relating to quality, machin-
ing controls and the production process in general. A fund manager will provide
regulators with truthful reports regarding the fund’s state and strategy.

Moral hazard pervades some of the most excruciating problems of finance.
The problem of deposit insurance and the ‘too big to fail’ syndrome encourages
excessive risk taking. As a result of implicit governmental guarantee, banks enjoy
a lower cost of capital, which leads to the consistent under-pricing of credit.
Swings in economic cycles are thus accentuated. The Asian financial crisis of
1998 is a case in point. The extent of its moral hazard is difficult to measure but
with each bail out by governments and the IMF, the trend for excessive risk taking
is reinforced.

3.6.3 Examples of moral hazard

(1) An over-insured driver may drive recklessly. Thus, while the insured motorist
is protected against any accident, this may induce him to behave in a nonrational
manner and cause accidents that are costly to society.

(2) In 1998, the NYSE at last, belatedly (since the practice was acknowledged
to have been going on since 1992), investigated charges against floor brokers
for ‘front-running’ or ‘flipping’. This is a practice in which the brokers used
information obtained on the floor to trade and earn profits on their own behalf.
One group of brokers was charged with making $11 millions. (Financial Times,
20 February 2001).

(3) The de-responsibilization of workers in factories also induces a moral hazard.
It is for this reason that incentives, performance indexation and responsibilization
are so important and needed to minimize the risks from moral hazard (whether
these are tangibles or intangibles). For example, decentralization of the workplace
and getting people involved in their jobs may be a means to make them care a
little more about their job and deliver the required performance in everything they
do.

Throughout these examples, there are negative inducements to good performance.
To control or reduce these risks, it is necessary to proceed in a number of ways.
Today’s concern for firms’ organizational design, the management of traders and
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their compensation packages, is a reflection of the need to construct relationships
that do not induce counterproductive acts. Some of the steps that can be followed
include:

(1) Detecting signals of various forms and origins to reveal agents’ behaviours,
rationality and performance. A greater understanding of agents’ behaviour
can lead to a better design of the workplace and to appropriate inducements
for all parties involved in the firm’s business.

(2) Managing and controlling the relationship between business partners, em-
ployees and workers. This means that no relationship can be taken for
granted. Earlier, we saw that information asymmetry can lead to oppor-
tunistic behaviour such as cheating, lying and being counterproductive, just
because there may be an advantage in doing so without having to sustain the
consequences of such behaviour.

(3) Developing an environment which is cooperative, honest and open, and
which leads to a frank exchange of information and optimal performance.

All these actions are important. It is therefore not surprising that many of the
concerns of managers deal with people, communication, simplification and the
transparency of everything firms do.

Example: Genetic testing and insurance
In a Financial Times article of 7–8 November 1998, it was pointed out that
genetic testing can give early warning of disease and that those results could
have serious consequences for those seeking insurance. The problem at hand,
therefore, indicates an important effect of information on insurance. How can
such problems be resolved? Should genetic testing be a requirement imposed by
insurers or should they not? If accurate genetic tests do become widely available,
they could encourage two trends that would undermine the present economic
basis of the insurance industry:

(1) Adverse selection: people who know they are at high risk take out insurance.
This drives up the price of premiums, so low-risk people are deterred from
taking out policies and withdrawing from the insurance ‘pool’.

(2) Cherry-picking: insurers identify people at lower risk than average and offer
them reduced premiums. If they join the preferred pool, this increases the
average risk in the standard pool and premiums have to rise. For example,
the insurance industry suffered from adverse selection in the 1980s when
individuals who knew they had HIV/AIDS took out extra insurance cover
without disclosing their HIV status. A more respectable name for cherry-
picking is market segmentation, as applied in general insurance for house
contents and motor vehicles, where policies favouring the (lesser) better
risks are common. These are becoming increasingly important issues due to
the improved databases available about insured and insurance firms ability
to tap these databases.
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3.6.4 Signalling and screening

In conditions of information asymmetry, one of the parties may have an incentive
to reveal some of the information it has. The seller of an outstanding concept
for a start-up to invest in will certainly have an interest in making his concept
transparent to the potential VC (venture capitalist) investor. He may do so in a
number of ways, such as pricing it high and therefore conveying the message to
the potential VC that it is necessarily (at that price) a dream concept that will
realize an extraordinary profit in an IPO (but then, the concept seller may also be
cheating!). The seller may also spend heavily on advertising the concept, claiming
that it is an outstanding one with special technology that it is hard to verify (but
then, the seller may again be lying!). Claiming that a start-up concept is just ‘great’
may be insufficient. Not all VCs are gullible. They require and look for signals
that reveal the true potential of a concept and its potential for making large profits.
Pricing, warranties, advertising, are some of the means used by well-established
firms selling a product to send signals. For example, the seller of a lemon with
a warranty will eventually lose money. Similarly, a firm that wants to limit the
entry of new competitors may signal that its costs are very low (and so if they
decide to enter, they are likely to lose money in a price battle). Advertising heavily
may be recuperated only through repeat purchase and, therefore, over-advertising
may be used as a signal that the over-advertised products are of good quality. For
start-ups, the game is quite different, VCs look for the signals leading to potential
success, such as good management, proven results, patentable ideas and a huge
potential combined with hefty growth rate in sales. Still, these are only signals,
and more sophisticated investors actually get involved in the start-ups they invest
in to reduce further the risks of surprise.

Uninformed parties, however, have an incentive to look for and obtain infor-
mation. For example, shop and compare, search for a job etc. are instances of
information-seeking by uninformed parties. Such activities are called screening.
A life insurer requires a medical record history; a driver who has a poor accident
record history is likely to pay a greater premium (if he can obtain insurance at
all). If characteristics of customers are unobservable, firms can use self-selection
constraints as an aid in screening to reveal private information. For example,
consider the phenomenon of rising wage profiles where workers get paid an in-
creasing wage over their careers. An explanation may be that firms are interested
in hiring workers who will stay for a long time. Especially if workers get training
or experience, which is valuable elsewhere, this is a valid concern. Then they
will pay workers below the market level initially so that only ‘loyal’ workers
will self-select to work for the firm. The classic example of ‘signalling’ was
first analysed by Spence (1974) who pointed out that high-productivity individ-
uals try to differentiate themselves from low-productivity ones by the amount
of education they acquire. In other words, only the most productive workers
invest in education. This is the case because the signalling cost to the produc-
tive workers is lower than to low-productivity workers and therefore firms can
differentiate between these two types of workers because they make different
choices.
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Uninformed parties can screen by offering a menu of choices or possible con-
tracts to prospective (informed) trading partners who ‘self-select’ one of these
offerings. Such screening was pointed out in insurance economics for example,
showing that, if the insurer offers a menu of insurance policies with different pre-
miums and amounts of cover, the high-risk clients self-select into a policy with
high cover. This can lead to insurance firms portfolios where bad risks crowd out
the good ones. Insurance companies that are aware of these problems create risk
groups and demand higher premium from members in the ‘bad’ risk portfolio, as
well as introducing a number of clauses that will share responsibility for payments
in case claims are made (Reyniers, 1999).

3.6.5 The principal–agent problem

Consider a business or economic situation involving two parties: a principal and an
agent. For example the manager of a company may be the ‘agent’ for a stockholder
who acts as a ‘principal’, trusting the manager to perform his job in the interest
of stockholders. Similar situations arise between a fund and its traders. The fund
‘principal’ seeks to provide incentives motivating the traders – ‘agents’ – to
perform in the interest of the fund. In these situations, the actions taken by the
agent may be observed only imperfectly. That is, the performance observed by
the principal is the outcome of the agent actions (known only by the agent) and
some random variable, which may be known, or unknown by the agent at the
time an action is assumed and taken. The principal – agent problem consists
then in determining the rules for sharing the outcomes obtained through such
an organization. This asymmetry of information leads of course to a situation
of potential moral hazard. There are several approaches to this problem, which
we consider below. For example, designing appropriate incentive systems is of
great practical importance. CAR (capital adequacy requirements), health-care
compensation etc. are only some of the tools that are used and widely practised
to mitigate the effects of moral hazard through agency.

The principal–agent problem is well researched, and there are many research
papers using assumptions leading to what we may call normative behaviours and
normative compensations. Here we consider a simple example based on the first-
order approach. Let x̃ be a random variable, which represents the gross return,
obtained by a hedge fund manager – the principal. The distribution of this return
is influenced by the variable a, which is under the control of the trader and not
observed by the principal. Now assume that the sharing rule is given by F(x̃, a)
while the probability distribution of the outcome is f (x̃, a) which is independent
statistically of a. The principal–agent problem consists in determining the amount
transferred to the agent by the principal in order to compensate him for the efforts
he performs on behalf of the principal. To do so, we assume that the agent utility
is separable and given by:

V (y, a) = v(y) − w(a); v′ > 0, v′′ ≤ 0, w′ > 0, w′′ > 0

In order to assure the agent’s participation, it is necessary to provide at least an
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expected utility:

EV (y, a) ≥ 0 or E v(y) ≥ w(a)

In this case, the utility of the principal is:

u(x̃ − y), u′ > 0, u′′ ≤ 0

The problems we formulate depends then on the information distribution between
the principal and the agent.

Assume that the agent’s effort ‘a’ is observable by the principal. In this case,
the problem of the principal is formulated by optimizing both ‘a’ and of course
the transfer. That is,

Max
a,y(.)

Eu(x̃ − y(x̃)) subject to: Ev(y(x̃) − w(a)) ≥ 0

By applying the conditions for optimality, the optimal solution is found to be:

u′(x̃ − y(x̃))

v′(y(x̃))
= λ

This yields a sharing rule based on the agent and the principal marginal utility
functions, a necessary condition for Pareto optimal risk sharing. A differentiation
of the sharing rule, indicates that:

dy

dx
= u′′/u′

u′′/u′ + v′′/v′

For example, if we assume exponential utility functions given by:

u(w) = −e−awu

a
; v(w) = −e−bwv

b

where initial wealth is given by (wu, wv) then, we have a linear risk-sharing rule,
given by:

e−a(wu−(x−y(x))

e−b(wv−y(x))
= λ ⇒ y(x) =

(
a

a + b

)
x +

(
bwv − awa

a + b

)

In other words, the share of the first party is proportional to the risk tolerance,
which is given by λ/a and λ/b respectively.

Similarly, assume a fund manager can observe the trader’s effort. Or, alterna-
tively, consider a manager–trader relationship where there is a direct relation-
ship between performance and effort. For example, for salesmen of financial
products, there is a direct relationship between the performance of the sales-
men (quantity of contracts sold) and his effective effort. Let e be the effort
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and P(e) the profit function. The employee’s cost is C(e) and the employee’s
reservation utility is u. There are a number of simple payment schemes that
can motivate a trader/worker to work and provide the efficient amount of effort.
These are payments based on effort, forcing contracts and franchises considered
below (Reyniers (1999))

(1) Payments based on effort: The worker is paid based on his effort, e, according
to the wage payment (we + K ), the manager’s problem is then to solve:

Max π = P(e) − (we + K ) − C(e)

Subject to: we + K − C(e) ≥ u

The inequality constraint is called the ‘participation constraint’ or the ‘individual
rationality constraint’. The employer has no motivation to give more money to the
trader than his reservation utility. In this case, the effort selected by the manager
will be at the level where marginal cost equals the marginal profit of effort, or
P ′(e∗) = C ′(e∗). The trader has to be encouraged to provide the optimal effort
level that leads to the incentive compatibility constraint. In other words, the
worker’s net payoff should be maximized at the optimal effort or w = C ′(e∗).
Thus, the trader is paid a wage per unit time equal to his marginal disutility of
effort and a lump sum K that leaves him with his reservation utility.

(2) Forcing contracts: The manager could propose to pay the trader a lump
sum L which gives him his reservation utility if he makes effort e∗, i.e. L = u +
C(e∗) and zero otherwise. Clearly, the participation and incentive compatibility
constraints are satisfied under this simple payment scheme. This arrangement is
called a forcing contract because the trader is forced to make effort e∗ (while
above, the trader is left to select his effort level).

(3) Franchises: Now assume that the trader can keep the profits of his effort in
return for a certain payment to the principal/manager. This can be interpreted as a
franchise structure (similar in some ways to a fund of funds). To set the franchise
fee, the trader proceeds as follows. First the trader maximizes P(e) − C(e) − F
and therefore chooses the same optimal effort as before such that: P ′(e∗) = C ′(e∗).
The principal/manager can charge a franchise fee which leaves the trader with his
reservation utility: F = P(e∗) − C(e∗) − u. When the effort cannot be observed,
the problem is more difficult. In this case, payment based on effort is not possible.
If we choose to pay based on output, then the employer would choose a franchise
structure. However, if the employee is risk-averse, he will seek some payment
to compensate the risk he is assuming. If the manager is risk-neutral, he may be
willing to assume the trader’s risk and therefore the franchise solution will not be
possible in its current form!
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CHAPTER 4

Probability and Finance

4.1 INTRODUCTION

Probability modelling in finance and economics provides a means to rationalize
the unknown by imbedding it into a coherent framework, clearly distinguishing
what we know and what we do not know. Yet, the assumption that we can for-
malize our lack of knowledge is both presumptuous and essential at the same
time. To appreciate the problems of probability modelling it is essential to dis-
tinguish between randomness, uncertainty and chaos. These terms are central to
an important polemic regarding ‘modelling cultures’ in probability, finance and
economics. Kalman (1994) states that ‘the majority of observed phenomena of
randomness in nature (always excluding games of chance) cannot and should not
be explained by conventional probability theory; there is little or no experimental
evidence in favour of (conventional) probability but there is massive, accumulat-
ing evidence that explanations and even descriptions should be sought outside the
conventional framework’. This means that randomness might be defined with-
out the use of probabilities. Kolmogorov, defined randomness in terms of non-
uniqueness and non-regularity. For example, a die has six faces and therefore it
has non-uniqueness. Further, the expansion of

√
2 or of π provides an infinite

string of numbers that appear irregularly, and can therefore be thought of as ‘ran-
dom’. The Nobel Laureate, Born, in his 1954 inaugural address also stated that
randomness occurs when ‘determinacy lapses into indeterminacy’ without any
logical, mathematical, empirical or physical argumentation, preceding thereby an
important research effort on chaos. Kalman, seeking to explain these approaches
to modelling defined chaos as ‘randomness without probability’. Statements such
as ‘we might have trouble forecasting the temperature of coffee one minute in
advance, but we should have little difficulty in forecasting it an hour ahead’ by
Edward Lorenz, a weather forecaster and one of the co-founders of chaos theory,
reinforces the many dilemmas we must deal with in modelling uncertain phenom-
ena. In weather modelling and forecasting for example, involving in many cases
as many as 50 000 equations and more, it is presumed that if small models can
predict well, it is only natural to expect that bigger and more sophisticated ones
can do better. This turned out not to be the case, however. Bigger does not always
turn out to be better; more sophisticated does not always mean improved accuracy.
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In weather forecasting it soon became evident that no matter what the size and
sophistication of the models used, forecasting accuracy decreased considerably
beyond two to three days and provided no better predictions than using the aver-
age weather conditions of similar days of previous years to predict temperature,
rainfall, or snow. What came to be known as the ‘butterfly effect’ (meaning in fact
an insensitivity to initial conditions) or the effects of a flying butterfly exerting an
unlikely and unpredictable critical influence on future weather patterns (Lorenz,
1966). In the short term too, the accuracy of weather forecasting could not im-
prove much beyond the use of the naive approach which predicts that tomorrow’s
or the next day’s weather will be exactly the same as today’s. Subsequent studies
have amplified the importance of chaos in biology. Similar issues are raised in
financial forecasting: the time scale of data, whether it is tickertape data or daily,
weekly or monthly stock quotations, alters significantly the meaningfulness of
forecasts.

In economic and business forecasting, the accuracy of predictions did not turn
out to be any better than those of weather forecasting seen above. Further, accrued
evidence points out that assumptions made by probability models are in practice
violated. Long-run memory undermines the existence of martingales in finance.
Further, can stock prices uncertainty or ‘noise’ be modelled by Brownian motion?
This is one of the issues we must confront and deal with in financial modelling.
The index of Hurst, entropy and chaos, which we shall discuss subsequently, are
important concepts because they stimulate and highlight that there may be other
approaches to be reckoned with and thereby stimulate economic and financial
theoretical and empirical thinking.

The study of nonlinear financial time series and in particular chaos has assumed
recently an added importance. Traditionally, it has been assumed for mathematical
convenience that time series have a number of characteristics including:

� Existence of an equilibrium (or fixed point or a stationary state), or equivalently
an insensitivity to initial conditions in the long run.

� Periodicity.
� Structural stability which allows the transformation of equations which

are hard to study to some other forms which are stable and amenable to
analysis.

There are a number of physical and economic phenomena that do not share all
these properties. When this is the case, we call these series chaotic, implying
that both indeterminacy and our inability to predict what the state of a system
may be. Chaos can thus occur in both deterministic time series as well as in
stochastic ones. For this reason, it has re-ignited the age-old confrontation of
a deterministic versus a probabilistic view of nature and the world as well as
mathematical modelling between externally and internally induced disturbances
(which are the source of nonlinearities).

Commensurate analysis of nonlinear time series has also followed its course in
finance. ARCH and GARCH type models used to estimate volatility are also non-
linear models expressed as a function (linear or not) of past variations in stocks.
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Their analysis and estimation is the more difficult, the greater the nonlinearities
assumed in representing the process. Current research is diverted towards the
study of various nonlinear (non-Gaussian) and leptokurtic distributions, seeking
to bridge a gap between traditional probability approaches in finance (based on
the normal probability distribution) and systems exhibiting a chaotic behaviour
and ‘fat tails’ in their distributions. For example, a great deal of research effort
is devoted to explain why probability distributions are leptokurtic. Some ap-
proaches span herding behaviour in financial markets, reflecting the interaction
of traders, imitation of investor groups and the following of gurus or opinion
leaders. In such circumstances, collective behaviour can be ‘irrational’ leading
to markets crashing. A paper ‘Turbulent cascades in foreign exchange markets’
by Ghashghaie et al., published in a letter in Nature in 1996, has also pointed to
the statistical observation that a similar behaviour is seen in financial exchange
markets and hydrodynamic turbulence. Such behaviour clearly points to a ‘non-
Gaussian-Normal noise’ and thereby to invalidating the assumption of ‘normal
noise’ implicit in the underlying random walk models used in finance.

In general, in order to model uncertainty we seek to distinguish the known
from the unknown and find some mechanisms (such as theories, common sense,
metaphors and more often intuition) to reconcile our knowledge with our lack of
it. For this reason, modelling uncertainty is not merely a collection of techniques
but an art in blending the relevant aspects of a situation and its unforeseen con-
sequences with a descriptive, yet theoretically justifiable and tractable, economic
and mathematical methodology. Of course, we conveniently use probabilities to
describe quantitatively the set of possible events that may unfold over time. Spec-
ification of these probabilities and their associated distributions are important and
based on an understanding of the process at hand and the accrued evidence we
can apply to estimate these probabilities. Any model is rationally bounded and
also has its own sources of imperfections that we may (or may not) be aware of.
However, ‘at the end of the day’, probabilities and their quantitative assessment,
remain essential and necessary to provide a systematic approach to construct-
ing a model of uncertainty. For this reason, it is important to know some of the
assumptions we use in building probability models, as we shall briefly outline
below. The approach we shall use is informal, however, emphasizing a study of
models’ implications at the expense of formality.

4.2 UNCERTAINTY, GAMES OF CHANCE AND MARTINGALES

Games of chance, such as betting in Monte Carlo or any casino, are popular
metaphors to represent the ongoing exchanges of stock markets, where money is
thrown to chance. Its historical origins can be traced to Girolamo Cardano who
proposed an elementary theory of gambling in 1565 (Liber de Ludo Aleae – The
Book of Games of Chance). The notion of ‘fair game’ was clearly stated: ‘The
most fundamental principle of all in gambling is simply equal conditions, e.g. of
opponents, of bystanders, of money, of situation, of the dice box, and of the die
itself. The extent to which you depart from that equality, if it is in your opponent’s
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favour, you are a fool, and if in your own, you are unjust’. This is the essence of
the Martingale (although Cardano did not use the word ‘martingale’). It was in
Bachelier’s thesis in 1900 however that a mathematical model of a fair game, the
martingale, was proposed. Subsequently J. Ville, P. Levy, J.L. Doob and others
have constructed stochastic processes. The ‘concept of a fair game’ or martingale,
in money terms, states that the expected profit at a given time given the total past
capital is null with probability one. Gabor Szekely points out that a martingale is
also a paradox. Explicitly,

If a share is expected to be profitable, it seems natural that the share is worth buying, and if it is
not profitable, it is worth selling. It also seems natural to spend all one’s money on shares which
are expected to be the most profitable ones. Though this is true, in practice other strategies are
followed, because while the expected value of our money may increase (our expected capital
tends to infinity), our fortune itself tends to zero with probability one. So in Stock Exchange
business, we have to be careful: shares that are expected to be profitable are sometimes worth
selling.

Games of dice, blackjack, roulette and many other games, when they are fair,
corrected for the bias each has, are thus martingales. ‘Fundamental finance theory’
subsumes as well that under certain probability measures, asset prices turn out to
have the martingale property. Intuitively, what does a martingale assume?

� Tomorrow’s price is today’s best forecast.
� Non-overlapping price changes are uncorrelated at all leads and lags.

The martingale is considered to be a necessary condition for an efficient asset
market, one in which the information contained in past prices is instantly, fully
and perpetually reflected in the asset’s current price. A technical definition of a
martingale can be summarized as the presumption that each process event (such
as a new price) is independent and can be summed (i.e. it is integrable) and has the
property that its conditional expectation remains the same (i.e. it is time-invariant).
That is, if Φt = {p0, p1, . . . , pt} are an asset price history at time t = 0, 1, 2, . . .

expressing the relevant information we have at this time regarding the time series,
also called the filtration. Then the expected next period price at time t + 1 is equal
to the current price

E (pt+1 |p0, p1, p2, . . . , pt ) = pt

which we also write as follows:

E (pt+1 |Φt ) = pt for any time t

If instead asset prices decrease (or increase) in expectation over time, we have a
super-martingale (sub-martingale):

E (pt+1 |Φt ) ≤ (≥)pt

Martingales may also be defined with respect to other processes. In particular,
if {pt , t ≥ 0} and {yt , t ≥ 0} are two processes denoting, say, price and interest
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rate processes, we can then say that {pt , t ≥ 0} is a martingale with respect to
{yt , t ≥ 0} if:

E {|pt |} < ∞ and E (pt+1 |y0, y1, . . . , yt ) = pt , ∀t

Of course, by induction, it can be easily shown that a martingale implies an
invariant mean:

E(pt+1) = E(pt ) = · · · = E(p0)

For example, given a stock and a bond process, the stock process may turn out to
be a martingale with respect to the bond (a deflator) process, in which case the
bond will serve as a numeraire facilitating our ability to compute the value of the
stock.

Martingale techniques are routinely applied in financial mathematics and are
used to prove many essential and theoretical results. For example, the first ‘funda-
mental theorem of asset pricing’, states that if there are no arbitrage opportunities,
then properly normalized security prices are martingales under some probability
measure. Furthermore, efficient markets are defined when the relevant informa-
tion is reflected in market prices. This means that at any one time, the current
price fully represents all the information, i.e. the expected future price p(t + T )
conditioned by the current information and using a price process normalized to
a martingale equals the current price. ‘The second fundamental theorem of asset
pricing’ states in contrast that if markets are complete, then for each numeraire
used there exists one and only one pricing function (which is the martingale
measure). Martingales and our ability to construct price processes that have the
martingale properties are thus extremely useful to price assets in theoretical fi-
nance as we shall see in Chapter 6.

Martingales provide the possibility of using a risk-neutral pricing framework
for financial assets. Explicitly, when and if it can be used, it provides a mechanism
for valuing assets ‘as if investors were risk neutral’. It is indeed extremely con-
venient, allowing the pricing of securities by using their expected returns valued
at the risk-free rate. To do so, one must of course, find the probability measure,
or equivalently find a discounting mechanism that renders the asset values a mar-
tingale. Equivalently, it requires that we determine the means to replicate the
payoff of an uncertain stream by an equivalent ‘sure’ stream to which a risk-free
discounting can be applied. Such a risk-neutral probability exists if there are no
arbitrage opportunities. The martingale measures are therefore associated with a
pricing of an asset which is unique only if markets are complete. This turns out
to be the case when the assumptions made regarding market behaviours include:

� rational expectations,
� law of the single price,
� no long-term memory,
� no arbitrage.

The problem in applying rational expectations to financial valuation is that
it may not be always right, however. The interaction of markets can lead to
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instabilities due to very rapid and positive feedback or to expectations that are
becoming trader- and market-dependent. Such situations lead to a growth of
volatility, instabilities and perhaps, in some special cases, to bubbles and chaos.
George Soros, the hedge fund financier has also brought attention to the concept of
‘reflexivity’ summarizing an environment where conventional traditional finance
theory no longer holds and therefore theoretical finance does not apply. In these
circumstances, ‘there is no hazard in uncertainty’. A trader’s ability to ‘identify
a rational behaviour’ in what may seem irrational to others can provide great
opportunities for profit making.

The ‘law of the single price’, claiming that two cash flows of identical char-
acteristics must have, necessarily, the same price (otherwise there would be an
opportunity for arbitrage) is not always satisfied as well. Information asymmetry,
for example, may violate such an assumption. Any violation of these assumptions
perturbs the basic assumptions of theoretical finance, leading to incomplete mar-
kets. In particular, we apply this ‘law’ in constructing portfolios that can replicate
risky assets. By hedging, i.e. equating these portfolios to a riskless asset, it be-
comes possible to value the assets ‘as if they were riskless’. This approach will
be developed here in greater detail and for a number of situations.

We shall attend to these issues at some length in subsequent chapters. At this
point, we shall turn to defining terms often used in finance: random walks and
stochastic processes.

4.3 UNCERTAINTY, RANDOM WALKS AND
STOCHASTIC PROCESSES

A stochastic process is an indexed pair {events, time} expressed in terms of a
function – a random variable indexed to time. This defines a sample path, i.e. a set
of values that the process can assume over time. For example, it might be a stock
price denoting events, indexed to a time scale. The study of stochastic processes
has its origin in the study of the kinetic behaviour of molecules in gas by physicists
in the nineteenth century. It was only in the twentieth century, following work by
Einstein, Kolmogorov, Levy, Wiener and others, that stochastic processes were
studied in some depth. In finance, however, Bachelier, in his dissertation in 1900,
had already provided a study of stock exchange speculation using a fundamental
stochastic process we call the ‘random walk’, establishing a connection between
price fluctuations in the stock exchange and Brownian motion – a continuous-time
expression of the random walk assumptions.

4.3.1 The random walk

The random walk model of price change is based on two essential behavioural
hypotheses.

(1) In any given time interval, prices may increase with a known probability
0 < p < 1, or decrease with probability 1 − p.

(2) Price changes from period to period are statistically independent.
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Denote by �ξ (t) the random event denoting the price change (of size �x) in a
small time interval �t :

�ξ (t) =
{+�x w.p. p

−�x w.p. 1−p

Thus, if x(t) is the price at the discrete time t , and if it is only a function of the
last price x(t − �t) and price changes �ξ (t) in (t − �t, t), then an evolution of
prices is given by:

x(t) = x(t − �t) + �ξ (t)

Prices are thus assuming values x(t) at times . . . , t − �t, t, t + �t, . . . These
values denote a stochastic process x(t) which is also written as {x(t), t ≥ 0}. The
price at time t , x(t), assumes in this case a binomial distribution since events
are independent and of fixed probability, as we shall see next. Say that we start
at a given price x0 at time t0 = 0. At time t1 = t0 + �t , either the price in-
creases by �x with probability 0 < p < 1 or it decreases with probability 1 − p.
Namely,

x(t1) = x(t1 − �t) + �ξ1, or x(t1) = x(t0) + �ξ1.

We can also write this equation in terms of the number of times i1 the price
increases. In our case, prices either increase or decrease in �t , or

x(t1) = x0 + i1�x − (1 − i1)�x, i1 ∼ B(1, p)

where i1 assumes two values i1 = 0, 1 given by the binomial probability distri-
bution

B(1, p) =
(

1
i1

)
pi1 (1 − p)1−i1

i1 = 0, 1 and parameter (1, p), 0 < p < 1. An instant of time later t2 = t1 +
�t = t0 + 2�t , we have:

x(t2) = x(t2 − �t) + �ξ2 or x(t2) = x(t1) + �ξ2 or x(t2) = x(t0) + �ξ1 + �ξ2

which we can write as follows (see also Figure 4.1):

x(t2) = x0 + i2�x − (2 − i2)�x, i2 ∼ B(2, p)

and generally, for n successive intervals of time (tn = n�t), the price is defined
by:

x(tn) = x0 + in�x − (n − in)�x, in ∼ B(n, p)

where:

B(n, p) =
(

n
in

)
pin (1 − p)n−in ; in = 0, 1, 2, . . . , n
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Figure 4.1 A two-period tree.

The price process can thus be written by:

x(tn) = x(tn−1) + �ξn or x(tn) = x(t0) +
n∑

i=0

�ξ j

where x(tn) − x(t0) has the probability distribution of the sum �ξ j ( j = 1, . . . , n).
Since price changes are of equal size, we can state that the number of times
prices have increased is given by the binomial distribution B(n, p). The expected
price and its variance can now be calculated easily. The expected price at time
tn is:

E(x(tn)) = x0 + �x E(in) − �x E(n − in); E(in) = np; E(n − in) = n(1 − p)

Set d = [in − (n − in)] �x . The mean distance and its variance, given by E(d)
and var(d), with q = 1 − p are then,

E(d) = n(p − q)�x and var(d) = 4npq(�x)2

This is easily proved. Note that E(i) = np and var(i) = npq, with i replacing in

for simplicity. Thus,

E(d) = E [i − (n − i)] �x = E [2i − n] �x = (2np − n)�x = n(p − q)�x

Also

var(d) = (�x)2 var [i − (n − i)] = (�x)2 var [2i − n] = 4npq(�x)2

The results above are expressed in terms of small distance (which we shall hence-
forth call states) increments �x and small increments of time �t . Letting these
increments be very small, we can obtain continuous time and continuous state
limits for the equation of motion. Explicitly, in a time interval [0, t], let the number
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of jumps be n and be given by n = [t/�t]. When �t is a small time increment,
then (with t/�t integer):

E(d) = t(p − q)�x

�t
, var(d) = 4tpq(�x)2

�t

For the problem to make sense, the limits of �x/�t and (�x)2/�t as �x → 0
must exist, however. In other words, we are specifying a priori that the stochastic
process, has at the limit, finite mean and finite variance growth rates. If we let
these limits be:

lim
�t→0
�x→0

�x

�t
= 2C, lim

�t→0
�x→0

(�x)2

�t
= 2D

It is also possible to express the probability of a price increase in terms of these
parameters which we choose for convenience to be:

p = 1

2
+ C

2D
�x,

Inserting this probability in the mean and variance equations, and moving to the
limit, we obtain the mean and variance functions m(t) and σ 2(t) which are linear
in time:

m(t) = 2Ct ; σ 2(t) = 2Dt

where C is called the ‘drift’ of the process expressing its tendency over time while
D is its diffusion, expressing the process variability. The proof of these is simple
to check. First note that:

E(d) = n(p − q)�x = n
C

D
(�x)2

However, (�x)2 = 2D�t and therefore, E(d) = 2Cn�t = 2Ct . By the same
token,

var(d) = 4npq(�x)2 = n

[
1 + C

D
�x

] [
1 − C

D
�x

]
(�x)2

However, we also have (�x)2 = 4C2(�t)2, n = t/�t which is inserted in the
equation above to lead to:

var(d) = t
(�x)2

�t

[
1 − C2

D2
(�x)2

]
= 2Dt

[
1 − 2(�x)2(�t)

4(�t)2(�x)2
(�x)2

]

since,
[

1 − 2(�x)2(�t)

4(�t)2(�x)2
(�x)2

]
= [1 − D�t]

At the time limit, we obtain the variance var(d) = σ 2(t) = 2Dt stated above.
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Since this limit results from limiting arguments to the underlying binomial
process describing the random walk, we can conclude that the parameters
(m(t), σ 2(t)) are normally distributed, or:

f (x, t) = 1√
2πσ (t)

exp

{
−1

2

[x − m(t)]2

σ 2(t)

}

This equation turns out to be also a particular solution of a partial differential
equation expressing the continuous time–state evolution of the process probabil-
ities and called the Fokker–Planck equation. Using the elementary observation
that a linear transformation of normal random variables are also normal, we can
write the price equation in terms of its drift 2C and diffusion

√
2D (also called

volatility), by:

�x(t) = 2C�t +
√

2D�w(t), with E(�w(t)) = 0, var(�w(t)) = �t

where �w(t) is a normal probability distribution with zero mean and variance
�t . Such processes, in continuous time are called stochastic differential equations
(SDEs) while the process �x(t) = �w(t) is called a Wiener (Levy) process.
Finally, the integral of �w(t), or W (t), is also known as Brownian motion which
is essentially a zero mean normally distributed random variable with independent
increments and a linear variance in time t . It is named after Robert Brown (1773–
1858), a botanist who discovered the random motion of colloid-sized particles
found in experiments performed in June–August 1825 with pollen. If we were to
take a stock price, it would be interesting to estimate both the drift and the diffusion
of the process. Would it fit? Would the residual error be indeed a normal probability
distribution with mean zero, and a linear time variance with no correlation? Such
a study would compare stock data taken every minute (tickertape), daily, weekly
and monthly. Probably, results will differ according to the time scale taken for
the estimation and thereby violate the assumptions of the model. Such studies are
important in financial statistics when they seek to justify the assumption of ‘error
normality’ in financial time series.

The Wiener process is of fundamental importance in mathematical finance
because it is used to model the uncertainty associated with many economic pro-
cesses. However, it is well known in finance that such a process underestimates
the probability of the price not changing, and overestimates the mid-range value
price fluctuations. Further, extreme price jumps are grossly underestimated by the
Wiener (normal) process. The search for distributions that can truly reflect stock
market behaviour has thus became an important preoccupation. Mandelbrot and
Fama for example have suggested that we use Pareto–Levy distributions as well
as leptokurtic distributions to describe the statistics of price fluctuations. Explic-
itly, say that a distribution has mean m and variance σ 2 and define the following
coefficients ζ1 = m3/σ

3 and ζ2 = m4/σ
4 − 3 where m3 and m4 are the third and

the fourth moment respectively. The first index is an index of asymmetry pointing
to leptokurtic distributions while the second is ‘an excess coefficient’ point to
platokurtic distributions. For the Normal distribution we have ζ1 = 0 and ζ2 = 0,
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thus any departure from these reference values will also indicate a departure from
normality. Pareto–Levy stable distributions exhibit, however, an infinite variance,
practically referred to as ‘fat tail distributions’ that also violate the underlying
assumptions of ‘Normal–Wiener’ processes. When weekly or monthly data is
used (rather than daily and intraday data), a smoothing of the data allows the
use of the Normal distribution. This observation thus implies that the time scale
we choose to characterize uncertainty is an important factor to deal with. When
the time scale increases, the use of Normal distributions is justified because in
such cases, we gradually move from leptokurtic to Normal distributions. What
statistical distribution can one assume over different periods of consideration?
The random walk is by far the most used and the easiest to work with and
agrees well for larger periods of time. Other distributions are mathematically
more challenging, especially since different results are seen for various assets.
Part of the problem can be explained by the deviations from the efficient markets
hypothesis and external influences on the market, as we shall see in subsequent
chapters.

Formally, it is a Markov stochastic process x = {x(t); t ≥ 0} whose non-
overlapping increments �xt and �xs

�x(τ ) = x(τ + �t) − x(τ ); τ = t, s

are stationary, independently and normally distributed with mean zero and vari-
ance �t , i.e. with zero drift and volatility 1. In continuous time, this equation is
often written as:

dx = 2C dt =
√

2D dw(t)

Such equations are known as stochastic differential equations. Generalization to
far more complex movements can also be constructed by changing the modelling
hypotheses regarding the drift and the diffusion processes. When the diffusion–
volatility is also subject to uncertainty, this leads to processes we call stochastic
volatility models, leading to incomplete markets (as will be seen in Chapter 5).
In many cases, volatility can be a function of the process itself. For example, say
that σ = σ (x), then evidently,

�x = σ (x)�w

which need not lead, necessarily, to a Normal probability distribution for x . For
example, in some cases, it is convenient to presume that rates of returns are
Normal, meaning that �x/x can be represented by a process with known drift
(the expected rate of return) and known diffusion (the rates of returns volatility).
Thus, the following hypothesis is stated:

�x

x
= α�t + σ�w.
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This is equivalent to stating that the log of return y = ln (x) has a Normal proba-
bility distribution:

�y = α�t + σ�w, y = ln (x)

with mean αt and variance σ 2t and therefore, x has a lognormal probability
distribution.

In many economic and financial applications stochastic processes are driven
by a Wiener process leading to models of the form:

x(t + �t) = x(t) + f (x, t)�t + σ (x, t)�w(t)

Of course, if the time interval is �t = 1, this is reduced to a difference equation,

Xt+1 = Xt + ft (X ) + σt (X )εt , εt ∼ N (0, 1), t = 0, 1, 2, . . .

where εt is a zero mean, unit variance and normally distributed random variable.
When the time interval is infinitely small, in continuous time, we have a stochastic
differential equation:

dx(t) = f (x, t) dt + σ (x, t) dw(t), x(0) = x0, 0 ≤ t ≤ T

The variable x(t) is defined, however, only if the above equation is meaningful
in a statistical sense. In general, existence of a solution for the stochastic differ-
ential equation cannot be taken for granted and conditions have to be imposed to
guarantee that such a solution exists. Such conditions are provided by the Lip-
schitz conditions assuming that: f , σ and the initial condition x(0) are real and
continuous and satisfy the following hypotheses:

� f and σ satisfy uniform Lipschitz conditions in x . That is, there is a K > 0
such that for x2 and x1,

| f (x2, t) − f (x1, t)| ≤ K |x2 − x1|
|σ (x2, t) − σ (x1, t)| ≤ K |x2 − x1|

� f and σ are continuous in t on [0, T ], x(0) is any random variable with
E (x(0))2 < ∞, independent of the increment stochastic process. Then:
(1) The stochastic differential equation has, in the mean square limit sense,

a solution on

t ∈ [0, T ] , x(t) − x(0) =
t∫

0

f (x, τ ) dτ +
t∫

0

σ (x, τ ) dw(τ )

(2) x(t) is mean square continuous on [0, T ]
(3) E (x(0))2 < M, for all t ∈ [0, T ] and arbitrary M ,

T∫

0

E((x(t))2) dt < ∞
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(4) x(t) − x(0) is independent of the stochastic process {dw(τ ); τ > t} for
t ∈ [0, T ].

The stochastic process x(t), t ∈ [0, T ], is then a Markov process and, in a mean
square sense, is uniquely determined by the initial condition x(0). The Lipschitz
and the growth conditions, meaning ( f (x, t))2 + (σ (x, t))2 ≤ K 2(1 + |x |2), pro-
vide both a uniqueness and existence non-anticipating solution x(t) of the stochas-
tic differential equation in the appropriate range [0, T ]. In other words, if these
conditions are not guaranteed, as is the case when the variance of processes
increases infinitely, a solution to the stochastic differential equation cannot be
assured.

Clearly, there is more than one way to conceive and formalize stochastic models
of prices. In this approach, however, the evolution of prices was entirely indepen-
dent of their past history. And further, a position at an instant of time depends only
on the position at the previous instant of time. Such assumptions, compared to
the real economic, financial and social processes we usually face, are extremely
simplistic. They are, however, required for analytical tractability and we must
therefore be aware of their limitations. The stringency of the assumptions re-
quired to construct stochastic processes, thus, point out that these can be useful to
study systems which exhibit only small variations in time. Models with large and
unpredictable variations must be based therefore on an intuitive understanding of
the problem at hand or some other modelling techniques.

4.3.2 Properties of stochastic processes

The characteristics of time series are mostly expressed in terms of, ‘stationarity,
ergodicity, correlation and independent increments’. These terms are often en-
countered in the study of financial time series and we ought therefore to understand
them.

Stationarity
A time series is stationary when the evolution of its mean (drift) and variance
(volatility–diffusion) are not a function of time. If f (x, t) is the probability dis-
tribution of x at time t, then: f (x, t) = f (x, t + τ ) = f (x) for all t and τ . This
property is called strict stationarity. In this case, for a two random variables
process, we have:

f (x1, x2, t1, t2) = f (x1, x2, t1, t1 + τ ) = f (x1, x2, t2 − t1) = f (x1, x2, τ )

That is, for the joint distribution of a strict stationary process, the distribution is
a function of the time difference τ of the two (prices) random variables. As a re-
sult, the correlation function B(t1, t2) = E(x(t1)x(t2)), describing the correlation
between (x1, x2) at instants of time (t1, t2), is a function of the time difference
t2 − t1 = τ only. The autocovariance function (the correlation function about the
mean) is then given by K (t1, t2), with K (t1, t2) = B(t1, t2) − Ex1(t1)Ex2(t2). By
the same token, the correlation coefficient R1(τ ) of the random variable x1 is a
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function of the time difference τ only, or

R1(τ ) = cov[x1(t), x1(t + τ )]

var[x1(t)] var[x1(t + τ )]

For stationary processes we have necessarily var[x(t)] = var [x(t + τ )] and there-
fore the correlation coefficient is a function of the time difference only, or

R(τ ) = [B(τ ) − m]2

var[x(t)]
= K (τ )

K (0)

Independent increments
Increments �x(t) = x(t + 1) − x(t) are stationary and independent if non-
overlapping �x(t) and �x(s) are statistically, identically and independently dis-
tributed. This property leads to well-known processes such as the Poisson Jump
and the Wiener process we saw earlier and can, sometimes, be necessary for the
mathematical tractability of stochastic processes. The first two moments of non-
overlapping independent and stationary increments point to a linear function of
time (hence the term of linear finance, associated with using Brownian motion in
financial model building). This is shown by the simple equalities:

E[X (t)] = t E[X (1)] + (1 − t)E[X (0)];
var[X (t)] = t var[X (1)] + (1 − t) var[X (0)]

The proof is straightforward and found by noting that if we set f (t) = E[X (t)] −
E[X (0)], then, non-overlapping stationary increments imply that:

f (t + s) = E[X (t + s)] − E[X (0)] = E[X (t + s) − X (t)] + E[X (t) − X (0)]

= E[X (s) − X (0)] + E[X (t) − X (0)]

= f (t) + f (s)

And the only solution is f (t) = t f (1), which is used to prove the result for the
expectation. The same technique applies to the variance.

4.4 STOCHASTIC CALCULUS

Financial and computational mathematics use stochastic processes extensively
and thus we are called to manipulate equations of this sort. To do so, we mostly
use Ito’s stochastic calculus. The ideas of this calculus are simple and are based
on the recognition that the magnitudes of second-order terms of asset prices are
not negligible. Many texts deal with the rules of stochastic calculus, including
Arnold (1974), Bensoussan (1982, 1985), Bismut (1976), Cox and Miller (1965),
Elliot (1982), Ito (1961), Ito and McKean (1967), Malliaris and Brock (1982) and
my own (Tapiero, 1988, 1998). For this reason, we shall consider here these rules
in an intuitive manner and emphasize their application. Further, for simplicity,
functions of time such as x(t) and y(t) are written by x and y except when the
time specification differs.
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The essential feature of Ito’s calculus is Ito’s Lemma. It is equivalent to the
total differential rule in deterministic calculus. Explicitly, state that a functional
relationship y = F(x, t), continuous in x and time t , expresses the value of some
economic variable y measured in terms of another x (for example, an option
price measured in terms of the underlying stock price on which the option is
written, the value of a bond measured as a function of the underlying stochastic
interest rate process etc.) whose underlying process is known. We seek �y =
y(t + �t) − y(t). If x is deterministic, then application of the total differential rule
in calculus, resulting from an application of Taylor series expansion of F(x, t),
provides the following relationship:

�y = ∂ F

∂t
�t + ∂ F

∂x
�x

Of course, having higher-order terms in the Taylor series development yields:

�y = ∂ F

∂t
�t + 1

2

∂2 F

∂t2
[�t]2 + ∂ F

∂x
�x + 1

2

∂2 F

∂x2
[�x]2 + ∂2 F

∂t ∂x
[�t �x]

If the process �x is deterministic, then obviously, terms of the order [�t]2,
[�x]2 and [�t �x] are negligible relative to �t and �x , which leads us to the
previous first-order development. However, when �x is stochastic, with variance
of order�t , terms of the order [�x]2 are non-negligible (since they are also of
order�t). As a result, the appropriate development of F(x, t) leads to:

�y = ∂ F

∂t
�t + ∂ F

∂x
�x + 1

2

∂2 F

∂x2
[�x]2

This is essentially Ito’s differential rule (also known as Ito’s Lemma), as we shall
see below for continuous time and continuous state stochastic processes.

4.4.1 Ito’s Lemma

Let y = F(x, t) be a continuous, twice differentiable function in x and t , or
∂ F/∂t, ∂ F/∂x, ∂2 F/∂x2 and let {x(t), t ≥ 0} be defined in terms of a stochastic
differential equation with drift f (x, t) and volatility (diffusion) σ (x, t),

dx = f (x, t) dt + σ (x, t) dw, x(0) = x0, 0 ≤ t ≤ T

then:

dF = ∂ F

∂t
dt + ∂ F

∂x
dx + 1

2

∂2 F

∂x2
(dx)2.

Or

dF = ∂ F

∂t
dt + ∂ F

∂x
[ f (x, t) dt + σ (x, t) dw] + 1

2

∂2 F

∂x2
[ f (x, t) dt + σ (x, t) dw]2

Neglecting terms of higher order than dt, we obtain Ito’s Lemma:

dF =
{

∂ F

∂t
+ ∂ F

∂x
f (x, t) + 1

2
σ 2(x, t)

∂2 F

∂x2

}
dt + ∂ F

∂x
σ (x, t) dw
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This rule is a ‘work horse’ of mathematical finance in continuous time. Note
in particular, that when the function F(.) is not linear, the volatility affects the
process drift. Applications to this effect will be considered subsequently. General-
izing to multivariate processes is straightforward. For example, for a two-variable
process, y = F(x1, x2, t) where {x1(t), x2(t); t ≥ 0} are two stochastic processes
while F admits first- and second-order partial derivatives, then the stochastic total
differential yields:

dF = ∂ F

∂t
dt + ∂ F

∂x1
dx1+ 1

2

∂2 F

∂x2
1

(dx1)2 + ∂ F

∂x2
dx2 + 1

2

∂2 F

∂x2
2

(dx2)2

+ ∂2 F

∂x1x2
(dx1 dx2)

in which case we introduce the appropriate processes {x1(t), x2(t); t ≥ 0} and
maintain all terms of order dt. For example, define y = x1x2, then for this case:

∂ F

∂t
= 0;

∂ F

∂x1
= x2;

∂2 F

∂x2
1

= 0;
∂ F

∂x2
= x1;

∂2 F

∂x2
2

= 0;
∂2 F

∂x1x2
= 1

which means that:

dF = x2 dx1 + x1 dx2 + dx1 dx2

Other examples will be highlighted through application in this and subsequent
chapters. Below, a number of applications in economics and finance are consid-
ered.

4.5 APPLICATIONS OF ITO’S LEMMA

4.5.1 Applications

The examples below can be read after Chapter 6, in particular the applications of
the Girsanov Theorem and Girsanov and the binomial process.

(a) The Ornstein–Uhlenbeck process
The Ornstein-Uhlenbeck process is a process used in many circumstances to
model mean returning processes. It is given by the following stochastic differential
equation:

dx = −ax dt + σ dw(t), a > 0

We shall show first that the process has a Normal probability distribution and solve
the equation by an application of Ito’s Lemma. Let y(t) = eat x(t) and apply Ito’s
differential rule to lead to:

dy = σ eat dw(t)
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An integration of the above equation with substitution of y yields the solution:

x(t) = x(0) e−at + σ

t∫

0

e−a(t−τ ) dw(τ )

The meaning of this equation is that the process x(t) is an exponentially weighted
function of past noise. Note that the transformed process y(t) has a constant mean
since its mean growth rate is null, or E(dy) = E[σ eat dw(t)] = σ eat E[dw(t)] =
0. In other words, the exponential growth process y(t) = eat x(t) is a constant
mean process.

(b) The wealth process of a portfolio of stocks
Let x be the invested wealth of an investor at a given time t and suppose that in
the time interval (t, t + dt), c dt is consumed while y dt is the investor’s income
from both investments and other sources. In this case, the rate of change in wealth
is equal x(t + dt) = x + [y − c] dt . In order to represent this function in terms
of investment assets, say that all our wealth is invested in stocks. The price of a
stock, denoted by Si , i = 1, 2, . . . , n and the number of stocks Ni held of each
type i , determines wealth as well as income. If income is measured only in terms
of price changes (i.e. we do not include at this time borrowing costs, dividend
payments for holding shares etc.), then income y dt in dt is necessarily:

y dt =
n∑

i=1

Ni dSi

and therefore the investor’s worth is:

dx =
n∑

i=1

Ni dSi − c dt

For example, assume that prices are lognormal, given by:

d Si

Si
= αi dt + σi dwi , Si (0) = S0,i given, i = 1, 2, . . . , n

where wi (t) are standard Wiener processes (that may be independent or not, in
which case they are assumed to be correlated). Inserting into the wealth process
equation, we obtain:

dx =
n∑

i=1

Ni [αi Si dt + σi Si dwi ] − c dt =
n∑

i=1

[αi Ni Si − c] dt

+
n∑

i=1

[σi Ni Si dwi ]

This is of course, a linear stochastic differential equation. Simplifications to this
equation can be reached, allowing a much simpler treatment. For example, say
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that a proportion θi of the investor wealth is invested in stock i . In other words,

Ni Si = θi x or Ni = θi x /Si with
n∑

i=1

θi = 1

Further, say that the Wiener processes are uncorrelated, in which case:

n∑

i=1

[σi Ni Si dwi ] =
n∑

i=1

[σiθi x dwi ] = x

√√√√
n∑

i=1

[
σ 2

i θ2
i

]
dw

which leads to:

dx =
[

n∑

i=1

αiθi x − c

]
dt + x

√√√√
n∑

i=1

[
σ 2

i θ2
i

]
dw,

n∑

i=1

θi = 1

Thus, by selecting trading and consumption strategies represented by θi , i =
1, 2, . . . , n we will, in fact, also determine the evolution of the (portfolio) wealth
process.

4.5.2 Time discretization of continuous-time finance models

When the underlying model is given in a continuous time and in a continuous
state framework, it is often useful to use discrete models as an approximation.
There are a number of approaches to doing so. Discretization can be reached
by discretizing the state space, the time or both. Assume that we are given a
stochastic differential equation (SDE). A time (process) discretization might lead
to a simple stochastic difference equation or to a stochastic difference equation
subject to multiple sources of risk, as we shall see below. A state discretization
means that the underlying process is represented by discrete state probability
models (such as a binomial random walk, a trinomial walk, or Markov chains and
their like). These approaches will be considered below.

(a) Probability approximation (discretizing the states)
In computational finance, numerical techniques are sought that make it possible
also to apply risk-neutral pricing, in other words approximate the process by us-
ing binomial models or other models with desirable mathematical characteristics
that allow the application of fundamental finance theories. Approximations by
binomial trees are particularly important since many results in fundamental fi-
nance are proved and explained using the binomial model. It would therefore be
useful to define a sequence of binomial processes that converge weakly (at least)
to diffusion–stochastic differential equation models. Nelson and Ramaswamy
(1990) have suggested such approximations, which are in fact similar to a drift–
volatility approximation. Let x be the current price of a stock and let its next price
(in the discretized model with time intervals h) be either X+(x, t) or X−(x, t).
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We denote by P(x, t), the probability of transition to state X+(x, t). Or

Xt = x ; Xt+1 =
{

[X+(x, t)] with Pr P(x, t)
[X−(x, t)] with Pr 1 − P(x, t)

Thus,

Xt+1 − Xt = �x =
{

[X+(x, t) − x] with Pr P(x, t)
[X−(x, t) − x] with Pr 1 − P(x, t)

For a financial process defined by a stochastic differential equation with drift
µ(x, t) and volatility σ (x, t) we then have:

µ(x, t)h = P(x, t)[X+(x, t) − x] + [1 − P(x, t)][X−(x, t) − x]

σ 2(x, t)h = P(x, t)[X+(x, t) − x]2 + [1 − P(x, t)][X−(x, t) − x]2

This is a system of two equations in the three values P(x, t), [X−(x, t)] and
[X+(x, t)] that the discretized scheme requires. These values can be defined in
several ways. Explicitly, we can write:

X+(x, t) ≡ x + σ
√

h; X−(x, t) ≡ x − σ
√

h;

P(x, t) = 1/2 + √
hµ(x, t)/2σ (x, t)

And, therefore, an approximate binomial tree can be written as follows:

�x =
{

σ
√

h with Pr [1/2 + √
hµ(x, t)/2σ (x, t)]

−σ
√

h with Pr [1/2 − √
hµ(x, t)/2σ (x, t)]

For example, say that H x = X+(x, t) and Dx = X−(x, t) as well as p = P(x, t).
Then:

Xt+1 =
{

H x with Pr p
Lx with Pr 1 − p ; Xt = x

Let i be the number of times the price (process) increases over a period of time
T , then, the price distribution at time T is:

XT

x
= (H )i (L)T −i w.p. Pi =

(
T
i

)
pi (1 − p)T −i i = 0, 1, 2, 3, . . . , T

Consider now the mean reverting (Ornstein–Uhlenbeck) process often used to
model interest rate and volatility processes:

dx = β(α − x) dt + σ dw, x(0) = x0 > 0, β > 0, x ∈ [0, 1]

Then, we define the following binomial process as an approximation:

X+(x, t) ≡ x + σ
√

h; X−(x, t) ≡ x − σ
√

h;

P(x, t) = 1/2 + √
hµ(x, t)/2σ (x, t)
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x

 

t 

t+ ∆t  Time 

P (x, t)

(x) ( − x X  x, t)= -

ε1             (x)                  = X+       (x ,        t)   −                            x

ε2

Figure 4.2 A binomial tree.

with the explicit transition probability given by:

P(x, t) =






1/2 + √
hβ(α − x)/2σ if 0 ≤ 1/2 + √

hβ(α − x)/2σ ≤ 1

0 if 1/2 + √
hβ(α − x)/2σ < 0

1 otherwise

The probability P(x, t) is chosen to match the drift, it is censored if it falls outside
the boundaries [0, 1]. As a result, the basic building block of the binomial process
will be given as shown in Figure 4.2. In order to construct a simple (plain vanilla)
binomial process it is essential that the volatility be constant, however. Otherwise
the process will exhibit conditional heteroscedasticity. In the example above, this
was the case and therefore we were able to define the states and the transition
probability simply. When this is not the case, we can apply Ito’s differential
rule and find the proper transformation that will ‘purge’ this heteroscedasticity.
Namely, we consider the transformation y(x, t) to which we apply Ito’s Lemma:

dy =
{

∂y

∂t
+ ∂y

∂x
f (x, t) + 1

2
σ 2 ∂2 y

∂x2

}
dt + ∂y

∂x
σ (x, t) dw

and choose:

y(x, t) =
x∫

dz

σ (z, t)

in which case, the term
(

σ (x, t)
∂y(x, t)

∂x

)
dw

is replaced by dw and the instantaneous volatility of the transformed process is
constant. This allows us to obtain a computationally simple binomial tree. To see
how to apply this technique, we consider another example. Consider the CEV
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stock price:

dx = µx dt + σ xγ dw; 0 < γ < 1 and y(x, t) ≡ σ−1

x∫
z−γ dz = x1−γ

σ (1 − γ )

which has the effect of reducing the stochastic differential equation to a constant
volatility process, thus making it possible to transform it into a simple binomial
process with an inverse transform given by:

x(y, t) =
{

[σ (1 − γ )x]1/(1−γ ) if x > 0
0 otherwise

(b) The Donsker Theorem
A justification of this approximation based on binomial trees can be made using
the Donsker Theorem which is presented intuitively below. Given that the process
we wish to represent is a trinomial random walk (or a simple random walk), we
represent for convenience the transition probabilities as follows:

pn = 1 − r

2
+ α

2n
; qn = 1 − r

2
− α

2n

with α ∈ R, 0 ≤ r < 1 real numbers and n is a parameter representing the
number of segments n2 used in dividing a given time interval, assumed to be
large. Note that these (Markov) transition probabilities satisfy: pn ≥ 0, qn ≥ 0,

r + pn + qn = 1. For each partitioning of the process, we associate the random
walk (X (n)

t ; t ∈ T ) which is a piecewise linear approximation of the stochastic
process where the time interval [0, t] is divided into equal segments each of
width 1/n2. At the kth segment, we have the following states:

X (n)
k/n2 = 1√

n2
Xk = X (k)([n2t])

X (n)
t = X (n)

k/n2 + (n2t − [n2t])
(
X (n)

(k+1)/n2 − X (n)
k/n2

)∀t ∈
[

k + 1

n2
,

k

n2

]

Note that the larger n, the greater the number of states and thereby, the more refined
the approximation. The corresponding continuous (Brownian motion) process (a
function of n) is then assumed given by:

Bn(t) = 1

n

(
X (n)([n2t]) + (n2t − [n2t])ε([n2t+1])

)
; t ≥ 0

[..] denotes the integer value of its argument and ε(.) is the random walk with
transition probabilities (pn, qn). Note that by writing the continuous process in
this form, we essentially divide the time scale in widths of 1/n2. Of course,
when n is large, then time will become approximately continuous. The Donsker
Theorem essential statement is that when n is large, the approximating random
walk converge to a Brownian motion. Note that we can easily deduce that for n
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large, the following moments:

E

[
1

n
X (n)([n2t])

]
= α

n2
[n2t];

var

{
1

n
X (n)([n2t])

}
= [n2t]

n2

(
r (1 − r ) + (1 − r )2 − α2

n2

)

Consequently, for a fixed time, at the limit ([n2t] ≈
t→∞

n2t, t fixed):

Lim
n→+∞ E

[
1

n
X (n)([n2t])

]
= αt

Lim
n→∞ Var

{
1

n
X (n)([n2t])

}
= t(r (1 − r ) + (1 − r )2) = (1 − r )t

Furthermore, the last term in B(n)(t) disappears since |(n2t − [n2t])ε([n2t])+1| ≤ 1.
These allow the application of the Donsker Theorem stating that the process

B(n) converges in distribution to (
√

1 − r Bt + αt ; t ≥ 0) where (Bt ; t ≥ 0) des-
ignates a real and standardized Brownian motion starting at 0. This result, which is
derived formally, justifies the previous continuous approximation for the random
walk. Note that when r (the probability of remaining in the same state) is large,
then we obtain a process with drift α and zero variance. However, when n is small
(close to zero or equal to zero) we obtain a Brownian motion with drift. Finally,
we can proceed in a similar manner and calculate the empirical variance process
of a trinomial random walk, providing therefore a volatility approximation as
well. This is left as an exercise.

(c) Discrete time approximations
In some cases, we approximate an underlying price stochastic differential equation
by a stochastic difference equation. There are a number of ways to do so, however.
As a result, a unique (price) valuation process based on a continuous-time model
might no longer be unique in its ‘difference’ form. This will be seen below
by using an approximation due to Milshtein (1974) which uses principles of
stochastic integration in the relevant approximate discretized time interval. Thus,
unlike application of the Donsker Theorem which justified the partitioning of
the price (state) process, we construct below a discrete time process and apply
Ito’s differential rule within each time interval in order to estimate the evolution
of prices (states) within each interval. The approximation within a time interval
is achieved by a Taylor series approximation which can be linear, or of higher
order. Integration using Ito’s calculus provides then an estimate of the states in
the discretized scheme. As we shall see below, this has the effect of introducing a
process uncertainty which is not normal, thereby leading to stochastic volatility.
The higher the order approximation the larger the number of uncertainty sources.
To see how this is defined, we consider first the following Ito differential equation:

dx = f (x, t) dt + σ (x, t) dw(s)
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Consider next two subsequent instants of time t and r, r > t , then a discretized
process in the interval r − t , r > t can be written as follows:

xr = xt + α(r, xt , r − t) + β(r, xt , r − t, wr − wt )

where α(r, xt , r − t), β(r, xt , r − t, wr − wt ) are a drift, a function of the begin-
ning state and the end state as well as as a function of time, the time interval
and the volatility which is, in addition, a function of the uncertainty in the time
interval. Note the volatility function need not be a linear function in (wr − wt ).
In a stochastic integral form, the evolution of states is:

xt = xs +
t∫

s

f (r, xr ) dr +
t∫

s

σ (xr , r ) dwr

If we use in discrete time only a first-order (linear) approximation to the drift and
the volatility, we have:

xr
∼= xt + f (s, xt ) �t + σ (t, xt ) �wt ,

�t = (r − t); �wt = (wr − wt ), α(.) = f (s, xt ) �t ; β(.) = σ (s, xs) �wt

When we take a second-order approximation, an additional source of uncertainty
is added. To see how this occurs, consider a more refined approximation based on
a Taylor series expansion of the first two terms for the functions ( f, σ ). Then in
the time interval (t, s; t > s) :

xt = xs +

+
t∫

s

[
f (s, xs) + ∂ f (s, xs)

∂t
(r − s) + ∂ f (s, xs)

∂x
( f (s, xs)(r − s)

+ σ (s, xs)(wr − ws))] dr +
t∫

s

[
σ (s, xs) + ∂σ (s, xs)

∂t
(r − s) + ∂σ (s, xs)

∂x

( f (s, xs)(r − s) + σ (s, xs)(wr − ws))

]
dr

Since the stochastic integral is given by:

xt = xs +

t∫

s

[wr − ws] dwr = 1

2
[(wt − ws)2 − (t − s)]

Including terms of order (t − s) only, we obtain:

xt = xs + f (s, xs)(t − s) + σ (s, xs)(wt − ws) + 1

2

∂σ (s, xs)

∂x
[(wt − ws)2 − (t − s)]
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or:

xt = xs + f (s, xs) �t + σ (s, xs) �ws + 1

2

∂σ (s, xs)

∂x
[(�ws)2 − �t]

Note that in this case, there are two sources of uncertainty. First we have a
normal term (wt − ws) of mean zero and variance t − s, while we also have a
chi-square term defined by (wt − ws)2. Their sum produces, of course, a nonlinear
(stochastic) model.

An improvement of this approximation can further be reached if we take a
higher-order Taylor series approximation. Although this is cumbersome, we sum-
marize the final result here that uses the following stochastic integral relations
(which are given without their development):

t∫

s

(r − s) dr =
t−s∫

0

u du = 1

2
(t − s)2 = 1

2
(�t)2

t∫

s

(r − s)2 dr =
t−s∫

0

u2 du = (t − s)3

3
= (�t)3

3

t∫

s

(r − s)(wr − ws) dr =
t−s∫

0

τ (wr − ws) dτ =
t−s∫

0

τ

v∫

0

dw(v) dτ

=
t−s∫

0

dw(v)

t−s∫

v

τ dτ = 1

2

t−s∫

0

(�t2 − v2) dw(v)

which has Normal probability distribution with mean zero and variance:

var(x(t)) = 1

4

t−s∫

0

[�t2 − u2]2 du =1

4

t−s∫

0

[�t4 + u4 − 2�t2u2] du = �t5

6

t∫

s

w(τ ) dw(τ ) = 1

2
(w(t)2 − w(s)2) − 1

2
(t − s)

t∫

s

w(τ )2 dw(τ ) = 1

3
(w(t)3 − w(s)3) −

t∫

s

w(τ ) dτ

= 1

3
(w(t)3 − w(s)3) − 1

2
(w(t)2 − w(s)2) + 1

2
(t − s)
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And therefore we have at last:

xt = xs + [ f (s, xs) + σ (s, xs)] �t+

+ 1

2





∂ f (s, xs)

∂t
+ ∂σ (s, xs)

∂t
+

∂ f (s, xs)

∂x
f (s, xs) + ∂σ (s, xs)

∂x
f (s, xs)



 (�t)2

+ 1

2.3

[
∂2 f (s, xs)

∂t2
+ ∂2σ (s, xs)

∂t2
+ ∂2σ (s, xs)

∂x2
f (s, xs)

]
(�t)3

+ 1

2

[
∂ f (s, xs)

∂x
+ ∂σ (s, xs)

∂x

]
σ (s, xs)[(�ws)2 − �t]

+ 1

2.3





∂2 f (s, xs)

∂x2
σ 2(s, xs)+

∂2σ (s, xs)

∂x2
σ 2(s, xs)




{(

w3
t − w3

s

) − 3
(
w2

t − w2
s

) + 3�t
}

+ ∂2σ (s, xs)

∂x2
f (s, xs)σ (s, xs)

(�t)5/2

√
6

�ws

This scheme allows the numerical approximation of the stochastic differential
equation and clearly involves multiple sources of risk.

For the lognormal price process:

dx = αx dt + βx dw

The transformation of the Ito stochastic differential equation becomes:

d(log x) =
[
α − β2

2

]
dt + β dws

And therefore, a finite differencing, based on integration over a unit interval
yields:

log xt − log xt−1 =
[
α − β2

2

]
+ βεt ; εt ≡ (Wt − Wt−1)

which can be used now to estimate the model parameters using standard statistical
techniques. Interestingly, if we consider other intervals, such as smaller length
intervals (as would be expected in intraday data), then the finite difference model
would be instead:

�τ = log xt − log xt−τ =
[
α − β2

2

]
+ β

√
τετ

t ; ετ
t ∼ N (0, 1)

Of course, the estimators of the model parameters will be affected by this dis-
cretization. Higher-order discretization can be used as well to derive more precise
results, albeit these results might not allow the application of standard fundamen-
tal finance results.
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4.5.3 The Girsanov Theorem and martingales*

The Girsanov Theorem is important to many applications in finance. It defines a
‘discounting process’ which transforms a given price process into a martingale.
A martingale essentially means, as we saw it earlier, that any trade or transaction
will be ‘fair’ in the sense that the expected value of any such transaction is null.
And therefore its ‘transformed price’ remains the same. In particular, define the
transformation:

L = exp






t∫

0

σ (s) dW (s) − 1

2

t∫

0

σ 2(s) ds






where σ (s), 0 ≤ s ≤ T is bounded and is the unique solution of:

dL

L
= σ dW ; L(0) = 1; E(L) = 1, ∀t ∈ [0, T ]

and L(t) is a martingale. The proof can be found, by an application of Ito’s differen-
tial rule with y = log L , or dy = dL/L − (1/2L2)(dL)2 = σ dW − (1/2)σ 2 dt
whose integration leads directly to:

y − y0 = ln (L) − ln (L0) =
t∫

0

σ (s) dW (s) − 1

2

t∫

0

σ 2(s) ds

And therefore,

L(0) = L(t) exp




−
t∫

0

σ (s) dW (s) + 1

2

t∫

0

σ 2(s) ds




 , L(0) = 1

In this case, note that y is a process with drift while that of L has no drift and thus
L is a martingale. For example, for the lognormal stock price process:

dS

S
= α dt + σ dW, S(0) = S0

Its solution at time t is simply:

S(t) = S(0) eαt exp

[
−σ 2

2
t + σ W (t)

]
, W (t) =

t∫

0

dW (t)

which we can write in terms of L(t) as follows:

S(t) = S(0)eαt L(t)

L(0)
or

S(t)

L(t)
= eαt S(0)

L(0)
or

S(0)

L(0)
= e−αt S(t)

L(t)

Note that the term S(t)/L(t) is no longer stochastic and therefore no expectation is
taken (alternatively, a financial manager would claim that, since it is deterministic,
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its future value ought to be at the risk-free rate). By the same token, consider both
a stock price and a risk-free bond process given by:

dS

S
= α dt + σ dW, S(0) = S0;

dB

B
= R f dt, B(0) = B0

If the bond is defined as the numeraire, then we seek a transformation such that
S(t)/B(t) is a martingale. For this to be the case, we will see that the stock price
is then given by:

dS

S
= R f dt + σ dW ∗, S(0) = S0

where dW ∗ is the martingale measure which is explicitly given by:

dW ∗ = dW + α − R f

σ
dt

In this case, under such a transformation, we can apply the risk-neutral pricing
formula:

S(0) = e−R f t E∗ (S(t))

where E∗ denotes expectation with respect to the martingale measure.

Problem
Let y = x1/x2 where {x1(t), x2(t); t ≥ 0} are two stochastic processes, each with
known drift and known diffusion, then show that the stochastic total differential
yields:

dy = 1

x2
dx1 − x1

x2
2

dx2 + x1

x3
2

(dx2)2 − 1

x2
2

(dx1 dx2)

Further, show that if we use the stock price and the bond process, it is reduced to:

dy = dS

B(t)
− S(t)

B2(t)
dB + S(t)

B3(t)
(dB)2 − dS dB

B2(t)
= dS

B(t)
− S(t)

B2(t)
dB

And as a result,

dy

y
= (

α − R f
)

dt + σ dW

Finally, replace dW by

−α − R f

σ
dt + dW ∗ = dW and obtain:

dy

y
= σ dW ∗

which is of course a martingale under the transformed measure.
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Martingale examples∗

(1). Let the stock price process be defined in terms of a Bernoulli event where
stock prices grow from period to period at rates a > 1 and b < 1 with probabilities
defined below:

St =






aSt−1 w.p.
1 − b

a − b

bSt−1 w.p.
a − 1

a − b

This process is a martingale. First it can be summed and, further, we have to show
that this a constant mean process with:

E (St+1 |St , St−1, . . . , S0 ) = E (St+1 |St ) = St

Explicitly, we have:

E (St+1 |St ) = aSt
1 − b

a − b
+ bSt

a − 1

a − b
= St

b(a − 1) + a(1 − b)

a − b
= St

By the same token, we can show that there are many other processes that have the
martingale property. Consider the trinomial (birth–death) random walk defined
by:






St+1 = St + εt , S0 = 0

εt =





+1 w.p. p
0 w.p. r

−1 w.p. q
; p ≥ 0, q ≥ 0, r ≥ 0, p + q + r = 1

Then it is easy to show that [St − t(p − q); t ≥ 0] is a martingale. To verify this
assertion, note that:

E [St+1 − (t + 1)(p − q)/�t ] = E [St + εt − (t + 1)(p − q)/�t ]

= St − (t + 1)(p − q) + E(εt ) = St − (t + 1)(p − q) + (p − q)

= St − t(p − q)

where �t ≡ (S0, S1, S2, . . . , St ) resumes the information set available at time t .
Further:

[
S2

t − t(p − q); t ≥ 0
]
,
{[

S2
t − t(p − q)

]2 + t[(p − q)2 − (p + q)]; t ≥ 0
}

and {λxt , λ = q/p, t ≥ 0} , p > 0 are also martingales. The proof is straightfor-
ward and a few cases are treated below. By the same token, we can also consider
processes that are not martingales and then find a transformation or another pro-
cess that will render the original process a martingale.

(2) The Wiener process is a martingale∗. The Wiener process {w(t), t ≥ 0} is a
Markov process and as we shall see below a martingale. Let F(t) be its filtration, in
other words, it defines the information set available at time t on which a conditional
expectation is calculated (and on the basis of which financial calculations are
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assumed to be made). Then, we can state that the Wiener process is a martingale
with respect to its filtration. The proof is straightforward since

E {w(t + �t) |F(t) } = E {w(t + �t) − w(t) |F(t) } + E {w(t) |F(t) }
The first term is null while the independent conditional increments of the Wiener
process imply:

E {w(t + �t) − w(t) |F(t) } = E {w(t + �t) − w(t)} = 0

since {w(t + �t) − w(t)} is independent of w(s) for s ≤ t . Thus by the law of
conditional probabilities which are independent, we note that the Wiener process
is a martingale.

(3) The process x(t) = w(t)2 − t is a martingale. This assertion can be proved
by showing that E [x(t + s) |F(t) ] = x(t). By definition we have:

E[w(t + s) |F(t) ] = E[w(t + s)2 |F(t) ] − (t + s)

= E[{w(t + s) − w(t)}2 + 2w(t + s)w(t) − w(t)2 |F(t) ] − (t + s)

= E[{w(t + s) − w(t)}2 |F(t) ] + 2E[w(t + s) |F(t) ] − E[w(t)2 |F(t) ] − (t + s)

Independence of the non-overlapping increments implies that w(t + s) − w(t) is
independent of F(t) which makes it possible to write:

E[{w(t + s) − w(t)}2 |F(t) ] = E[{w(t + s) − w(t)}2] = s

Conditional expectation and using the fact that w(t) is a martingale with respect
to its filtration imply:

E [{w(t + s)w(t)} |F(t) ] = w(t)2

and since E[w(t)2 |F(t) ] = w(t)2. We note therefore that:

E [x(t + s) |F(t) ] = s + 2w(t)2 − w(t)2 − (t + s) = w(t)2 − t = x(t)

which proves that the process is a martingale.

(4) The process

x(t) = exp

(
αw(t) − α2t

2

)

where α is any real number is a martingale. The proof follows the procedure
above. We have to show that E [x(t + s) |F(t) ] = x(t), or

E [x(t + s) |F(t) ] = E

[
exp

(
αw(t + s) − α2(t + s)

2

)
|F(t)

]

= E

[
x(t) exp

(
α[w(t + s) − w(t)] − α2s

2

)
|F(t)

]
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Independence and conditional expectations make it possible to write:

E [x(t + s) |F(t) ] = x(t)E

[
x(t) exp

(
α[w(t + s) − w(t)] − α2s

2

)
|F(t)

]

= x(t) exp

(
−α2s

2

)
E[exp {α[w(t + s) − w(t)]}]

The term α [w(t + s) − w(t)] has a Normal probability distribution with zero
mean and variance α2s. Consequently, the term exp {α [w(t + s) − w(t)]} has a
lognormal probability distribution with expectation exp

(
α2s/2

)
which leads to

E [x(t + s) |F(t) ] = x(t) and proves that the process is a martingale.
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CHAPTER 5

Derivatives Finance

5.1 EQUILIBRIUM VALUATION AND RATIONAL EXPECTATIONS

Fundamental notions such as rational expectations, risk-neutral pricing, complete
and incomplete markets, underlie the market’s valuation of risk and its pricing of
derivatives assets. Both economics and mathematical finance use these concepts
for the valuation of options and other financial instruments. Rational expectations
presume that current prices reflect future uncertainties and that decision makers
are rational, preferring more to less. It also means that current prices are based
on the unbiased, minimum variance mean estimate of future prices. This property
seems at first to be simple, but it turns out to be of great importance. It provides
the means to ‘value assets and securities’, although, in this approach, bubbles
are not possible, as they seem to imply a persistent error or bias in forecasting.
This property also will not allow investors to earn above-average returns without
taking above-average risks, leading to market efficiency and no arbitrage. In such
circumstances, arbitrageurs, those ‘smart investors’ who use financial theory to
identify returns that have no risk and yet provide a return, will not be able to profit
without assuming risks.

The concept of rational expectation is due to John Muth (1961) who formulated
it as a decision-making hypothesis in which agents are informed, constructing a
model of the economic environment and using all the relevant and appropriate
information at the time the decision is made (see also Magill and Quinzii, 1996,
p. 23):

I would like to suggest that expectations, since they are informed predictions of future events,
are essentially the same as the predictions of the relevant economic theory . . . We call such
expectations ‘rational’ . . . The hypothesis can be rephrased a little more precisely as follows:
that expectations . . . (or more generally, the subjective probability distribution of outcomes)
tend to be distributed, for the same information set, about the prediction of the theory (the
objective probability of outcomes).

In other words, if investors are ‘smart’ and base their decisions on informed
and calculated predictions, then, prices equal their discounted expectations. This
hypothesis is essentially an equilibrium concept for the valuation of asset prices
stating that under the ‘subjective probability distribution’ the asset price equals the
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expectation of the asset’s future prices. In other words, it implies that investors’
subjective beliefs are the same as those of the real world – they are neither
pessimistic nor optimistic. When this is the case, and the ‘rational expectations
equilibrium’ holds, we say that markets are complete or efficient. Samuelson had
already pointed out this notion in 1965 as the martingale property, leading Fama
(1970), Fama and Miller (1972) and Lucas (1972) to characterize markets with
such properties as markets efficiency.

Lucas used a concept of rational expectations similar to Muth to confirm
Milton Friedman’s 1968 hypothesis of the long-run neutrality of the monetary
policy. Specifically, Lucas (1972, 1978) and Sargent (1979) have shown that eco-
nomic agents alter both their expectations and their decisions to neutralize the
effects of monetary policy. From a practical point of view it means that an investor
must take into account human reactions when making a decision since they will
react in their best interest and not necessarily the investor’s.

Martingales and the concept of market efficiency are intimately connected. If
prices have the martingale property, then only the information available today is
relevant to make a prediction on future prices. In other words, the present price has
all relevant information embedding investors’ expectations. This means that in
practice (the weak form efficiency) past prices should be of no help in predicting
future prices or, equivalently, prices have no memory. In this case, arbitrage is
not possible and there is always a party to take on a risk, irrespective of how
high it is. Hence, risk can be perfectly diversified away and made to disappear. In
such a world without risk, all assets behave as if they are risk-free and therefore
prices can be discounted at a risk-free rate. This is also what we have called risk-
neutral pricing (RNP). It breaks down, however, if any of the previous hypotheses
(martingale, rationality, no arbitrage, and absence of transaction costs) are invalid.
In such cases, prices might not be valued uniquely, as we shall see subsequently.

There is a confrontation between economists, some of whom believe that mar-
kets are efficient and some of whom do not. Market efficiency is ‘under siege’
from both facts and new dogmas. Some of its critics claim that it fails to account
for market anomalies such as bubbles and bursts, firms’ performance and their
relationship to size etc. As a result, an alternative ‘behavioural finance’ has sought
to provide an alternative dogma (based on psychology) to explain the behaviour of
financial markets and traders. Whether these dogmas will converge back together
as classical and Keynesian economics have, remains yet to be seen. In summary,
however, some believe that the current price imbeds all future information. And
some presume that past prices and behaviour can be used (through technical anal-
ysis) to predict future prices. If the ‘test is to make money’, then the verdict is
far from having been reached. Richard Roll, a financial economist and money
manager argues:

‘I have personally tried to invest money, my clients’ and my own, in every single anomaly
and predictive result that academics have dreamed up. And I have yet to make a nickel on
these supposed market inefficiencies. An inefficiency ought to be an exploitable opportunity.
If there is nothing that investors can exploit in a systematic way, time in and time out, then
it’s very hard to say that information is not being properly incorporated into stock prices.
Real money investment strategies do not produce the results that academic papers say they
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should’ . . . but there are some exceptions including long term performers that have over the
years systematically beaten the market. (Burton Malkiel, Wall Street Journal, 28 December
2000)

Rational expectation models in finance may be applied wrongly. There are many
situations where this is the case. Information asymmetries, insider trading and ad-
vantages of various sorts can provide an edge to individual investors, and thereby
violate the basic tenets of market efficiency, and an opportunity for the lucky ones
to make money. Further, the interaction of markets can lead to instabilities due
to very rapid and positive feedback or to expectations that are becoming trader-
and market-dependent. Such situations lead to a growth of volatility, instabilities
and perhaps, in some special cases, to bubbles and chaos. Nonetheless, whether
it is fully right or wrong, it seems to work sometimes. Thus, although rational
expectations are an important hypothesis and an important equilibrium pillar of
modern finance, they should be used carefully for making money. It is, however,
undoubtedly in theoretical finance where it is used with simple models for the
valuation of options and for valuing derivatives in general – albeit this valuation
depends on a riskless interest rate, usually assumed known (i.e. mostly assumed
exogenous). Thus, although the arbitrage-free hypothesis (or rational expecta-
tions) assumes that decision makers are acting intelligently and rationally, it still
requires the risk-free rate to be supplied. In contrast, economic equilibrium the-
ory, based on the clearing of markets by equating ‘supply’ to ‘demand’ for all
financial assets, provides an equilibrium where interest rates are endogenous. It
assumes, however, that beliefs are homogeneous, markets are frictionless (with
no transaction costs, no taxes, no restriction on short sales and divisible assets) as
well as competitive markets (in other words, investors are price takers) and finally
it also assumes no arbitrage. Thus, general equilibrium is more elaborate than ra-
tional expectations (and arbitrage-free pricing) and provides more explicit results
regarding market reactions and prices (Lucas, 1972). The problem is particularly
acute when we turn to incomplete markets or markets where pricing cannot be
uniquely defined under the rational expectations hypothesis. In this case, a de-
cision makers’ rationality is needed to determine asset prices. This was done in
Chapter 3 when we introduced the SDF (stochastic discount factor) approach
used to complement the no arbitrage hypothesis by a rationality that is sensitive
to decision makers’ utility of consumption. In Chapter 9, we shall return to this
approach in an inter-temporal setting. For the present, we introduce the financial
instruments that we will attempt to value in the next chapters.

5.2 FINANCIAL INSTRUMENTS1

There are a variety of financial instruments that may be used for multiple purposes,
such as hedging, speculating, investing, and ‘money multiplying’ or leveraging.
Their development and use require the ingenuity of financial engineers and the

1 This section is partly based on a paper written by students at ESSEC, Bernardo Dominguez, Cédric
Lespiau and Philippe Pages in the Master of Finance programme. Their help is gratefully acknowledged.
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care of practising investors. Financial instruments are essentially contracts of
various denominations and conditions on financial assets. Contracts by definition,
however, are an agreement between two or more parties that involves an exchange.
The terms of the contract depend on the purpose of contracting, the contractees,
the environment and the information available to each of the parties. Examples
of contracts abound in business, and more generally in society. For example, one
theory holds that a firm is nothing more than a nexus of contracts both internal
and external in nature.

Financial contracts establish the terms of exchange between parties mostly
for the purpose of managing contractors’ and contract holders’ risks. Derivative
assets or derivative contracts are special forms of contract that derive their value
from an underlying asset. Such assets are also called contingent claim assets,
as their price is dependent upon the state of the underlying asset. For example,
warrants, convertible bonds, convertible preferred stocks, options and forward
contracts, etc. are some well-known derivatives. They are not the only ones,
however. The intrinsic value of these assets depends on the objectives and the
needs of the buyer and the seller as well as the right and obligations these assets
confer on each of the parties. When the number of buyers and (or) sellers is very
large, these contingent assets are often standardized to allow their free trading
on an open market. Many derivatives remain over-the-counter (OTC) and are
either not traded on a secondary market or are in general less traded and hence
less liquid than their market counterparts. The demand for such trades has led
to the creation of special stock exchanges (such as the Chicago, London, and
Philadelphia commodities and currency exchanges) that manage the transactions
of such assets. A number of such contingent assets and financial instruments are
defined next.

5.2.1 Forward and futures contracts

A futures contract gives one side, the holder of the contract, the obligation to
buy or sell a commodity, a foreign currency etc. at some specified future time at
a specified price, place, quantity, location and quality, according to the contract
specification. The buyer or long side has at the end of the contract, called the
maturity, the option to buy the underlying asset at a predetermined price and sell
it back at the market price if he wishes to do so. The seller or short side (provider),
however, has the obligation to sell the underlying asset at the predetermined price.
In futures contracts, the exchange of the underlying asset at a predetermined price
is between anonymous parties which is not the case in OTC forward contracts.
Financial futures are used essentially for trading, hedging and arbitrage.

Futures contracts can be traded on the CBOT (the Chicago Board of Trade)
and the CME (the Chicago Mercantile Exchange), as well as on many trading
floors in the world. Further, many commodities, currencies, stocks etc. are traded
daily in staggering amounts (hundreds of billions of dollars). A futures price at
time t with delivery at time T can be written by F(t, T ). If S(t) is the spot price,
then clearly if t = T , we have by definition F(t, t) = S(t) and S(t) ≥ F(t, T ),
T ≥ t .
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The difference between the spot assets to be pledged in a future contract and
its futures price is often called the ‘basis risk’ and is given by b(t, T ) = S(t) −
F(t, T ). It is the risk one suffers when reversing a futures contracts position.
Imagine we need to buy in 3-month pork for a food chain. We may buy futures
contracts today that deliver the asset at a predetermined price in 6 months. After
3 months, we reverse or sell our futures position. The payoff is thus the change
in the futures price less the price paid for the underlying asset, or F(3, 6) −
F(0, 6) − S(3). If we were at maturity, only −F(0, 6) would remain. That is, the
price of the underlying asset is set by a delayed physical transaction using futures
contracts. However, if there remains a basis risk in the payoff, then −F(0, 6) +
b(3, 6) would remain. If the futures contract does not closely match the price
of the underlying asset then the effectiveness of our hedging strategy will be
reduced.

Futures contracts like forwards can be highly speculative instruments because
they require no down payment since no financial exchange occurs before either
maturity or the reversal of the position. Traders in the underlying assets can
therefore use these markets to enhance their positions in the underlying asset
either short or long. Unsurprisingly, a position in these contracts is considered
levered or a borrowed position in the underlying asset, as the price of a forward and
futures contract is nothing more than an arbitrage with the asset bought today using
borrowed funds and delivered at maturity. There are differences between futures
and forwards involving liquidity, marking to market, collaterals and delivery
options, but these differences are generally glossed over.

The leverage implied in a futures contract explains why collaterals are required
for forwards and marking to market for futures. In their absence, defaults would
be much more likely to happen. For example, for a short futures contract, when
prices fall, the investor is making a virtual loss since he would have to sell at
a higher price than he started with (should he terminate his contract) and take
an offsetting position by buying a futures contract. This is reflected in a ‘futures
market’ when the bank adjusts the collateral account of the trader, called the
margin. The margin starts at an initial level in, generally, the form of Treasury
bills. It is adjusted every day to reflect the day’s gains or losses. Should the margin
fall below a maintenance level, the trader will ask the investor to add funds to
meet margin requirements. If the investor fails to meet such requirements, the
trader cuts his losses by reversing the position.

A forward rate agreement (FRA) is an agreement made between two parties
seeking generally to protect or hedge themselves against a future interest-rate or
price movement, for a specific hedging period, by fixing the future interest rate
or price at which they will buy or sell for a specific principal sum in a specified
currency. It requires that settlement be effected between the parties in accordance
with an established formula. Typically, forward contracts, unlike futures contracts
are not traded and can therefore be tailored to specific needs. This means that
contracts tend to be much higher in size, far less liquid and less competitively
priced, but suffer from no basis risk. The price at time t of a forward contract at
time T in the future can be written by p(t, T ) or by p(t, t + x), x = T − t and
is defined by the (delivery) price for which the contract value is null at delivery
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under risk neutral pricing.

E(Future spot rate − Forward rate) = 0

Of course, p(T, T ) = 1 and therefore the derivative of the price with respect to T
(or x) is necessarily negative, reflecting the lower value of the asset in the future
compared to the same asset in the present.

The relationship between forward rates and spot prices is a matter of intensive
research and theories. For example, the theory of rational expectations suggests
that we equate the expected future spot rate to the current forward rate, that is
(see also the next chapter):

Forward rate = E (Future spot rate)

For example, if st is the logarithm of the spot price of a currency at time t and ft

is the logarithm of the 1 month forward price, the expectation hypothesis means
that:

ft = E(st+1)

Note that if St is the spot price at time t , �St = St+1 − St , then the rate of change,
expressing the rates of return �St/St is given by � (log St ) with st = log St .
Empirical research has shown, at least for currencies forward, that it is mis-
leading and therefore additional and alternative theories are often devised which
introduce concepts of risk premium as well as the expected rate of depreciation to
explain the incoherence between spot and forward market values and risk-neutral
pricing.

Forward and futures contracts are not only used in financial and commodities
markets. For example, a transport futures exchange has been set up on the In-
ternet to help solve forward-planning problems faced by truckers and companies
shipping around the world. The futures exchange enables companies to purchase
transport futures, helping them to plan their freight requirements and shipments by
road, rail and, possibly, barge. The exchange allows truckers and manufacturers to
match transport capacity to their shipments and to match their spot requirements,
buy and sell forward, and speculate on future movements of the market. This mar-
ket completes other markets where one can buy and sell space on ocean-going
ships. For example, London’s Baltic Exchange handles spot trades in dry cargo
carriers and tankers.

5.2.2 Options

Options are instruments that let the buyer of the option (the long side) the right
to exercise, for a price, called the premium, the delivery of a commodity, a stock,
a foreign currency etc. at a given price, called the strike price, at (within) a given
time period, also called the exercise date. Such an option is called a European
(American) CALL for the buyer. The seller of such an option (the short side), has
by contrast the obligation to sell the option at the stated strike and exercise date.
A PUT option (the long side) provides an option to sell while for the short seller
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this is an obligation to buy. There are many types of options, however. Below are
a selected few (in the next two chapters we shall consider a far larger number of
option contracts):

� Call option (long) (on foreign exchange (FX), deposit or futures etc.): an
option contract that gives the holder the right to buy a specified amount of the
commodity, stock or foreign currency for a premium on or before an expiration
date as stated above. A call option (short), however, is an obligation to maintain
the terms of this contract.

� Put option (long) (on FX, commodity etc.): gives the right to sell a specified
amount at the strike price on (or before, for an American option) a specific
expiration date. The short side of such a contract is an obligation, however, to
meet the terms of this contract.

� Swaps (for interest rates, currency and cross-currency swaps, for example):
transactions between two unrelated and independent borrowers, borrowing
identical principal amounts for the same period from different lenders and with
an interest rate calculated on a different basis. The borrowers agree to make
payments to each other based on the interest cost of the other’s borrowing. It is
used both for arbitrage and to manage firm’s liabilities. It can facilitate access
of funding in a particular currency, provide export credits or other credits in
a particular currency, provide access to various capital markets etc. These
contracts are used intensively by banks and traders and will be discussed at
length in the next chapter.

� Caps: a contract in which a seller pays a buyer predetermined payments at
prespecified dates, with an interest (cap) rate calculated at later dates. If the
rate of reference (the variable rate) is superior to a guaranteed rate, then the
cap rate becomes effective, meaning that the largest interest rate is applied.

� Floors: products consisting in buying a cap and at the same time selling another
product at a price compensating exactly the buying price of the cap. In this case,
the floor is a contract in which the seller pays to the buyer for a predetermined
period with a rate calculated at the fictive date. If the reference rate (the variable
rate) is inferior to the guaranteed rate by the floor (rate), then the lower rate is
applied.

Options again
Trading in options and other derivatives is not new. Derivative products were used
by Japanese farmers and traders in the Middle Ages, who effectively bought and
sold rice contracts. European financial markets have traded equity options since
the seventeenth century. In the USA, derivative contracts initially started to trade
in the CBOT (Chicago Board of Trade) in 1973. Derivatives were thus used for
a long time without stirring up much controversy. It is not the idea that is new,
it is the volume of trade, the large variety of instruments and the significant and
growing number of users trading in financial markets that has made derivatives a
topic that attracts permanent attention.

Today, the most active derivative market is the CBOT, while the CME
(Mercantile Stock Exchange) ranks second. Other active exchanges are the CBOE,
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PHLX, AMEX, NYSE and TSE (Toronto Stock Exchange). In Montreal a stock
exchange devoted to derivatives was also started in 2001. In Europe the most active
markets are LIFFE (London International Financial Futures Exchange), MATIF
(Marché à Terme International de France), DTB (Deutsche Terminbrose), and the
EOE (Amsterdam’s European Options Exchange). The most voluminous markets
in East Asia include TIFFE (Tokyo International Financial Futures Exchange),
the Hong Kong Futures Exchange and SIMEX (Singapore International).

Options contracts in particular are traded on many trading floors and, mostly,
they are defined in a standard manner. Nevertheless, there are also ‘over-the-
counter options’ which are not traded in specific markets but are used in some
contracts to fit specific needs. For example, there are ‘Bermudan and Asian op-
tions’. The former option provides the right to exercise the option at several
specific dates during the option lifetime while the latter defines the exercise price
of the option as an average of the value attained over a certain time interval. Of
course, each option, defined in a different way, will lead to alternative valuation
formulas. More generally, there can be options on real assets, which are not traded
but used to define a contract between two parties. For example, an airline com-
pany contracts the acquisition (or the option to acquire) a new (technology) plane
at some future time. The contract may involve a stream or a lump sum payment
to the contractor (Boeing or Airbus) in exchange for the delivery of the plane at a
specified time. Since payments are often made prior to the delivery of the plane,
a number of clauses are added in the contract to manage the risks sustained by
each of the parties if any of the parties were to deviate from the contract stated
terms (for example, late deliveries, technological obsolescence etc.). Similarly,
a manufacturer can enter into binding bilateral agreements with a supplier by
which agreed (contracted) exchange terms are used as a substitute for the free
market mechanism. This can involve future contractual prices, delivery rates at
specific times (to reduce inventory holding costs) and, of course, a set of clauses
intended to protect each party against possible failures by the other in fulfilling
the terms of the contract. Throughout the above cases the advantage resulting
from negotiating a contract is to reduce, for one or both parties, the uncertainty
concerning future exchange operating and financial conditions. In this manner,
the manufacturer will be eager to secure long-term sources of supplies, and their
timely availability, while the investor, buyer of options, would seek to avoid too
large a loss implied by the acquisition of a risky asset, currency or commodity,
etc. Since for each contract there, necessarily, needs to be one (or many) buyer and
one (or many) seller, the price of the contract can be interpreted as the outcome
of a negotiation process where both parties have an inducement to enter into a
contractual agreement. For example, the buyer and the seller of an option can
be conceived of as being involved in a game, the benefits of which for each of
the players are deduced from premium and risk transfer. Note that the utility of
entering into a contractual agreement is always positive ex-ante for all parties;
otherwise there would not be any contractual agreement (unless such a contract
were to be imposed on one of the parties!). When the number of buyers and
sellers of such contracts becomes extremely large, transactions become ‘imper-
sonal’ and it is the ‘market price’ that defines the value of the contract. Strategic
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behaviours tend to break down the larger the group and prices tend to become
more efficient.

Making decisions with options
We shall see in Chapter 7, ‘Options and Practice’, some approaches using options
in hedging and in speculating. Decisions involving options are numerous, e.g.:

� Buy and sell; on the basis of the stock price and the remaining time to its
exercise.

� Buy and sell; on the basis of estimated volatility of the underlying or related
statistics.

� Use options to hedge downside risk.
� Use stock options to motivate management and employees.
� Use options and stock options for tax purposes.
� Use options to raise money for investments.

These problems clearly require a competent understanding of options theory and
financial markets and generally the ability to construct and compounds assets,
options and other contracts into a portfolio of desirable characteristics. This is
also called financial engineering and is also presented in the next chapter.

We shall use a theoretical valuation of options based on ‘risk-neutral proba-
bilities’. ‘Uncertainty’, defined by ‘risk-neutral probabilities’, unlike traditional
(historical) probabilities, determined by interacting market forces, reflects the
market resolution of demand and supply (equilibrium) for assets of various risks.
This difference contrasts two cultures. It is due to economic and financial as-
sumptions that current market prices ‘endogenize’ future prices (states and their
best forecast based on available information). If this is the case, and it is so in
markets we call complete markets, the current price ought to be determined by
an appropriate discounting of expected future values. In other words, it is the
market that determines prices and not uncertainty. We shall calculate explicitly
these ‘probabilities’ in the next chapter when we turn to the technical valuation
of options.

5.3 HEDGING AND INSTITUTIONS

Financial instruments are used in many ways to reduce risk (hedging), make
money through speculation (which means that the trader takes a position, short or
long, in the market) or through arbitrage. Arbitrage consists of taking positions
in two or more markets so that a riskless profit is made (i.e. providing an infinite
rate of return since money can be made without committing any investment). The
number of ways to hedge is practically limitless. There are therefore many trading
strategies financial managers and insurers can adopt to protect their wealth or to
make money. Firms can use options on currency, commodities and other assets
to protect their assets from unexpected variations. Financial institutions (such
as banks and lending institutions) by contrast, use options to cover their risk
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exposure and immunize their investment portfolios. Insurance firms, however, use
options to seek protection against excessive uncontrollable events, to diversify
risks and to spread out risks with insured clients as we have outlined earlier.
Generally, hedging strategies can be ‘specialized services’, tailored to individual
and collective needs.

5.3.1 Hedging and hedge funds

Hedging is big business, with many financial firms providing a broad range of
services for protecting investments and whatnot. The traditional approach, based
on portfolio theory, optimizes a portfolio holding on the basis of risk return sub-
stitution (measured by the mean and variance of returns as we saw in Chapter 3).
Hedging, however, proceeds to eliminate a particular risk in a portfolio through
a trade or a series of trades (called hedges). While in portfolio management the
investor seeks the largest returns given a risk level, in hedging – also used in
the valuation of derivatives – a portfolio is constructed to eliminate completely
the risk associated with the derivative (the option for example). In other words,
a hedging portfolio is constructed, replicating the derivative security. If this can
be done, then the derivative security and the replicating portfolio should have the
same value (since they have exactly the same return properties). Otherwise, there
would be a potential for arbitrage.

Hedge funds, however, may be a misnomer. They attract much attention because
of the medias’ fascination with their extremes – huge gains and losses. They were
implicated in the 1992 crisis that led to major exchange rate realignments in
the European Monetary System, and again in 1994 after a period of turbulence
in international bond markets. Concerns mounted in 1997 in the wake of the
financial upheavals in Asia. And they were amplified in 1998, with allegations
of large hedge fund transactions in various Asian currency markets and with the
near-collapse of Long-Term Capital Management (LTCM). Government officials,
fearing this new threat to world financial markets, stepped in to coordinate a
successful but controversial private–public sector rescue of LTCM. Yet, for all this
attention, little concrete information is available about the extent of hedge funds’
activities and how they operate. Despite a plethora of suggestions for reforms, no
consensus exists on the implications of hedge fund activity for financial stability,
or on how policy should be adapted.

The financial community defines a hedge fund as any limited partnership, ex-
empted from certain laws (due to its legal location, shareholders features, etc.),
whose main objective is to manage funds and profits. The term ‘hedge fund’ was
coined in the 1960s when it was used to refer to investment partnerships that used
sophisticated arbitrage techniques to invest in equity markets. Federal regulation
of financial instruments and market participants in the USA is based on Acts of
Congress seeking to protect individual market investors. However, by accepting
investments only from institutional investors, companies, or high-net-worth indi-
viduals, hedge funds are exempt from most of investor protection and regulations.
Consequently, hedge funds and their operators are generally not registered and
are not required to publicly disclose data regarding their financial performance
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or transactions. Hence they have been accused of being speculative vehicles for
financial institutions that are constrained by costly prudential regulations.

Hedge funds can also be eclectic investment pools, typically organized as pri-
vate partnerships and often located offshore for tax and regulatory reasons. Their
managers, who are paid on a fee-for-performance basis, may be free to use a
variety of investment techniques, including short positions and leverage, to raise
returns and cushion risk. While hedge funds are a rapidly growing part of the
financial industry, the fact that they operate through private placements and re-
strict share ownership to rich individuals and institutions frees them from most
disclosure and regulation requirements applied to mutual funds and banks. Fur-
ther, funds legally domiciled outside the main financial markets and main trading
countries are generally subject to even less regulation.

Hedge funds operate today as both speculators and hedgers, using a broad spec-
trum of risk-management tools. Macro funds, for example, base their investment
strategies on the use of perceived discrepancies in the economic fundamentals
of macroeconomic policies. Macro funds, may take large directional (unhedged)
positions in national markets based on top-down analysis of macroeconomic and
financial conditions, including current accounts, the inflation rate, the real ex-
change rate, etc. As a result, they necessarily are very sensitive to countries risk,
global and national politics, economics and finance. Macro hedge funds may be
classified into two essential categories:

� Arbitrage-based investment strategies
� Macro specific funds strategies

Arbitrage-based strategies seek to profit from current price discrepancies in
two instruments (or portfolios) that will, at their maturity, have the same value.
However, hedge funds that call themselves arbitrage-type use analytical models
to profit from the discrepancy between their valuation ‘model’ and the actual
market price. The arbitrage always involves two transactions: the purchase of an
undervalued asset and the sale of an overvalued asset. Some commonly utilized
arbitrage strategies include:

� Trade an instrument (cash instruments, index of equity securities, currency
spot price, etc.) against its futures counterpart.

� Misalignments in prices of cash market fixed-income securities. A hedge fund
might have a model for the levels of yield representing a number of bonds with
various maturities. If the yield curve models differ from the yields of some
bonds there is an opportunity for arbitrage.

� Misalignments because of the credit quality of two instruments. These sorts
of trades are routinely executed by hedge funds examining the differences
in the creditworthiness of various US corporate securities relative to the US
Treasury bond yield spread.

� Convertible arbitrage involves purchasing convertible securities, mostly fixed-
income bonds that can be converted into equity under certain circumstances.
A portion of the equity risk embedded in the bond is hedged by selling short
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the underlying equity. Sometimes the strategy will also involve an interest rate
hedge to protect against general fluctuations in the yield curve. Thus, this trade
would be designed to profit from mis-pricing of the equity associated with the
convertible bond.

� Misalignments between options or other features imbedded in mortgage-
backed securities. Often, complicated structures can be decomposed into var-
ious components that have market counterparts, permitting hedge funds to
profit from deviations in prices of the underlying components and the struc-
tured product. The prepayment risk – the risk that the mortgage holder will
prepay the mortgage prior to its maturity – is such an example.

Many of the determinants of a viable strategy are not specific to hedge funds,
but are common to many types of investors. Virtually all hedge funds calculate
whether the all-in return more than compensates for the risk undertaken. Three
elements are taken into account in these calculations: (1) examining the market
risk, which usually includes some type of ‘stress test’ to assess the downside risks
of the proposed strategy; (2) examining the liquidity risk, that is, to see whether
the hedge fund can enter and exit markets without extra costs in both normal
times and in periods of market distress; (3) examining the timing and the cost of
financing the position. If the expected duration of the trade is too long, with a
prohibitive financing cost, the position will not be assumed.

Macro specific funds strategies are based on information regarding economic
fundamentals. They seek incongruent relationships between the level of prices
and the country’s fundamentals – both economically and psychologically. Macro
hedge funds are universally known for their ‘top-down’ global approach to invest-
ments, combining knowledge of economics, politics and history into a coherent
view of things to come. In currency markets, a macro fund strategy might exam-
ine countries maintaining a pegged exchange rate to the dollar but having little
economic reason for using the dollar for the peg. Some funds use rather detailed
macroeconomic modelling techniques; others use less quantitative techniques,
examining historical relationships among the various variables of interest. They
may examine the safety and soundness of the banking sector and its connections
to other parts of the financial sector. Excess liquidity and credit growth within the
banking sector are often cited by funds as leading indicators of subsequent bank-
ing problems. Extensive use of unhedged foreign-currency-denominated debt of
banks is also a tip-off for hedge funds. A pattern of high and fast appreciation
of various assets is also used as a signal for a financial sector awaiting a down-
turn. Political risk and the probability that government’s strategy may, or may
not, be implemented are also used as signals on the basis of which positions may
be taken. However, market funds are very sensitive to the potential for market
exit (and thus liquidity) in the case where events are delayed or do not confirm
expectations.

Risk management in a hedge fund is often planned and integrated across prod-
ucts and markets (related through correlation analysis). Scenario analysis and
stress tests are common diagnostic techniques. Further, some trading risks are
managed by limiting the types, the number and the market exposure of trades.
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The criteria used are varied, such as the recent track record of the trader, the
relative portfolio risk of the trade, and market liquidity.

5.3.2 Other hedge funds and investment strategies

There are of course, many strategies for hedge fund management and trading. We
can only refer to a few.

Market hedge funds focus on either equity or debt markets of developing or
emerging countries. In general, they are classified by geographical areas and com-
bine arbitrage and macro hedge fund strategies. Since many emerging markets
are underdeveloped and illiquid, we note three points. (1) The size of transactions
is relatively small. (2) Pricing of various securities abounds. These are inefficient
markets for a number of reasons such as a basic misunderstanding of their op-
eration, due to selling agents behaviour governed by liquidity needs rather than
by ‘market rationality’. (3) Bets on political events may cause important differ-
ences in valuations. Political risk receives special attention for emerging market
hedge funds compared to the Group of Ten leading countries where economic
considerations are prominent.

Event-related funds focus on securities of firms undergoing a structural change
(mergers, acquisitions, or reorganizations), seeking to profit from increases or
decreases in both stock prices – before a merger or when valuation of the merged
firm is altered appreciably. These funds may estimate the time to complete the
merger and the annualized return on the investment if undertaken. Annualized
returns includes the purchase and sale of the equity of the two merging companies
and the cost of executing the short position, any dividends gained or lost and
commissions. Using such returns calculations, the fund can assess the probability
that a deal will be consumed. If annualized returns, including the probability that
the merger will come through is greater than a ‘baseline’, the fund may execute
the deal.

Value investing funds have a strategy close to mutual funds (portfolio) strategies
seeking to profit from undervalued companies. Hedge funds are probably more
likely to use hedging methodologies designed to offset industry risk and reduce
market volatility, however.

Short-selling funds use short-selling strategies. They involve limited partner-
ships and offshore funds sponsored by wealthy individuals. In short sales, the
investor sells short a stock at the current market price while the capital is invested
in US Treasury securities with the same holding period. The amount of capital
is then adjusted daily to reflect the change in the stock price. If the stock price
decreases, free cash is released; when the stock price increases, the capital must
be increased. Losses on a short position are unlimited since they must be paid in
real time. As a result, the short seller may run out of capital, making the depth
of the short sellers’ pocket and the timing of trades important determinants of
success of the fund.

Sector funds combine strategies described above but applied to the ‘sector’ the
fund focuses on and in which it trades. A sector may have specific characteristics,
recognized and capitalized on for making greater profits.
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Hedge funds have raised concerns due to their often speculative and destabiliz-
ing character. For this reason, financial regulation agencies have devoted special
attention to regulating funds. Further, hedge funds often use stabilizing strategies.
Two such strategies are employed: ‘counter’ strategies and arbitrage strategies.
Counter strategies involve buying when prices are thought to be too low and
selling when they are thought to be high, countering current market movements.
It is an obvious strategy when prices are naturally pushed back to their perceived
fair value, thereby stabilizing prices. Arbitrage strategies are neither stabilizing
nor destabilizing since the arbitrageur’s action simply links one market to another.
However, studies have shown that arbitrage activity on stock indices are in fact
stabilizing, in the sense of reducing volatility of the underlying stocks.

In contrast, destabilizing strategies can be divided into two essential groups: (1)
strategies that use existing prices and (2) strategies that use positions of other mar-
ket participants for trading decisions. The first group is often called ‘positive feed-
back trading’; if there are no offsetting forces, these participants can cause prices
to ‘overshoot’ their equilibrium value, adding volatility relative to that determined
by fundamental information. It can arise under a variety of circumstances, some
of which are related to institutional features of markets. These include dynamic
hedging, stop loss orders, and collateral or margin calls. On a simpler level, posi-
tive feedback strategies also incorporate general trend-following behaviour where
investors use various technical rules to determine trends, reinforced by buying
and selling on the trend. Among strategies inducing a positive feedback type
behaviour, the most complex is dynamic hedging. Options sellers, for example
(using a put protective strategy, see Chapter 7), sell the underlying asset as its
price decreases in order to dynamically hedge to replicate put options. Thus, to
hedge, they would be required to sell the underlying asset in a falling market to
maintain a hedged position, potentially exacerbating the original movement. In
general, hedge funds are typically buyers of options (not sellers) and do not need
to hedge themselves; but dealers that sell those options to hedge funds do need
to hedge. Other institutional features like collateral calls or margin calls can also
lead to a positive feedback response. Collateral holders may require additional
collateral from their customers when prices fall and losses are incurred. Often,
the collateral is obtained by selling any number of instruments, causing further
price declines and losses. Some intermediaries, providing margins to hedge funds
can keep these funds on a very tight leash, requiring margin calls more than once
a day if necessary.

A second group of trading behaviours that destabilize hedge funds results from
herding – taking similar positions to other market participants, rather than basing
decisions explicitly on prices. Positions can be mimicked directly by observing
what other participants do or indirectly by using the same information, analysis
and tools as other participants. Often, fund managers have an incentive to mimic
other participants’ behaviour to hide their own incompetence. There may be then a
temptation to ignore private information and realign their performance on others.
Since hedge fund managers have most of their wealth invested in the fund and are
compensated on total absolute returns rather than on relative benchmarks, they
are less inclined than other fund managers to ‘herd’, directly mimicking others.
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However, many hedge funds probably hold the same analytical tools and have
access to the same information, arriving necessarily, at similar assessments and at
approximately the same time, creating an appearance of collusion. Further, even
if hedge funds do not herd (directly or indirectly), other investors may herd with
them or follow their lead into various markets.

Hedge funds, like other institutional investors, are potentially subject to three
general types of prudential regulations: (1) those intended to protect investors,
(2) those designed to ensure the integrity of markets, and (3) those meant to
contain systemic risk. Investor protection regulation is employed when authorities
perceive a lack of sophistication on the part of investors, for example, lacking the
information needed to properly evaluate their investments. Then, regulations can
either ensure that sufficient information is properly disclosed or exclude certain
types of investors from participating in certain investments.

Regulation to protect market integrity seeks to ensure that markets are designed
so that price discovery is reasonably efficient, that market power is not easily
concentrated in ways that allow manipulation, and that pertinent information is
available to potential investors.

Systemic risk is often the most visible element in the regulation of financial
markets because it often requires coordination across markets and across regula-
tory and geographical boundaries. Regulation to protect market integrity and/or
limit systemic risk, which includes capital requirements, exposure limits, and mar-
gin requirements, seeks to ensure that financial markets are sufficiently robust to
withstand the failure of even the largest participants.

5.3.3 Investor protection rules

Shares in hedge funds are securities but, since they are issued through private
placements,2 they are exempt from making extensive disclosure and commit-
ments in the detailed prospectuses required of registered investment funds. They
must still provide investors with all material information about their securities
and will generally do so in an offering memorandum. Non-accredited investors
are generally not accepted by hedge funds, because they would have to be given
essentially the same information that would have been provided as a registered
offer. However, most hedge fund operators are likely to be subject to regulation
under the Commodity Exchange Act, because of their activity as commodity
pool operators and/or as large traders in the exchange-traded futures markets.
Requirements for commodity pools and commodity pool operators (CPOs) are
mainly relative to (1) personal records and exams to get registered, (2) disclosure
and reporting on issues as risks relevant to the pool, historical performance, fees
incurred by participants, business backgrounds of CPOs, any possible conflict of
interest on the part of the CPOs, and (3) maintenance of detailed records at the head
office.

2 A private placement consists of an offering of securities made to investors on an individual (bilateral)
basis rather than through broader advertising. It is not allowed to offer for sale the securities by any
form of general solicitation or advertising.
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Market integrity protection rules: Although hedge funds can opt out of many
of the registration and disclosure requirements of the securities laws, they are
subject to all the laws enacted to protect market integrity. The essential purpose
of such laws is to minimize the potential of market manipulation by increasing
transparency and limiting the size of positions that a single participant may es-
tablish in a particular market. Many of these regulations also help in containing
the spillovers across markets and hence in mitigating systemic risks.

The Treasury monitors all ‘large’ participants in the derivatives markets.
Weekly and monthly reports are required of large participants, defined as players
with more than US$50 billion equivalent in contracts at the end of any quarter
during the previous year. The Treasury puts out the aggregate data in its monthly
bulletin but the desegregated data by participant are not published or revealed to
the public. For government securities, the US Treasury is allowed to impose re-
porting requirements on entities having large positions in to-be-issued or recently
issued Treasury securities. Such information is deemed necessary for monitor-
ing large positions in Treasury securities and making sure that players are not
squeezing other participants. The Security Exchange Act (SEA) also requires the
reporting of sizeable investments in registered securities. It obliges any person
who, directly or indirectly, acquires more than 5 % of the shares of a registered
security to notify the SEC within 10 days of such acquisition. In overseeing the
futures markets, the CFTC attempts to identify large traders in each market, their
positions, interaction of related accounts, and, sometimes, even their trading in-
tentions. Also, to reinforce the surveillance, each exchange is required to have
its own system for identifying large traders. For example, the Chicago Mercan-
tile Exchange requires position reports for all traders with more than 100 S&P
500 contracts. The regulators have the authority to take emergency action if they
suspect manipulation, cornering of a market, or any hindrance to the operation of
supply and demand forces.

Systemic risk reduction rules: The key systemic question is to what extent are
large, and possibly leveraged, investors, including hedge funds, a source of risk to
the financial institutions that provide them with credit and to the intermediaries,
such as broker-dealers, who help them implement their investment strategies.
Banks provide many services to hedge funds and accept hedge funds as profitable
customers with associated risks controllable. They examine the structure of the
collective investment vehicle, the disclosure documents submitted to regulators
and those offered to clients, the financial statements, and the fund’s performance
history. Further, generally, a large proportion of the credit extended by banks to
hedge funds is collateralized.

The SEC also monitors brokers’ and dealers’ credit risk exposure. The net
capital rule fortifies a broker-dealer against defaults by setting minimum net
capital standards and requiring it to deduct from its net worth the value of loans that
have not been fully collateralized by liquid assets. Further, reporting rules enable
a periodic assessment and, at times, continuous monitoring of the risks posed
to broker-dealers by their material affiliates, including those involved in over-
the-counter. Along with the bank and broker-dealer credit structures that protect
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against excessively large uncollateralized positions, the Treasury and CFTC large
position and/or large trader reporting requirements, by automatically soliciting
information, provide continuous monitoring of large players in key markets and
hence allow early detection of stresses in the system.

Mutual funds regulation, however, is strict, protecting shareholders, by:

� Regulatory requirements to ensure that investors are provided with timely and
accurate information about management, holdings, fees, and expenses and
to protect the integrity of the fund’s assets. Therefore, mutual fund holdings
and strategies are also regulated. In contrast, hedge funds are free to choose
the composition of their portfolios and the nature of their investment
strategies.

� Fees. Federal law requires a detailed disclosure, a standardized reporting and
imposes limits to mutual fund fees and expenses. Hedge fund fees need not
be disclosed and there are no imposed limits, which generally are between 15
and 20 % of returns and between about 1 and 2 % of net assets.

� Leverage practices and derivative products are used to enhance returns or
reduce risks and have a restricted usage in mutual funds, while hedge funds
have no restrictions other than their own internal strategies or partnership
agreements.

� Pricing and liquidity. Mutual funds are required to price their shares daily
and to allow shareholders to redeem shares also on a daily basis. Hedge funds,
however, have no rules about pricing their own shares and redemption of shares
may be restricted by the partnership agreement if wanted.

� Investors. The minimum initial investment to enter a mutual fund is about
US$1000–2500. To own shares in a hedge fund, it is commonly required to
make a commitment of US$1 million. Such measures are designed to restrict
share ownership and, in consequence, to fall in a much weaker investor pro-
tection rules environment.
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CHAPTER 6

Options and Derivatives
Finance Mathematics

6.1 INTRODUCTION TO CALL OPTIONS VALUATION

Options are some of the building blocks of modern corporate finance and financial
economics. Their mathematical study is in general difficult, however. In this
chapter and in the following one, we consider the valuation of options and their
use in practice. Terms such as a trading strategy, risk-neutral pricing, rational
expectations, etc. will be elucidated in simple mathematical terms. To value an
option it is important to define first, and clearly, a number of terms. This is what
we do next.

We begin by defining wealth at a given time t , W (t). This is the amount of money
an investor has either currently invested or available for investment. Investments
can be made in a number of assets, some of which may be risky, providing
uncertain returns, while others may provide a risk-free rate of return (as would
be achieved by investing in a riskless bond) which we denote by R f . A risky
investment is assumed for simplicity to consist of an investment in securities. Let
N0 be the number of bonds we invest in, say zero coupon of $1 denomination,
bearing a risk-free rate of return R f one period hence. Thus, at a given time, our
investment in bonds equals N0 B(t, t + 1) with B(t + 1, t + 1) = 1. This means
that one period hence, this investment will be worth B(t, t + 1)N0(1 + R f ) =
N0(1 + R f ) for sure. We can also invest in risky assets consisting of m securities
each bearing a known price Si (t), i = 1, . . . , m at time t . The investment in
securities is defined by the number of shares N1, N2, . . . , Nm bought of each
security at time t . Thus, a trading strategy at this time is given by the portfolio
composition (N0, N1, N2, . . . , Nm). The total portfolio investment at time t , is
thus given by:

W (t) = N0 B(t, t + 1) + N1S1(t) + N2S2(t) + · · · + Nm Sm(t)

Risk and Financial Management: Mathematical and Computational Methods. C. Tapiero
C© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84908-8
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For example, for a portfolio consisting of a bond and in a stock, we have:

W (t) =
{

$N0 invested in a riskless bond
$N1S1(t) invested in a risky asset, a stock

W (t) = N0 + N1S1(t)

A period later, the bond is cashed while security prices may change in an uncertain
manner. That is to say, the price in the next period of a security i is a random
variable that we specify by a ‘tilde’, or S̃i (t + 1). The gain (loss) is thus the
random variable:

�Si (t) = S̃i (t + 1) − Si (t), i = 1

Usually, one attempts to predict the gain (loss) by constructing a stochastic process
for �Si (t). The wealth gain (loss) over one period is:

�W (t) = W̃ (t + 1) − W (t)

where,

W̃ (t + 1) = N0(1 + R f ) + N1 S̃1(t + 1)

Thus, the net gain (loss) in the time interval (t, t + 1), is:

�W (t) = N0 R f + N1�S1(t)

In general, a portfolio consists of multiple assets such as bonds of various denom-
inations and maturities, stocks, options, contracts of various sorts and assets that
may be more or less liquid (such as real estate or transaction-cost-prone assets).
We restrict ourselves for the moment to an investment in a simple binomial stock
and a bond.

Over two periods, future security prices assume two values only, one high SH

(the security price increases), the other low SL (the security price decreases) with
0 < SL < SH as well as SL/S ≤ 1 + R f ≤ SH/S. These conditions will exclude
arbitrage opportunities as we shall see later on. Thus stock prices at t and at t + 1
are (see Figure 6.1):

S(t) and S̃(t + 1) =
{

SH

SL

This results in a portfolio that assumes two possible values at time t + 1:

W (t) =
{

N0

N1S and W̃ (t + 1) =
{

N0(1 + R f ) + N1SH

N0(1 + R f ) + N1SL

In other words, at time t the current time, the price of a stock is known and given
by S = S(t). An instant of time later, at (t + 1), its price is uncertain and assumes
the two values (SH , SL ), with SH > SL . As a result, if at t = 0, wealth is invested
in a bond and in a security, we have the investment process given by (see Figure
6.2):

W (0) = N0 + N1S1(0) and W̃ (1) = N0(1 + R f ) + N1 S̃1(1)
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Time t Time t+1

HS

S

LS

Figure 6.1

where in period 1, wealth can assume two values only since future prices are equal
to either of (SH , SL ) , SH > SL and the trading strategy is defined by (N0, N1).
In this specific case, the price process is predictable, assuming two values only.
This predictability is an essential assumption to obtain a unique value for the
derivative asset, as we shall see subsequently.

For example, say that a stock has a current value of $100 and say that a period
hence (say a year), it can assume two possible values of $140 and $70. That is:

S(t) = S(=100) and S̃(t + 1) =
{

SH (=140)
SL (=70)

The risk-free yearly interest rate is 12%, i.e. R f = 0.12. Thus, if we construct a
portfolio of N0 units of a bond worth each $1 and N1 shares of the stock, then the
portfolio investment and its future value one period hence are:

W (0) = N0(1 + 0.12) + 100N1 and W̃ (1) = N0(1 + 0.12) +
{

140N1

70N1

Now assume that we want to estimate the value of an option derived from such a
security. Namely, consider a call option stating that at time t = 1, the strike time,
the buyer of the option has the right to buy the security at a price of K , the exercise
or strike price, with, for convenience, SH ≥ K ≥ SL . If the price is high, then
the gain for the buyer of the option is SH − K > 0 and the option is exercised

Time t Time t+1

0 1(1 ) HN r N S+ +

0 (1 ) LN r N S+ +

0 1N N S+

1

Figure 6.2
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while the short seller of the option has a loss, which is K − SL . If the price is
low (below the strike price) then there is no gain and the only loss to the buyer
of the call option is the premium paid for it initially. The problem we are faced
with concerns the value/price of such a derived (option) contract. In other words,
how much money would the (long) buyer of the option be willing to pay for this
right. To find out, we proceed as follows. First, we note the possible payoffs of
the option over one period and denote it by C̃(1). Then we construct a portfolio
replicating the exact cash flow associated to the option. Let the portfolio worth at
the strike time be W̃ (1):

W̃ (1) = N0(1 + R f ) + N1 S̃(1) =
{

N0(1 + R f ) + N1SH

N0(1 + R f ) + N1SL
and W̃ (1) ≡ C̃(1)

To determine this equivalence, the portfolio composition N0, N1 has to be deter-
mined uniquely. If it were not possible to replicate the option cash flow uniquely
by a portfolio, then we would not be able to determine a unique price for the
option and we would be in a situation we call incomplete. This conclusion is
based on the economic hypothesis that two equivalent and identical cash flows
have necessarily the same economic value (or cost). If this were not the case,
there may be more than one price or no price at all for the derivative asset. Our
ability to replicate a risky asset by a portfolio uniquely underlies the notion of
the ‘no arbitrage’ assumption, which implies in turn the ‘law of the single price’.
Thus, by constructing portfolios that have exactly the same returns with the same
risks, their value ought to be the same. If this were not the case, then one of the
two assets would be dominated and therefore their value could not be the same.
Further, there would be an opportunity for profits that can be made with no in-
vestment – or equivalently, an opportunity for infinite rates of returns (assuming
perfect liquidity of markets) that cannot be sustained (and therefore not maintain
a state of equilibrium). Thus, to derive the option price, it is sufficient to estimate
the replicating portfolio initial value. This is done next. Say that, for a call option,
its value one period hence is:

C̃(1) =
{

SH − K if the security price rises
0 if the security price decreases

where SL < K < SH . A replicating portfolio investment equivalent to an option
would thus be:

W̃ (1) = C̃(1)

Or, equivalently,

W̃ (1) = C̃(1) ⇔
{

N0(1 + R f ) + N1SH = SH − K
N0(1 + R f ) + N1SL = 0

Note that these are two linear equations in two unknowns and have therefore a
unique solution for the replicating portfolio:

N1 = SH − K

(SH − SL )
, N0 = − SL (SH − K )

(1 + R f )(SH − SL )
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The procedure followed is summarized below.

W (0) ⇐ W̃ (1)
⇓ 

C(0) C̃(1)

The call option’s payoff is replicated by holding short bonds to invest in a stock
(N0 < 0, N1 > 0). As the stock price increases, the portfolio is shifted from bonds
to stocks. As a result, calling upon the ‘no arbitrage’ assumption, the option price
and the replicating portfolio must be the same since they have identical cash flows.
That is, as stated above:

W̃ (1) = C̃(1) ⇔ W (0) = C(0) and since: W (0) = N0 + N1S(0)

We insert the values for (N0, N1) calculated above and obtain the call option
price:

C(0) = (S(1 + R f ) − SL )(SH − K )

(1 + R f )(SH − SL )

Thus, if we return to our portfolio, and assume that the option has a strike price
of $120, then the replicating portfolio is:

N1 = SH − K

(SH − SL )
= 140 − 120

140 − 70
= 2

7

N0 = − SL (SH − K )

(1 + R f )(SH − SL )
= − 70(140 − 120)

(1 + 0.12)(140 − 70)
= − 20

1.12

and further, the option price is:

W (0) = N0 + N1S(0) = − 20

1.12
+ 200

7
= 10.72

which can be calculated directly from the formula above:

C(0) = [S(1 + R f ) − SL ](SH − K )

(1 + R f )(SH − SL )
= (100(1.12) − 70)(140 − 120)

(1 + 0.12)(140 − 70)
= 10.72

By the same token, say that the current price of a stock is S = $100 while the price
a period hence (at which time the option may be exercised) is either SH = $120 or
SL = $70. The strike price is K = $110 while the discount rate over the relevant
period is 0.03. Thus, a call option taken for the period on such a stock has a price,
which is given by:

C(0) = (100 − 70)(120 − 110)

(1 + 0.03)(120 − 70)
= $5.825

6.1.1 Option valuation and rational expectations

The rational expectations hypothesis claims that an expectation over ‘future
prices’ determines current prices (see Figure 6.3). That is to say, assuming that
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rational expectations hold, there is a probability measure that values the option
in terms of its expected discounted value at the risk-free rate, or

C(0) = 1

1 + R f
E∗C̃(1)

where E∗ is an expectation taken over the appropriate probability measure as-
sumed to exist (in our current case it is given by [p∗,1 − p∗]) and therefore:

C(0) = 1

1 + R f
[p∗C(1|SH ) + (1 − p∗)C(1|SL )]

where C(1 |SH ) = SH − K , C(1 |SL ) = 0 are the option value at the exercise
time and p∗ denotes a ‘risk-neutral probability’. This probability is not, however,
a historical probability of the stock moving up or down but a ‘risk-neutral prob-
ability’, making it possible to value the asset under a risk-neutrality assumption.
In this case, the option’s price is the discounted (at a risk-free rate) expected value
of the option,

C(0) = 1

1 + R f
[p∗(SH − K ) + (1 − p∗)(0)]

And, using the value of the option found earlier, we have:

0 ≤ p∗ = 1

SH − SL
[(1 + R f )S − SL ] ≤ 1

In our previous example, we have:

0 ≤ p∗ = 1

120 − 70
[(1 + 0.03)100 − 70] = 0.66
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By the same token, we can verify that:

S = 1

1 + .03
[(0.66)(120) + (1 − 0.66)(70)] = 100

C(0) = 1

1 + .03
[(0.66)(120 − 110)] = (0.66)(10)

1.03
= 5.825

with p∗ = 0.66. This ‘risk-neutral probability’ is determined in fact by traders
in financial markets interacting with others in developing the financial market
equilibrium – where profits without risk cannot be realized. For this reason,
‘risk-neutral pricing’ is ‘determined by the market and provides the appropriate
discount mechanism to value the asset in the following form (see also Chapter 3
and our discussion on the stochastic discount factor):

C(0) = E{m1C̃(1)}; m1 = 1

1 + R f

Risk-neutral probabilities, as we have just seen, allow a linear valuation of the
option which hinges on the assumption of no arbitrage. Nonetheless, the existence
of risk-neutral probabilities do not mean that we can use linear valuation, for
to do so requires markets completeness (expressed by the fact in this section
that we were able to replicate by portfolio the option value and derive a unique
price of the option). In subsequent chapters, we shall be concerned with market
incompleteness and see that this is not always the case. These situations will
complicate the valuation of financial assets in general.

6.1.2 Risk-neutral pricing

The importance of risk-neutral pricing justifies our considering it in greater depth.
In many instances, security prices can be conveniently measured with respect to a
given process – in particular, a growing process called the numeraire, expressing
the value of money (money market), a bond or some other asset. That is, allowing
us to write (see also Chapter 3):

V (S(t)) = 1

1 + R f
E∗(V (S̃(t + 1))) = 1

1 + R f
[p∗V (SH ) + (1 − p∗)V (SL )]

p∗ is said to be a ‘risk-neutral probability’ and R f is a risk-free discount rate.
And for an option (since R f has a fixed value):

C(t) = E∗
[

1

1 + R f
C̃(t + 1)

]
= 1

1 + R f
E∗[C̃(t + 1)]

In general, for any value (whether it is an option or not) Ṽi at time i with a risk-free

rate R f , we have, over one period: V0 = E∗
(

1
1+R f

Ṽ1

)

By iterated expectations, we have as well:

V1 = E∗
(

1

1 + R f
Ṽ2

)
and

V0 = 1

(1 + R f )
E∗

(
E∗

(
1

1 + R f
Ṽ2

))
= E∗

(
1

(1 + R f )2
Ṽ2

)
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and therefore, over n periods:

V0 = E∗
(

1

(1 + R f )n
Ṽn

)
= 1

(1 + R f )n
E∗(Ṽn)

If we set �0, the information regarding the process initially, then we write

V0(1 + R f )n = E∗(Ṽn |�0 )

Further, application of iterated expectations has shown that this discounting pro-
cess defines a martingale. Namely, we have:

V (S0) = (1 + R f )−k V (Sk) = E∗{(1 + R f )−(k+n)V (Sk+n) |�k
}
;

k = 0, 1, 2, . . . and n = 1, 2, 3, . . .

or, equivalently,

V (Sk) = E∗{(1 + R f )−n V (Sk+n) |�k }; k = 0, 1, 2, . . . and n = 1, 2, 3, . . .

This result can be verified next using our binomial model. Set the unit one period
risk-free bond, B(t) = B(t, t + 1) for notational convenience, then discounting
a security price with respect to the risk-free bond yields:

S∗(t) = S(t)

B(t)
or S∗(t) = S(t)

(1 + R f )t

and S∗(t) is a martingale. Generally, under the risk-neutral measure, P∗ the dis-
counted process

{(1 + R f )−k Sk |�k }, k = 0, 1, 2, . . .

is, as we saw earlier, a martingale. Here again, the proof is simple since:

E∗ {
(1 + R f )−(k+1)Sk+1 |�k

} = (1 + R f )−k Sk

and

E∗ {
(1 + R f )−(k+1)Sk+1 |�k

} = (1 + R f )−(k+1)

[
p∗ SH

Sk
+ q∗ SL

Sk

]
Sk

= (1 + R f )−(k+1)Sk[(1 + R f )] = (1 + R f )−k Sk

This procedure remains valid if we consider a portfolio which consists of a bond
and m stocks. In this case, dropping for simplicity the tilde over random variables,
we have:

W ∗(t) = N0 + N1S∗
1 (t) + N2S∗

2 (t) + · · · + Nm S∗
m(t)

W ∗(t + 1) = N0 + N1S∗
1 (t + 1) + N2S∗

2 (t + 1) + · · · + Nm S∗
m(t + 1)

and

�W ∗(t) = N1�S∗
1 (t) + N2�S∗

2 (t) + · · · + Nm�S∗
m(t)

Equating these to the value of some derived asset, a period hence:

W ∗(t + 1) = C∗(t + 1)
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leads to a solution for (N0, N1, N2, . . . , Nm) where C∗(t + 1) is a vector of assets
we use to construct a riskless hedge and replicate the derivative product we wish
to estimate (Pliska (1997) and Shreve et al. (1997) for example).

Example: Options and portfolios holding cost
Consider now the problem of valuing the price of a call option on a stock when
the alternative portfolio consists in holding a risky asset (a stock) and a bond, for
which there is a ‘holding cost’. This cost is usually the charge a bank may require
for maintaining in its books an investor’s portfolio. In this case, the hedging
portfolio is given by equating:

W̃ (1) =
{

N0(1 + R f − cB) + N1(SH − cS)
N0(1 + R f − cB) + N1(SL − cS)

where cB is the bond holding cost and cS is the stock holding cost. The option’s
cash flow is:

C̃(1) =
{

SH − K if the security price rises
0 if the security price decreases

This leads to:
{

N0(1 + R f − cB) + N1(SH − cS) =
N0(1 + R f − cB) + N1(SL − cS) =

SH − K
0

and

N1 = SH − K

SH − SL
, N0 = − (SH − K )(SL − cS)

(SH − SL )(1 + R f − cB)

Therefore, the option price is equal instead to:

C(0) = N1S + N0 = S
SH − K

SH − SL
+ (SH − K )(SL − cS)

(SH − SL )(1 + R f − cB)

For example, if we use the data used in the previous option’s example with
S = 100, SH = 140, SL = 70, K = 120, R f = 0.12 and the ‘holding costs’
are: cS = 5, cB = 0.02, then

C(0) = 100
140 − 120

140 − 70
− (140 − 120)(70 − 5)

(140 − 70)(1 + 0.12 − 0.02)
or

C(0) = 200

7
− (20)(65)

(70)(1.1)
= 28.57 − 16.88 = 11.68

which compares to a price of 10.64 without the holding cost. In this sense, holding
costs will increase the price of acquiring the option. A general approach to this
problem is treated by Bensoussan and Julien (2000) in continuous-time models.
The costs of holding, denoted friction costs, are, however, far more complex,
leading to incompleteness.
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Figure 6.4 A two-period binomial tree.

6.1.3 Multiple periods with binomial trees

Over two or more periods, the problem remains the same. For one period,
we saw that the price of a call option is: CH = Max [0, SH − K ] ; CL =
Max [0, SL − K ] and by risk-neutral pricing,

C(0) = 1

1 + R f
E∗C̃(1) = 1

1 + R f
[p∗CH + (1 − p∗)CL ]

Over two periods, we have:

C(0) = 1

(1 + R f )2
E∗C̃(2)

CH = 1

1 + R f
[p∗CH H + (1 − p∗)CH L ]; CL = 1

1 + R f
[p∗CH L + (1 − p∗)CL L ]

which we insert in the previous equation, to obtain the option price for two periods
(see Figure 6.4). Explicitly, we have the following calculations:

C(0) = 1

(1 + R f )
E∗C̃(1) = 1

(1 + R f )
E∗

{
1

(1 + R f )
E∗C̃(2)

}
or

C(0) =
(

1

1 + R f

)2

[p∗2CH H + 2p∗(1 − p∗)CH L + (1 − p∗2)CL L ]

Generally, the price of a call option at time t whose strike price is K at time T
can be calculated recursively by:

C(t) = E∗
(

1

1 + R f
C̃(t + 1)

)
; C(T ) = Max [0, S(T ) − K ]

Explicitly, if we set, SH = HS, SL = LS, we have :

C(0) = 1

(1 + R f )2






p∗2(H 2S − K )++
2p∗(1 − p∗)(H L S − K )++
(1 − p∗)2 (H 2S − K )+





= 1

(1 + R f )2

2∑

j=0

(
2
j

)

p∗ j (1 − p∗)2− j {H j L2− j S − K }+
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We generalize to n periods and obtain by induction:

C(0) = 1

(1 + R f )n

{
n∑

j=0

(
n
j

)
p∗ j (1 − p∗)n− j (H j Ln− j S − K )+

}

We can write this expression in still another form:

Cn = 1

(1 + R f )n
E{(Sn − K )+} = 1

(1 + R f )n

n∑

j=0

Pj (S̃ j − K )+

where

Pj = P(Sn = H j Ln− j S) =
(

n
j

)
p∗ j (1 − p∗)n− j

are the risk-neutral probabilities. This expression is of course valid only under
the assumption of no arbitrage. This mechanism for pricing options is generally
applicable to other types of options, however, such as American, Look-Back,
Asiatic, esoteric and other options, as we shall see later on.

The option considered so far is European since exercise of the option is possi-
ble only at the option’s maturity. American options, unlike European ones, give
the buyer the right to exercise the option before maturity. The buyer must there-
fore take into account to optimal timing of his exercise. An option exercised too
early may forgo future opportunities, while exercised too late it may lose past
opportunities. The optimal exercise time will be that time that balances the live
value of the option versus its ‘dead’ or exercise value. The recursive solution of
the European call option can be easily modified for the exercise feature of the
American option. Proceeding backward from maturity, the option will be exer-
cised when its ‘dead’ value is larger than its ‘live’ one. Technically, the exercise
time is a stopping time, as we shall see subsequently. Note that early exercise of
the option is optimal only if the option value diminishes. For a call option (and
in the absence of dividends), it does not diminish over time and therefore it will
never pay to exercise an option early. For this reason we note that the price of
a European and an American call are equal. For a put option, the present value
of the payoff is a decreasing function of time hence, early exercise is possible
irrespective of the existence of dividend payments.

6.2 FORWARD AND FUTURES CONTRACTS

A forward contract is an agreement to buy or sell an asset at a fixed date for a
price determined today. The buyer agrees to buy the asset at the price F and sell
it at the market price at maturity for a payoff S − F . The seller takes the opposite
position and sells at the market price F and buys the asset at the market price S
at maturity.

Forward contracts are thus an agreement between two parties or traders regard-
ing the price, the delivery price, of a stock, a commodity or any another asset,
settled at some future time – the maturity. Unlike options, forward contracts are
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Figure 6.5 Forward contract valuation.

an obligation to be maintained by the buyer and the seller at maturity. The party
that has agreed to buy the forward contract is said to assume a long position while
the party that agrees to sell is said to assume the short position. Such contracts
allow for the parties to exchange the price risk at maturity. For example, a wheat
farmer may be exposed to a fall of the wheat price when he brings it to market. He
can then enter in a forward contract to sell his wheat today at the fixed price F . At
maturity, he may sell wheat at a predetermined price and buy it at the spot rate S
from the buyer (say, the baker) of the forward for a payoff of (F − S). The buyer
(baker) takes the opposite position for a payoff of (S − F). Both sell and buy are
in the market and their position is [(F − S) + S = F] and [(S − F) − S = F]
respectively. The parties have therefore perfectly eliminated their wheat price risk
as their payoffs are determined at the initiation of the contract. In this example,
we evolved into a world where risk can be completely shifted away, which is also
the risk-neutral world that conveniently discounts risky payoffs at the risk-free
rate (under an appropriately defined probability measure). This transformation to
the ‘risk-neutral world’ breaks down when a seller cannot find a buyer with the
exact opposite hedging needs and vice versa. In this case, speculators are needed
to take on the risk and a risk neutral world will no longer exist. Depending on
whether excess hedging is in long or short forwards, the pressure will be upward
or downward compared to the risk-neutral price.

To calculate the forward price at times t = 1 and t = 2, say F(1) and F(2) we
proceed as follows. Consider the first period only, at which the gain can be either
F(1) − SH in case of a price increase or F(1) − SL in case of a price decrease (see
Figure 6.5). Initially nothing is spent and therefore, initially we also get nothing.
At present it is thus worth nothing. Assuming no arbitrage (otherwise we would
not be able to use the risk-neutral probability), and proceeding as in the previous
section, we have:

0 = 1

1 + R f
[p∗(F(1) − SH ) + q∗(F(1) − SL )]; p∗ + q∗ = 1

which is an one equation in one unknown and where R f is an effective risk-free
annual rate. The forward price F(1) resulting from the solution of the equation
above is therefore:

F(1) = [p∗SH + q∗SL ] = S(1 + R f )

In other words, the one period forward price equals the discounted current spot
price. For two periods we note equivalently that when the spot price is SH or SL ,
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then (from period 1 to 2):

F̃(2) =
{

p∗SH H + q∗SH L = (1 + R f )SH w.p. p∗

p∗SH L + q∗SL L = (1 + R f )SL w.p. q∗

As a result, F(2) = E∗ F̃(2) = p∗(1 + R f )SH + q∗(1 + R f )SL and therefore
F(2) = (1 + R f )2S and obviously:

F(n) = (1 + R f )n S

This means that the n periods forward price equals the n periods discounted current
spot price (see also Figure 6.4). Of course, using the risk-neutral reasoning, since
there is no initial expenditure at the time the forward contract is signed, while at
time t, the profit realized equals the difference between the current price and the
forward (agreed) on price at time zero which we write by F(n), we have:

0 = 1

(1 + R f )n
E∗ [Sn − F(n)] and F(n) = E∗ [Sn]

Since under risk-neutral pricing,

S0 = 1

(1 + R f )n
E∗ (Sn) → E∗ (Sn) = S0(1 + R f )n

we obtain at last the general forward price:

F(n) = S0(1 + R f )n

In practice, there may be some problems because decision makers may use forward
prices to revalue the spot price. Feedback between these markets can induce
an opportunity for arbitrage. Further, it is also necessary to remember that we
have assumed a risk-neutral world. As a result, when traders use historical data,
there may again be some problems, leading to a potential for arbitrage since the
fundamental assumption of rational expectations is violated. For example, if the
spot price of silver is $50, while the delivery price is $53 with maturity in one year,
while interest rates equal 0.08, then the no arbitrage price is: 50(1 + 0.08) = $54.
This provides an arbitrage opportunity since in one year there is an arbitrage profit
of $1(=54 − 53) that can be realized.

A futures contract differs from a forward contract in that it is standardized,
openly traded and marked to market. Marking to market involves adjusting an
investor’s initial margin deposit by the change in the futures contract price each
day. If the investor’s margin account falls below the maintenance margin, the
trader asks the investor to fill the margin account back to the initial margin,
posted in the form of interest-bearing T-bonds.

A futures price is determined as follows. The futures price one period hence
F(0, 1) at time t = 1 is set equal to the forward price for that time, since no cost
is incurred. In other words, we have, F(0, 1) = F(1). Now consider the futures
price in two periods, F(0, 2). If the spot price increases to SH , the futures price
turns out to equal the one-period forward price, or FH (1) (since only one more
period is left till the exercise time). Similarly, if the spot price decreases to SL ,
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Figure 6.6 Future price valuation.

the future price is now FL (1). As a result, cash flow payments at the first and
second periods are given by Figure 6.6. Initially, the value of these flows is worth
nothing, since nothing is spent and nothing is gained. Thus, an expectation of
futures flows is worth nothing today. That is,

0 = 1

1 + R f

[
p∗ (FH (1) − F(0, 2)) + q∗ (FL (1) − F(0, 2))

]

+ 1

(1 + R f )2

[
p∗2 (SH H − FH (1)) + p∗q∗ (SH L − FH (1)) +
p∗q∗ (SH L − FL (1)) + q∗2 (SL L − FL (1))

]

which is one equation and three unknowns. However, noting that for the one-
period futures (forward) price, we have:

FH (1) = (1 + R f )SH , FL (1) = (1 + R f )SL

Inserting these results into our equation, we obtain the futures price: F(0, 2) =
(1 + R f )2S0 which is equal to the forward price. This is the case, however, because
the discount interest rate is deterministic. In a stochastic interest rate framework,
this would not be the case. A generalization to n periods yields:

F(0, n) = (1 + R f )n S0

Futures contracts are stated often in terms of a basis, measuring the difference
between the spot and the futures price. The basis may be mis-priced, however,
because of mismatching of assets (cross-hedged), because of maturity (forward
versus futures) and the quality of related assets (options). There are some funda-
mental differences between forward and futures contracts that we summarize in
Table 6.1. These relate to the hedging quality of these financial products, their
barriers to entry, etc. Further, although under risk-neutral pricing they have the
same price, in practice (when interest rates are stochastic as stated above) they
can differ appreciably. In many cases, futures contracts are preferred to forward
contracts simply because they are more liquid and thereby more ‘tradable’.

Example
We compare the consequences of forward and futures contracts on a volume of
100 Dax shares each worth 77E over say five periods. We obtained the following
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Table 6.1 Forward and futures contracts: contrasts.

Forward Futures

Market OTC (Private) Exchange markets
Standard contract No Yes
Barrier to entry Substantial Weak
Security Individual Margin system
Daily controls No Yes
Flexibility Inverse contract Long–short
Hedge quality Best Problematic

results, pointing to differences in cash flow (Table 6.2). Calculations are performed
as follows. The cash flows associated with a forward contract of five periods
(denoted by ∗) and associated with a futures contract at period 2 (denoted by ∗∗)
are given in Table 6.2.

Further, note that the sum of payments of mark to market are equal to the sum
of payments of the forward since their initial prices (investment) were the same.

Table 6.2

T 1 2 3 4 5

DAX 7700 7770 7680 7650 7730
Price forward 7800 — — — 7730
Price future 7800 7845 7730 7675 7730
Cash flow forward — — — — −7000(*)
Cash flow future — +4500(**) −11500 −5500 +5500

(*) = (F[1;T] – F[0;T]) * volume = (7730 − 7800) * 100 = 7000

(**) = (7845−7800) * 100 = 4500

Example
Say that K is the forward delivery price with maturity T while F is the cur-
rent forward price. The value of the long forward contract is then equal to the
present value of their difference at the risk-free rate R f , or PL = (F − K ) e−R f T .
Similarly, the value of the short forward contract is PS = −PL = (K − F) e−R f T .

Example: Futures on currencies
Let S be the dollar value of a euro and let (R$, RE ) be the risk-free rate of the
local (dollar) and the foreign currency (euro). Then the relative rate is (R$ − RE )
and the future euro price T periods hence is: F = Se(R$−RE )T .

6.3 RISK-NEUTRAL PROBABILITIES AGAIN

Risk-neutral probabilities, conveniently, allow linear pricing measures. These
probabilities are defined in terms of market parameters (although their existence



146 OPTIONS AND DERIVATIVES FINANCE MATHEMATICS

hinges importantly on a risk-free rate, R f , and rational traders) and differ markedly
from historical probabilities. This difference, contrasting two cultures, is due to
economic assumptions that the market price of a traded asset ‘internalizes’ all the
past, future states and information that such an asset can be subjected to. If this is
the case, and it is so in markets we call complete markets, then the current price
ought to be determined by its future values as we have shown here. In other words,
the market determines the price and not historical (probability) uncertainty! If
there is no unique set of risk-neutral pricing measures, then market prices are
not unique and we are in a situation of market incompleteness, unable to value
the asset price uniquely.

It is therefore important to establish conditions for market completeness. Our
ability to construct a unique set of risk neutral probabilities for the valuation of
the stock at period 1 or the value of buying an option depends on a number of
assumptions that are of critical importance in finance and must be maintained
theoretically and practically. Pliska (1997) for example, emphasizes the impor-
tance of these assumptions and their implications for risk-neutral probabilities.
Namely, there can be a linear pricing measure if and only if there are no dominat-
ing trading strategies. Further, if there are no dominant trading strategies, then the
law of the single price holds, albeit the converse need not necessarily be true. And
finally, if there were a dominating trading strategy, then there exists an arbitrage
opportunity, but the converse is not necessarily true. Thus, risk-neutral pricing
requires, as stated earlier:

� No arbitrage opportunities.
� No dominant trading strategies.
� The law of the single price.

When the assumption of market completeness is violated, it is no longer possible
to obtain a unique set of risk-neutral probabilities. This means that one cannot
duplicate the option with a portfolio or price it uniquely. In this case, an appropriate
portfolio is optimized for the purpose of selecting risk-neutral probabilities. Such
an optimization problem can be based on the best mean forecast as we shall
outline below. These probabilities will, however, be a function of a number of
parameters implied by the portfolio and decision makers’ preferences and of
course the information available to the decision maker. When this is not possible,
we can, for a given set of parameters bound the relevant option prices.

6.3.1 Rational expectations and optimal forecasts

Rational expectations mean that economic agents can forecast the ‘mean’ price
(since risk-neutral probabilities imply that an expected value is used to value the
asset). In this case, a mean forecast can be selected by minimizing the forecast error
(in which case the mean error is null). Explicitly, say that {x} = {x1, x2, . . . , xt}
stands for an information set (a time series, a stock price record, financial variables
etc.). A forecast is thus an estimate based on the information set {x} written for
convenience by the function f (.) such that ȳ = f (x) whose error forecast is
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ε = y − ȳ where y is the actual record of the series investigated and its forecast
is obtained by minimizing the least squares errors. Assume that the forecast is
unbiased, that is, based on all the relevant information available, I; the forecast
equals the conditional expectation, or ȳ = E(y |I ) whose error is ε = y − ȳ =
y − E(y |I ) . In this case, rational expectations exist when the expected errors are
both null and uncorrelated with its forecast as well as with any observation in the
information set. This is summarized by the following three conditions of rational
expectations:

E(ε) = 0; E(ε ȳ) = E(εE(y |I )) = 0 ; E(εx) = cov(ε, x) = 0, ∀x ∈ I

Of course, there can be various information sets as well as various mechanisms
that can be used to generate rational expectations. However, it is essential to note
that the behaviour of forecast residual errors determine whether these forecasts
are rational expectations forecasts or not.

6.4 THE BLACK–SCHOLES OPTION FORMULA

In continuous time and continuous state, the procedure for pricing options remains
the same but its derivation is based on stochastic calculus. We shall demonstrate
how to proceed by developing the Black–Scholes model for the valuation of a call
option. Let S(t) be a security-stock price at time t and let W be the value of an asset
derived from this stock which we can write by the following function W = f (S, t)
assumed to be differentiable with respect to time and the security-stock S(t). For
simplicity, let the security price be given by a lognormal process:

dS/S = α dt + σ dw, S(0) = S0

The procedure we follow consists in a number of steps:

(1) We calculate dW by applying Ito’s differential rule to W = f (S, t)
(2) We construct a portfolio P that consists of a risk-free bond B and number

‘a’ of shares S. Thus, P = B + aS or B = P − aS.
(3) A perfect hedge is constructed by setting: dB = dP − a dS. Since, dB =

R f B dt , this allows determination of the stockholding ‘a’ in the replicating
portfolio.

(4) We equate the portfolio and option value processes and apply the ‘law of
the single price to determine the option price. Thus, setting dP = dW , we
obtain a second-order partial differential equation with appropriate boundary
conditions and constraints, providing the solution to the option price.

Each of these steps is translated into mathematical manipulations. First, by an
application of Ito’s differential rule we obtain the option price:

dW = ∂ f

∂t
dt + ∂ f

∂S
dS + 1

2

∂2 f

∂S2
(dS)2 =

=
(

∂ f

∂t
+ αS

∂ f

∂S
+ σ 2S2

2

∂2 f

∂S2

)
dt +

(
σ S

∂ f

∂S

)
dw
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Next, we construct a replicating riskless portfolio by assuming that the same
amount of money is invested in a bond whose riskless (continuously compounded)
rate of return is R f . In other words, instead of a riskless investment, say that we
sell a units of the asset at its price S (at therefore at the cost of aS) and buy an
option whose value is $W . The return on such a transaction is W − aS. In a small
time interval, this will be equal: dW − a dS. To replicate the bond’s rate, R f ,
we establish an equality between dB and dW − a dS, thus: dB ≡ dW − a dS.
This argument implies no arbitrage, i.e. the risk-free and the ‘risky’ market rates
should yield an equivalent return, or

dB = dW − a dS = dW − a(αS dt + σ S dw)

Inserting dW , found above by application of Ito’s Lemma, we obtain the following
stochastic differential equation:

dB = µ dt +
(

∂ f

∂S
− a

)
Sσ dw; µ = αS

∂ f

∂S
− aαS + ∂ f

∂t
+ σ 2S2

2

∂2 f

∂S2

Since dB = R f B dt , this is equivalent to: µ dt = R f B dt and
(

∂ f

∂S
− a

)
Sσ = 0

These two equalities lead to the following conditions:

a = ∂ f

∂S
and R f S = αS

∂ f

∂S
− aαS + ∂ f

∂t
+ σ 2S2

2

∂2 f

∂S2

Inserting the value of a, we obtain:

R f f = ∂ f

∂t
+ σ 2S2

2

∂2 f

∂S2

Since B = f − aS, then inserting in the above equation we obtain the following
second-order differential equation in f (S, t), the price of the derived asset:

−∂ f

∂t
= R f S

∂ f

∂S
+ σ 2S2

2

∂2 f

∂S2
− R f f

To obtain an explicit solution, it is necessary to specify a boundary condition. If
the derived asset is a European call option, then there are no cash flows arising
from the European option until maturity. If T is the exercise date, then clearly,

f (0, t) = 0, ∀t ∈ [0, T ]

At time T , the asset price is S(T ). If the strike (exercise price) is K , then if
S(T ) > K , the value of the call option at this time is f (S, T ) = S(T ) − K (since
the investor can exercise his option and sell back the asset at its market price at
time T ). If S(T ) ≤ K , the value of the option is null since it will not be worth
exercising. In other words,

f (S, T ) = Max [0, S(T ) − K ]
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This final condition, together with the asset price partial differential equation, can
be solved providing thereby a valuation of the option, or the option price. Black
and Scholes, in particular have shown that the solution is given by:

W = f (S, t) = S�(d1) − K e−R f t�(d2)

where

�(y) = (2π )−1/2

y∫

−∞
e−u2/2 du; d1 =

[
log(S/K ) + (T − t)(R f + σ 2/2)

σ
√

T − t

]
;

d2 = d1 − σ
√

T − t

This result is remarkably robust and holds under very broad price processes.
Further, it can be estimated by simulation very simply. There are many computer
programs that compute these options prices as well as their sensitivities to a
number of parameters.

The price of a put option is calculated in a similar manner and is therefore left as
an exercise. For an American option, the value of the call equals that of a European
call (as we have shown earlier). While for the American put, calculations are much
more difficult, although we shall demonstrate at the end of this chapter how such
calculations are made.

Properties of the European call are easily calculated using the explicit equation
for the option value. It is simple to show that the option price has the following
properties:

∂W

∂S
≥ 0,

∂W

∂T
> 0,

∂W

∂K
< 0,

∂W

∂ R f
> 0

They express the option’s sensitivity. Intuitively, the price of a call option is
the discounted expected value (with risk-neutral probabilities) of the payoff
f (S, T ) = Max [0, S(T ) − K ]. The greater the stock price at maturity (or the
lower the strike price), the greater the option price. The higher the interest rate,
the greater the discounting of the terminal payoff and thus the stock price in-
creases as it grows at the risk-free rate in the risk-neutral world. The net effect
is an increase in the call option price. The longer the option’s time to maturity
the larger the chances of being in the money and therefore the greater the option
price. The call option is therefore an increasing function of time. The higher the
stock price volatility, the larger the stock option price. Because of the correspon-
dence between the option price and the stock price volatility, traders often talk
of volatility trading rather than options trading, trading upward on volatility with
calls and downward with puts.

A numerical analysis of the Black–Scholes equation will reveal these relation-
ships in fact. For example, if we take as a reference point a call option whose
strike price is $160, the expiration date is 5 months, stock current price is $140,
volatility is 0.5 and the compounded risk-free interest rate is 0.15, then the price
of this option will turn out to be $81.82. In other words, given the current param-
eters, an investor will be willing to pay $81.82 for the right to buy the stock at a
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price of $160 over the next 5 months. If we let the current price vary, we obvi-
ously see that as the stock price increases (at the time the call option is acquired),
the price of the option increases and vice versa when the current stock prices
decreases.

� Variation in the current stock price

Stock price 120 130 140 150 160

Option price 65.01 73.33 81.82 90.46 90.22

� Variation in the expiration date

Expiration T 3 4 5 6 7

Option price 60.53 72.14 81.82 89.98 96.92

� Variation in the strike price

Strike price 140 150 160 170 180

Option price 86.81 84.26 81.82 79.50 77.27

� Variation in volatility

Volatility 0.3 0.4 0.5 0.6 0.7

Option price 68.07 74.76 81.82 88.82 95.52

� Variation in the risk-free compounded interest rate

Interest rate 0.05 0.10 0.15 0.20 0.25

Option price 63.80 73.15 81.82 89.68 96.67

Variations in the strike price, the expiration date of the option, the stock volatil-
ity and the compounded risk-free interest rate are outlined below as well. Note
that when the stock price, the expiration date, the volatility and the interest rate
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increase, the option price increases; while when the strike price increases, the
option price declines. However, in practice, we note that beyond some level of the
strike, the option price increases — this is called the smile and will be discussed
in Chapter 8.

Call and put options are broadly used by fund managers for the leverage they
provide or to cover a position. For example, the fund manager may buy a call
option out of the money (OTM) in the hope that he will be in the money (ITM) and
thus make an appreciable profit. If the fund manager owns an important number
of shares of a given stock, he may then buy put options at a given price (generally
OTM). In the case of a loss, the stock price decline might be compensated by
exercising the put options. Unlike the fund manager, a trader can use call options
to ‘trade on volatility’. If the trader buys a call, the price paid will be associated to
the implicit volatility (namely a price calculated based on Black–Scholes option
value formula). If the volatility is in fact higher than the implicit volatility, the
trader can probably realize a profit, and vice versa.

6.4.1 Options, their sensitivity and hedging parameters

Consider a derived asset as a function of its spot price S, time t , the standard
deviation (volatility σ ) and the riskless interest rate R f . In other words, we set
the derived asset price as a function f ≡ f (S, t, σ, R f ) whose solution is known.
Consider next small deviations in these parameters, then by Taylor series approx-
imation, we can write:

d f = ∂ f

∂S
dS + ∂ f

∂t
dt + ∂ f

∂σ
dσ + ∂ f

∂ R f
dR f + 1

2

∂2 f

∂S2
(dS)2 + 1

2

∂2 f

∂t2
(dt)2 + · · ·

Terms with coefficients of order greater than dt are deemed negligible (for example
∂2 f/∂t2). Each of the terms in the Taylor series expansion provides a measurement
of local sensitivity with respect to the parameter defining the derivative price. In
particular, in financial studies the following ‘Greeks’ are defined:

DELTA = � = ∂ f

∂S
: sensitivity to the spot price

THETA = � = ∂ f

∂t
: sensitivity to time to expiration

VEGA = υ = ∂ f

∂σ
: sensitivity to volatility

RHO = ρ = ∂ f

∂ R f
: sensitivity to the interest rate

GAMMA = � = ∂2 f

∂S2

Inserting into the derived asset differential equation, we have:

dF = � dS + � dt + ν dσ + ρ dR f + 1

2
�(dS)2
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For the sensitivity equations to make sense, however, the option price, a func-
tion of the spot price must assume certain mathematical relationships that imply
convexity of the option price. Evidently, this equation will differ from one derived
asset to another (for example, for a bond, a currency, a portfolio of securities etc.
we will have an equation which expresses the parameters at hand and of course
the underlying partial differential equation of the derived asset).The ‘Greeks’
can be calculated easily using widely available programs (such as MATLAB,
MATHEMATICA etc.) that also provide graphical representations of ‘Greeks’
variations.

6.4.2 Option bounds and put–call parity

Bounds
An option is a right, not an obligation to buy or sell an asset at a predetermined
(strike price) and at a given period in the future (maturity). A forward contract
differs from the option in that it is an obligation and not a right to buy or sell.
Hence, an option is inherently more valuable than a forward or futures contract
for it can never lead to a loss at maturity. Explicitly, the value of the forward
contract is the discounted payoff at maturity FT − F0 for a long futures contract
and F0 − FT for a short. The predetermined futures price F0 is the strike price K in
option terminology. Hence, the option price must obey the following inequalities
that provide lower bounds on the option’s call and put values (where we replaced
the forward’s price by its value derived previously):

cE ≥ e−R f (T −t)
(
S eR f (T −t) − F0

) = S − K e−R f (T −t)

pE ≥ e−R f (T −t)
(
F0 − S eR f (T −t)

) = K e−R f (T −t) − S

where cE and pE are the call and the put of a European option. Further, at the
limit:

Lim
t→T

cE = S − K

Lim
t→T

pE = K − S

Similarly, we can construct option bounds on American options. Since these
options have the additional right to exercise the option in the course of its lifetime,
option writers are likely to ask for an additional premium to cover the additional
risk transfer from the option buyer. Thus, as long as time is valuable to the investor
the following bounds must also hold. Explicitly, let the price of an American and
a European call option be C and c respectively while for put options we have also
P and p. Then, for a non-paying dividend option it can be verified that (based
on the equivalence of cash flows of two portfolios using European and American
put and call options):

C = c, P > p when R f > 0
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Put–call parity
The put–call parity relationship establishes a relationship between p and c. It can
be derived by a simple arbitrage between two equivalent portfolios, yielding the
same payoff regardless of the stock price. As a result, their value must be the
same. To do this, we construct the following two portfolios at time t:





Time t Time T
ST < K ST > K

c + K e−R f (T −t) K (ST − K ) + K = ST

p + St K = (K − ST ) + ST ST





We see that at time T , the two portfolios yield the same payoff Max(ST , X ) which
implies the same price at time t . Thus:

c + K e−R f (T −t) = p + St

If this is not the case, then there would be some arbitrage opportunity. In this
sense, computing European options prices is simplified since, knowing one leads
necessarily to knowing the other.

When we consider dividend-paying options, the put-call Parity relationships
are slightly altered. Let D denote the present value of the dividend payments
during the lifetime of the option (occurring at the time of its ex-dividend date),
then:

c > S − D − K e−R f (T −t)

p > D + K e−R f (T −t) − S

Similarly, for put-call parity in a dividend-paying option, we have the following
bounds:

S − D − K < C − P < S − K e−R f (T −t)

Upper bounds
An option’s upper bound can be derived intuitively by considering the payoff
irrespective of the options being American or European. The largest payoff for
a put option Max[K − S, 0] occurs when the stock price is null. The put option
upper bound is thus,

p < P < K

For a European call option, a similar argument leads to the conclusion that the
call price must be below the price of the stock at maturity. This is irrelevant to
a trader who cannot predict the stock price. However, for an American option,
Max[S − K , 0], the largest payoff occurs when the strike price is set to zero and
therefore, the American call upper bound is the stock price,

c < C < S

These relationships can be obtained also by using arbitrage arguments (see,
for example, Merton 1973). Finally other bounds on options are considered in
Chapter 8.
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6.4.3 American put options

American options, unlike European options may be exercised prior to the expi-
ration date. To value such options, we can proceed intuitively by noting that the
valuation is defined in terms of exercise and continuation regions over the stock
price. In a continuation region, the value of the option is larger than the value of
its exercise and, therefore, it is optimal to wait. In the exercise region, it is optimal
to exercise the option and cash in the profits. If the time to the option’s expira-
tion date is t, then the exercise of the option provides a profit K − S(t). In this
latter case, the exercise time is a ‘stopping time’, and the problem is terminated.
Another way to express such a statement is:

f (S, t) = Max[K − S(t), e−R f dt E f (S + dS, t + dt)]

where f (S, t) is the option price at time t when the underlying stock price is S and
one or the other of the two alternatives hold at equality. At the contracted strike
time of the option, we have necessarily, f (S, 0) = K − S(0). The solution of the
option’s exercise time is difficult, however, and has generated a large number
of studies seeking to solve the problem analytically or numerically. Noting that
the solution is of the barrier type, meaning that there is some barrier X∗(t) that
separates the exercise and continuation regions, we have:

{
If K − S(t) ≥ X∗(t) exercise region: stopping time

K − S(t) < X∗(t) continuation region

The solution of the American put problem consists then in selecting the optimal
exercise barrier (Bensoussan, 1982, 1985). A number of studies have attempted
to do so, including Broadie and Detemple (1996), Carr et al. (1992) and Huang
et al. (1996) as well as many other authors. Although the analytical solution of
American put options is hard to achieve, we shall consider here some very simple
and analytical problems. For most practical problems, numerical and simulation
techniques are used.

Example: An American put option and dynamic programming∗

American options, unlike European ones, provide the holder of the option with the
option to exercise it whenever he may wish to do so within the relevant option’s
lifetime. For American call options the call price of the European equals the call
price of the American. This is not the case for put options, however. Assume
that an American put option derived from this stock is exercised at time τ < T
where T is the option exercise period while the option exercise price is K . Let
the underlying stock price be:

dS(t)

S(t)
= R f dt + σ dW (t), S(0) = S0

Under risk-neutral pricing, the value of the option equals the discounted value (at
the risk-free rate) at the optimal exercise time τ ∗ < T , namely:

J (S, T ) = Max
τ≤T

ES e−R f τ (K − S(τ ), 0)
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Thus,

J (S, t) =
{

K − S(t) exercise region: stopping time
e−R f dt E J (S + dS, t − dt) continuation region

In the continuation region we have explicitly:

J (S, t) = e−R f dt E J (S + dS, t + dt)

= (
1 − R f dt

)
E

(
J (S, t) + ∂ J

∂t
dt + ∂ J

∂S
dS + 1

2

∂2 J

∂S2
(dS)2

)

which is reduced to the following partial differential equation:

−∂ J

∂t
= −R f J (S, t) + ∂ J

∂S
R f S + 1

2

∂2 J

∂S2
σ 2S2

While in the exercise region:

J (S, t) = K − S(t)

For a perpetual option, note that the option price is not a function of time but of
price only and therefore ∂ J/∂t = 0 and the option price is:

0 = −R f J (S) + dJ

dS
R f S + 1

2

d2 J

dS2
σ 2S2

Here the partial differential equation is reduced to an ordinary differential equation
of the second order. Assume that an interior solution exists, meaning that the
option is exercised if its (optimal) exercise price is S∗. In this case, the option
is exercised as soon as S(t) ≤ S∗, S∗ ≤ K . These specify the two boundary
conditions required to solve our equation.

� In the exercise region: J (S∗) = K − S∗
� For optimal exercise price

dJ (S)

dS
|S=S∗ = −1

Let the solution be of the type J (S) = q S−λ. This reduces the differential equation
to an equation we solve for λ:

σ 2 λ(λ + 1)

2
− λR f − R f = 0 and λ∗ = 2R f

σ 2

At the exercise boundary S∗, however:

J (S∗) = q S∗−λ∗ = K − S∗;
dJ (S∗)

dS∗ = −λ∗q S∗−λ∗−1 = −1

These two equations are solved for q and S∗ leading to:

S∗ = λ∗

1 + λ∗ K and q = (λ∗)λ∗ K 1+λ∗

(1 + λ∗)1+λ∗
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And the option price is:

J (S) =
[

(λ∗)λ
∗

K 1+λ∗

(1 + λ∗)1+λ∗

]
S−λ∗, λ∗ = 2R f

σ 2
, S∗ = λ∗

1 + λ∗ K

In other words, the solution of the American put will be:
{

sell if S ≤ S∗
hold if S > S∗

When the option time is finite, say T, the condition for optimality is reduced to
one of the two equations equating zero:

0 =





J (S, t) − (K − S(t))

−∂ J

∂t
+ R f J (S, t) + ∂ J

∂S
R f S + 1

2

∂2 J

∂S2
σ 2S2

This problem is much more difficult to solve, however. Below, we consider a
paper that has in fact been solved analytically.

Example∗: A solved case (Kim and Yu, 1993)
Let the underlying price process be a lognormal process:

dS

S
= µ dt + σ dw, S(0) = S0

As long as the option is kept, its price evolves following the (Black–Scholes)
partial differential equation:

∂ f

∂t
+ µS

∂ f

∂S
+ σ 2S2

2

∂2 f

∂S2
− R f f = 0

In addition, we have the following boundaries:

f (ST , T ) = Max [0, K − ST ]

Lim
St →∞

f (St , t) = 0

Lim
St →S∗

t

f (St , t) = K − S∗
t

The first boundary condition assumes that the option is exercised at its expiration
date T , the second assumes that the value of the option is null if the stock price
is infinite (in which case, it will never pay to sell the option) and finally, the
third boundary condition measures the option’s payoff at its exercise at time
t . Let S∗

t be the optimal exercise price at time t , when the option is exercised
prior to maturity, in which case (assuming that f (St , t) admits first and second
derivatives), we have:

Lim
St →S∗

t

∂ f (St , t)

∂St
= −1
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Although the solution of such a problem is quite difficult, Carr et al. (1992) and
Kim and Yu (1993) have shown that the solution can be written as the sum of the
option price for the European part of the option plus another sum which accounts
for the premium that the American option provides. This expression is explicitly
given by:

P0 = P(S0, 0) = p0 + π

π = R f K
T∫

0
e−R f t

S∗
t∫

0
�(St , S0) dSt dt − (R f − µ)

T∫

0
e−R f t

S∗
t∫

0
St�(St , S0) dSt dt

where p0 is the option price of a European put, the ‘flexibility premium’ associated
with the American option is π , while �(St , S0) is the transition probability density
function to a price St at time t from a price S0 at t = 0.

The analytical, as well as the numerical, solution of these problems is of course
cumbersome. In the next chapter we shall consider a similar class of problems
that seek to resolve simple problems of the type ‘when to sell, when to buy, should
we hold’ both assets and options.
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CHAPTER 7

Options and Practice

7.1 INTRODUCTION

Option writers, are entrepreneurs in search of profits. As in any fight, fairness is
not rewarded. In this spirit, option writers and their financial engineers seek to
avoid fair competition by differentiating their products and fitting them to their
clients’ specific needs or responding to demands of new or seasoned hedgers
and speculators. ‘The best fight is the one that we cannot lose’! Profits may
thus be realized when option writers create a market niche where competition is
conspicuously lacking and where there may be some arbitrage profits. Of course,
fees have to be set as a function of the writer’s power which will depend on
the risk of losing important clients, competition from other writers of the same
and other products as well as the sophistication of large institutions with their
own trading centres. Option writers, as other marketers in other areas, attempt to
innovate by creating new products (or variants to currently marketed products),
which is in fact a service of intangible characteristics catering to the attitude of
investors, firms and individuals to uncertainty. The majority of investors, in fact,
abhor uncertainty, while only few seek it or are willing to take positions that the
majority will refuse. These participants in financial markets are ‘human entities’
and market gladiators are prospecting by providing services and trades that are
sensitive to their ‘psychological and economic’ needs and profiles. For risky
contracts (in times of crashes for example or very high volatility) speculators will
be needed to provide liquidity. Hence, it is not surprising that complete markets
and risk-neutral pricing breaks down when this is the case. When the supply of risk
is overbearing and there may not be enough ‘speculators’ to assume it, markets
will, at least, become incomplete. Market gladiators are neither risk-seeking nor
pure hedgers, however. Management of conservative investment funds such as
retirement funds also involve risk. Bonds, assumed generally safe investments,
are also risky for they may default or, at least, their value may fluctuate as a function
of interest rates, inflation and other economic variables. By the same token, as
we have seen in Chapter 5, some hedge fund managers may share information
regarding disparities between economic policies and economic fundamentals to
generate a herd effect, or a potential run on a currency or an economic entity –
bringing them back to alignment with a ‘natural economic equilibrium’. Fortunes
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are made and lost on these ‘casino runs’ where money is made in an instant and
lost in another.

Niche-seeking and product innovation responding to speculative and hedging
needs are not the only tools available to market gladiators. A continuous concern
for market participation, a concern to avoid regulatory interventions and the urge
to avoid tax payments in a legally defensible manner, underpin another source
of product innovation. An outstanding example is the creation of Eurodollars
deposits of a domestic currency in a foreign country – just as currency swaps
were started in the 1980s by the World Bank and have been used since then by
CFOs of international firms and banks. Similarly, the concept of offshore funds
was conceived to avoid tax payments. This fact underscores current government
regulation seeking to limit the use of these funds.

For these reasons, option writers have produced as many tailored options as
business imagination can construct. They can be used individually as well as in
a combined manner. Financial engineers create and price the cost of products
but it is only the market that prices these products. The more ‘tailored’ the prod-
ucts the less price-efficient the market is, compared to standard widely traded
products.

Although most people believe that derivatives are a recent innovation, they date
as far back as twelfth-century practices by Flemish traders. The first futures and
options contracts resembling current option types were in fact implemented in the
seventeenth century in Amsterdam, which was at that time the financial capital
of the Western world, and in the rice market of Osaka. Practice in derivatives
has truly expanded into global financial markets since mathematical finance and
economic theory has made it possible to value such derivatives contracts. The
result is an expansion of trades for both ‘present and futures trades’ are traded at
the same time, providing broad flexibilities to financial managers and investors
to select the time-risk profile substitutions they prefer.

Options products may be grouped in several categories, summarized by the
following:

� Packaged options are usually expressed and valued in terms of plain vanilla op-
tions, combining them to generate desired risk properties and profiles. Options
strategies such as covered call; protective put; bull and bear spread; calendar
spread, butterfly spread, condors, laps and flex, warrants, and others, are such
cases we shall consider in this chapter.

� Compound options are derived options based on exercise prices that may be
uncertain (for example, warrants, stock options, options on corporate bonds
etc.). In this case, it is a ‘derived asset twice’ – first on the underlying asset and
then on some other variable on the basis of which the option is constructed.

� Forward starts are options with different states, awarding thereby the right to
exercise the option at several times in the future.

� Path-dependent options depend on the price and the trajectory of other vari-
ables. Asian options, knock-out options and many other option types are of
this kind, as we shall see in this chapter.
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� Multiple assets options involve options on several and often correlated risky
assets (such as quantos, exchange options etc.).

In addition, there are options in application areas such as currency options, com-
modity options, and options on futures, as well as climatic options that assume
an increasingly important role in both insurance and energy-related contracts.
Warrants are used by firms as call options on the firm’s equity. When the warrant
is exercised, firms usually issue new stock, thereby diluting current stockholders’
equity holdings. There are in addition numerous contracts such as swaps, caps and
floors, swaptions and captions etc. that we shall also elaborate on in this chapter.
The number of options used in practice is therefore very large and this precludes
a complete coverage. For this reason, we shall consider a few such options as ex-
amples, providing an opening for both the theoretically and applications minded
investor and financial manager. Further study will be needed, however, to appre-
ciate the mathematical intricacies and limitations of dealing with these problems
and to augment the sensitivity to the economic rationale such options presume
when they are used in practice and are valued by the available quantitative tools.

7.2 PACKAGED OPTIONS

Packaged options are varied. We consider first binary options. A payoff for binary
options occurs if the value of the underlying asset S(T ) at maturity T is greater
than a given strike price K . The amount paid may be constant or a function of the
difference S(T ) − K . The price of these options can be calculated easily if risk-
neutral pricing is applicable (since, it equals the discounted value of the terminal
payoff). When computations are cumbersome, it is still possible to apply stan-
dard (Monte Carlo) simulation techniques and calculate the expected discounted
payoff (assuming again risk-neutral pricing, for otherwise simulation would be
misleading). The variety of options that pay nothing or ‘something’ is large and
therefore we can briefly summarize a few:

� Cash or nothing: Pays A if S(T ) > K .
� Asset or nothing: Pays S(T ) if S(T ) ≥ K .
� Gap: Pays S(T ) − K if S(T ) ≥ K .
� Supershare: Pays S(T ) if KL ≤ S(T ) ≤ K H .
� Switch: Pays a fixed amount for every day in [0,T ] that the stock trades above

a given level K .
� Corridor (or range notes): Pays a fixed amount for every day in [0,T ] that the

stock trades above a level K and below a level L .
� Lookback options: Floating-strike lookback options that provide a payout

based on a lookback period (say three months), equalling the difference be-
tween the largest value and the current price. There are Min and Max lookback
options:

Min : V (T ) = Max [0,S(T ) − Smin]; Max : V (T ) = Max[0,Smax − S(T )]
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� Asian options: Asian options are calculated by replacing the strike price by
the average stock price in the period. Let the average price be:

S̄ = 1

T

T∫

0

S(t) dt ; t ∈ [0,T ]

Then the value of the call and put of an Asian option is simply:

Put : V (T ) = Max [0, S̄ − S(T )]; Call : V (T ) = Max[0,S(T ) − S̄]

� Exchange: A multi-asset option that provides the option for a juxtaposition
of two assets (S1,S2) and given by Max [S2(T ) − S1(T ),0]. Such options can
also be used to construct options on the maximum or minimum of two assets.
For example, buying the option to exchange one currency (S1) with another
(S2) leads to:

V (T ) = min [S1(T ), S2(T )] = S2 − Max [S2(T ) − S1(T ),0]

V (T ) = max [S1(T ), S2(T )] = S1(T ) + Max [S2(T ) − S1(T ),0]

� Chooser : Provides the option to buy either a call or a put. Explicitly, say that
(T1, T2) are the maturity dates of call and put options with strikes (K1, K2).
Now assume that an option is bought on either of the options with strike
T ≤ (T1, T2). The payoff at maturity T is then equal to the max of a call
C[S(T ), T1 − T ; K1] and the put P[S(T ), T2 − T ; K2] :

Max{C[S(T ), T1 − T ; K1], P[S(T ), T2 − T ; K2]}
� Barrier and other options: Barrier options have a payoff contingent on the

underlying assets reaching some specified level before expiry. These options
have knock-in features (namely in barrier) as well as knock-out features (out-
barrier). These options are solved in a manner similar to the Black–Scholes
equation considered in the previous chapter, except for a specification of
boundary conditions at the barriers. We can also consider barrier options with
exotic and other features such as options on options, calls on puts, calls on
calls, puts on calls etc., as well as calls on forwards and vice versa. These are
compound options and are written using both the maturity dates and strike
prices for both the assets involved. For example, consider a call option with
maturity date and strike price given by (T1, K1). In this case, the payoff of a
call on a call with maturity date T and strike K is a compound option given
by:

Cc(T1, K1) = Max{0, C[S(T ), T1 − T, K1] − K1}
where C[S(T ), T1 − T, K1] is the value at time T of a European call option
with maturity T1 − T and strike price K1. By the same token, a compound put
option on a call pays at maturity:

Pc(T1, K1) = Max (0, K − C(S(T ), T1 − T, K1))
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Practically, the valuation of such options is straightforward under risk-neutral
pricing since their value equals their present discounted terminal payoff (at
the exercise time).

� Passport options: These are options that make it possible for the investor
to engage in short/long (sell/buy) trading of his own choice while the option
writer has the obligation to cover all net losses. For example, if the buyer of the
option takes positions at times ti , i = 1, . . . , n − 1, t0 = 0, tn = T by buying
or selling European calls on the stock, then the passport option provides the
following payoff at timeT – the option exercise time:

Max

(
n−1∑

i=0

ui [S(ti+1) − S(ti )], 0

)

where ui is the number of shares (if bought, it is positive; if sold, it is negative)
at time ti and resolved at period ti+1. In this case, the period profit or loss would
be: [S(ti+1) − S(ti )]. Particular characteristic can be added such as the choice
of the asset to trade, the number of trades allowed etc.

� As you like it options: These options allow the investor to chose after a specified
period of time T , whether the option is a call or a put. If the option is European
and the call and the put have the same strike price K , then put-call parity can
be used. The value at exercise is Max(c, p) and consists in selecting either the
call or the put at the time the option exercise is made. Thus, put-call parity
with continuous and compounded discounting and a dividend-paying stock at
a rate of q implies (as we shall see later on):

c + e−q(T −t)Max[0, K e−(R f −q)(T −t) − S(t)]

In other words, ‘as you like it options’ consist of a call option with strike K
at T and e−q(T −t) put options with a strike of [K e−(R f −q)(T −t)] at maturity T .

The finance trade and academic literature abounds with options that are tailored
to clients’ needs and to the market potential for such options. Therefore, we shall
consider a mere few while the motivated reader should consult the numerous
references at the end of the previous and the current chapter for further study and
references to specific option types.

7.3 COMPOUND OPTIONS AND STOCK OPTIONS

Stocks are assets that represent equity shares issued by individual firms. They
have various forms, granting various powers to stockholders. In general, stock-
holders are entitled to dividend payments made by the firm and to the right to
vote at the firm’s assembly. Stocks are also a claim to the value of the firm that
they share with bondholders. For example, if the firm defaults on its interest pay-
ments, bondholders can force the firm into bankruptcy to recover the loans. A
stockholder, a junior claimant in this case, has generally nothing left to claim.
Hence, a bondholder has the right to sell the company at a given threshold or,
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equivalently, the bondholder holds a put on the value of the firm that the stock-
holder must hold short. Hence, a stock can be viewed as a claim or option on the
value of the firm that is shared with bondholders. In practice, managers are often
given stock options on their firm so they may align their welfare with those of
the shareholders. The rationale of such compensation is that a manager whose
income is heavily dependent on an upward move of the firm’s stock price will
be more likely to pursue an aggressive policy leading to a stock price rise as his
payoff is a convex increasing function of the stock price. The shareholders will, of
course, benefit from such a rise while it assumes some risk due to the call (stock)
option’s limited liability granted to the manager. This case illustrates some of the
economic limits of risk-neutral pricing, which presumes that risk can be elim-
inated by trading it away. Further, this supposes the existence of another party
willing to take the risk for no extra compensation. This can happen only if markets
are perfectly liquid or there exists another investor willing to take on the exact
opposite risk. Risk-neutrality presupposes therefore that there is always such an
exact opposite. In reality, as is the case for executives’ options, the strategy is set
up so that the risk is not shifted away. For most applications, risk-neutrality may
be used comfortably. But, the more out of the money options are, the less risk can
be transferred and, thus, the more speculators are needed to take this risk. This
means that in crash times or other extreme events, risk-neutral pricing tends to
break down.

With these limitations in mind, we can apply risk-neutral pricing to value
options or compound options (options on a stock option or some other underlying
asset). Define a stock option (a claim) on the value of the firm (its stock price).
To do so, say that a firm has N shares whose price is S and let the firm’s debt
be expressed by a pure discount bond B with maturity T . Initially, the value of
the firm V can be written as V = NS + B. Assuming risk-neutral pricing, the
stockprice (using an annual risk-free discount rate) over one and two periods is:

S = 1

(1 + R f )
E∗ S̃(1) = 1

(1 + R f )2
E∗ S̃(2)

For a binomial process, shown in Figure 7.1, we have: S̃(1) = (Sh, Sd ) and
S̃(2) = (Shh, Shd Sdd ). By the same token, we compute recursively the value of
the compound (stock) option by:

Cc = 1

(1 + R f )
E∗C̃c(1) = 1

(1 + R f )2
E∗C̃c(2)

with C̃c(1) = (
C̃c

h, C̃c
d

)
, C̃c(2) = (

C̃c
hh, C̃c

hd , C̃c
dd

)

Cc
hh = Max [0, h2V − B]; Cc

dd = Max [0, d2V − B]; Cc
hd = Max [0, h dV − B]

and therefore:

Cc =
(

1

1 + R f

)2




p∗2(Max[0, h2V − B])+
2(1 − p∗)p∗ (Max [0, h dV − B]) +
(1 − p∗)2Max(0, d2V − B)
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V

hV

dV

2h V

hdV

2d V

S

hS

dS

( )21
max 0,hhS h V B

n
= −

( )1
max 0,hdS hdV B

n
= −

( )21
max 0,ddS d V B

n
= −

Figure 7.1 Compound option.

Here the risk neutral probability is:

p∗ = 1 + R f − d

h − d

Note that this model differs from the simple plain vanilla model treated earlier,
since in this case, Sh �= hS; Sd �= dS. When the firm has no debt, the firm value
is V = NP, a portion is invested in a risk-free asset and the other in a risky
asset, similarly to the previous binomial case. For example, say that u = 1.3
while d = 0.8 and the risk free rate is R f = 0.1. Thus the risk-neutral probability
is:

p∗ = 1 + 0.1 − 0.8

1.3 − 0.8
= 0.3

0.5
= 0.6,

Cc =
(

1

1.1

)2




0.36 [Max (0, 1.69V − B)] +
0.48 [Max (0, 0.8V − B)] +
0.16 [Max (0, 0.64V − B)]





Now, if bondholders have a claim on 40 % of the firm value, we have:

Cc = V

(
1

1.1

)2

[0.36 (1.29) + 0.48 (0.4) + 0.16 (0.24)] = (0.57421)V
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Problem
What are the effects of an increase of 5 % on bondholders’ share of the firm on
the option’s price?

Problem
High-tech firms (and in particular start-ups) often offer their employees stock
options instead of salary increases. When is it better to ‘take the money’ over the
options and vice versa. Construct a model to justify your case.

7.3.1 Warrants

Warrants are compound options, used by corporations that issue call options
with their stock as an underlying asset. When the option is exercised, new stock is
issued, diluting other stockholders’ holdings but adding capital to the corporation.
A warrant is valued as follows. Say that V is the firm’s value and let there be n
warrants, providing the right to buy one share of stock at a price of x and assume
no other source of financing. If all warrants are exercised, then the new value of
the firm is V + mx and thus, each warrant must at least be worth its price x , or:

V + mx

N + m
> x

This means that a warrant is exercised only if:

V + mx > (N + m)x and V > N x or x < V/N = S

If the value at time t is: W (V, τ ), τ = T − t or at time t = 0,

W (V, 0) =





V + mx

N + m
− x V > Nx

0 V ≤ Nx

Then, if we set: λ = 1/ [N + m] we have λ(V + mx) − x = λV − x(1 − mλ)
and thereby the price W (V, 0) can be written as follows:

W (V, 0) = Max [λV − x(1 − mλ), 0] = Max

[
V − x(1 − mλ)

λ
, 0

]

This corresponds to an option whose price is V , the value of the firm, and whose
strike (in a Black–Scholes model) is [x(1 − mλ)] /λ, thus, applying the Black–
Scholes option pricing formula, we have at any one time:

W (V, τ, λ, x) = λW

(
V, τ,

x(1 − mλ)

λ

)
= W (λV, τ, x(1 − mλ))

Therefore, it is possible to value a warrant using the Black–Scholes option for-
mula. For example, say that there are m = 500 warrants with a strike price
x = 100, a time to maturity of τ = 0.25 years, the yearly risk-free interest rate
is R f = 10 %, the stock price volatility is σ = 20 % a year and let there be
N = 100 000 shares on the market while the current firm value is 150 000. Then,
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the warrant’s price is calculated by:

W [λV, τ, x(1 − mλ)] = W {1.5(105)λ, 0.25, 100[1 − (500)λ]}
= W (14.285, 0.25, 95.23)

where λ = 1/(10 500) = 0.095 238.
In a similar manner, other compound options such as options on a call (call on

call, put on call) and options on put (put on put, put on call) etc. may be valued.

7.3.2 Other options

We consider next and briefly a number of other options in a continuous-time
framework. Throughout, we assume that the underlying process is a lognormal
process.

Options on dividend-paying stocks are options on stocks that pay dividends
at a rate of D proportional to the stock price. Note that the underlying price
process with dividends is then:

dS

S
= (µ − D) dt + σdW

Thus, applying risk-neutral pricing, the partial differential equation that values
the option is given by:

−R f V + ∂V

∂t
+ (R f − D)S

∂V

∂S
+ 1

2
σ 2S2 ∂2V

∂S2
= 0

and the boundary condition for a European call option is V (S, T ) = Max
(S(T ) − K , 0). If we apply a no-arbitrage argument as we have in the previ-
ous chapter, we are left with −D dt which in essence deflates the price of the
stock for the option holder (since the option holder, not owning the stock, does
not benefit from dividend distribution). On this basis we obtain the option price
deflated by dividends.

Options on foreign currencies are derived in the same manner. Instead of
dividends, however, it is the foreign risk-free rate R for that we use. In this case,
the partial differential equation is:

−R f V + ∂V

∂t
+ (R f − R for)S

∂V

∂S
+ 1

2
σ 2S2 ∂2V

∂S2
= 0

Again, by specifying the appropriate boundaries, we can estimate the value of the
corresponding option.

Unlike options on dividend paying stocks, options on commodities involve a
carrying charge of, say q S dt , which is a fraction of the value of the commodity that
goes toward paying the carrying charge. As a result, the corresponding differential
equation is:

−R f V + ∂V

∂t
+ (R f + q)S

∂V

∂S
+ 1

2
σ 2S2 ∂2V

∂S2
= 0

with an appropriate boundary condition, specified according to the type of option
we consider (call, put, etc.)
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Options on futures are defined by noting that (see also Chapter 8):

F = SeR f (TF −t)

Thus, the value of an option on a stock and an option on its futures are inherently
connected by the above relationship. However, futures differ from options on
stock in that the underlying security is a futures contract. Upon exercise, the option
holder obtains a position in the futures contract. If we apply Ito’s differential rule
to determine the value of the option on the futures, we have:

dF = ∂ F

∂t
+ ∂ F

∂S
dS + 1

2

∂2 F

∂S2
(dS)2 or dF + R f S dt = eR f (TF −t) dS

which is introduced in our partial differential equation to yield:

−R f VF + ∂VF

∂t
+ 1

2
σ 2S2 ∂2VF

∂S2
= 0

This is solved with the appropriate boundary constraint (determined by the con-
tract we seek to value). Although options on futures have existed in Europe for
some time, they have only recently become available in America. In 1982, the
Commodity Futures Trading Commission allowed each commodity exchange to
trade options on one of its futures contracts. In that year eight exchanges intro-
duced options. These contracts included gold, heating oil, sugar, T-bonds and
three market indices. Options on futures now trade on every major futures ex-
change. The underlying spot commodities include financial assets such as bonds,
Eurodollars and stock indices, foreign currencies such as British pounds and
euros, precious metals such as gold and silver, livestock commodities such as
hogs and cattle and agricultural commodities such as corn and soybeans.

An option on a futures price for say, a commodity, can be related to the spot
price by:

F = Se(R f −q)(TF −t)

For a financial asset, q is the dividend yield on the asset, whereas for a commodity
(which can be consumed), q must be modified to reflect the convenience yield
less the carrying charge. Now in a risk-neutral economy the expected growth rate
in the price of a stock which pays continuous dividends at a rate of q is R f − q.
In such an economy, the expected growth rate of a futures price should be zero,
because trading a futures contract requires no initial investment. This means, that
for pricing purposes, the value of q should be R f . That is, for pricing an option
on futures, the futures prices can be treated in the same way as a security paying
a continuous dividend yield rate R f . We substitute G(t) = F(t) e−R f (TF −t) into
Merton’s model, leading to the model above and whose solution for a European
call option is (as established by Fisher–Black):

VF (0) = e−R f TF [F(0)N (d∗
1 ) − XN(d∗

2 )]; d∗
1 = 1

σ
√

TF

[
ln

(
F(0)

X

)
+ 1

2
σ 2TF

]

and d∗
2 = d∗

1 − σ
√

TF .
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7.4 OPTIONS AND PRACTICE

Financial options and engineering is about making money, or, inversely, not los-
ing it. To do so, pricing (valuation), forecasting, speculation and risk reduction
through trading (hedging and risk trading management) are an essential activity
of traders. For investors, hedgers, speculators and arbitageurs that consider the
buying of options (call, put or of any other sort), it is important to understand the
many statistics that abound and are provided by financial services and firms and
how to apply such knowledge to questions such as:

� When to buy and sell (how long to hold on to an option or to a financial asset).
In other words, what are the limits to buy/sell the stock on the asset.

� How to combine a portfolio of stocks, assets and options of various types and
dates to obtain desirable (and feasible) investment risk profiles. In other words,
how to structure an investment strategy.

� What are the risks and the profit potential that complex derivative products
imply (and not only the price paid for them)?

� How to manage productively derivatives and trades.
� How to use derivatives to improve the firm positioning.
� How to integrate chart-trading strategies into a framework that takes into

account financial theory, and how to value these strategies and so on.

The decision to buy (a long contract) and sell (a short contract, meaning that the
contract is not necessarily owned by the investor) is not only based on current risk
profiles, however. Prospective or expected changes in stock prices, in volatility,
in interest rates and in related economic and financial markets (and statistics) are
essential ingredients applied to solve the basic questions of ‘what to do, when and
where’. In practice, these questions are approached from two perspectives: the
individual investor and the market valuation. The former has his own set of pref-
erences and knowledge, while the latter results from demand and supply market
forces interacting in setting up the asset’s price. Trading and trading risks result
from the diverging assessments of the market and the individual investor, and
from external and environmental effects inducing market imperfections. These
issues will be addressed here and in the subsequent chapters as well.

In practice, options and derivative products (forward, futures, their combina-
tions etc.) are used for a broad set of purposes spanning hedging, credit and
trading risk management, incentives for employees (serving often the dual pur-
pose of an incentive to perform and a substitute for cash outlays in the form
of salaries as we saw earlier) and as an essential tool for constructing financial
packages (in mergers and acquisitions for example). Derivatives are also used to
manage commodity trades, foreign exchange transactions, and interest risk (in
bonds, in mortgage transactions etc.). The application of these financial products
spans the simple ‘buy’/‘sell’ decisions and complex trading strategies over mul-
tiple products, multiple markets and multiple periods of time. While there are
many strategies, we shall focus our attention on a selected few. These strategies
can be organized as follows:
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� Strategies based on plain vanilla options, including:
—strategies using call options only,
—strategies using put options only,
—strategies combining call and put options.

� strategies based on exotic options.
� Other speculating – buy–sell–hold-buy – strategies

These strategies are determined by constructing a portfolio combining options,
futures, forwards, stocks etc. in order to obtain cash flows with prescribed and
desirable risk properties. The calculation and the design of such portfolios is
necessarily computation-intensive, except for some simple cases we shall use
here.

7.4.1 Plain vanilla strategies

Call and put options
Plain vanilla options can be used simply and in a complex manner. A long call
option consists in buying the option with a given exercise price and strike time
specified. The portfolio implied by such a financial transaction is summarized in
the table below and consists in a premium payment of c for an option, a function of
K and T and the underlying process, whose payoff at time T is Max (ST − K ,0)
(see also Figure 7.2):

Time t = 0 Final time T

c0 Max (ST − K , 0)

When the option is bought, the payoff is a random variable, a function of the
future (at the expiration date T ) market stock price S̃T |0, reflecting the current
information the investor has regarding the price process at time t = 0 and its strike
K :

c0 = E[e−Ri (T −t)Max(S̃T |0 − K , 0)]

In this case, note that the discount rate Ri is the one applied by the investor. If
markets are complete, we have risk-neutral pricing, then of course the option
(market) price equals its expectation, and therefore:

c0 = e−R f (T −t) E∗[Max(S̃T |0 − K ,0)]

where R f is the risk-free rate and E∗ is an expectation taken under the risk-neutral
distribution. An individual investor may think otherwise, however, and his beliefs
may of course be translated into (technical) decision rules where the individual
attitudes to risk and beliefs as well as private and common knowledge combine to
yield a decision to buy and sell (long or short) or hold on to the asset. In general,
such call options are bought when the market (and/or the volatility) is bullish
or when the investor expects the market to be bullish – in other words, when we



OPTIONS AND PRACTICE 173

expect that the market price may be larger than the strike price at its exercise time.
The advantage in buying an asset long, is that it combines a limited downside
risk (limited to the option’s call price) while maintaining a profit potential if the
price of the underlying asset rises above the strike price. For example, by buying
a European call on a share of stock whose current price is $110 at a premium of
$5 with a strike price of $120 in six months, we limit our risk exposure to the
premium while benefiting from any upside movement of the stock above $120.
Generally, for an option contract defined at time t by (ct , K , T ) and traded over
the time interval t ∈ [0, T ], the profit resulting from such a transaction at time
t is given by: ct − c0 where ct is the option price traded at time t , reflecting the
information available at this time. Using conditional estimates of this random
variable, we have the following expectation:

ct = e−R f (T −t)

∞∫

K

(S̃ − K ) dFT |t (S̃)

where FT |t (S̃) is the (risk neutral) distribution function of the stock (asset) price
at time T based on the information at time t.

There may also be some private information, resulting from the individual in-
vestors’ analysis and access to information (information albeit commonly avail-
able but not commonly used), etc. Of course, as time changes, information will
change as well, altering thereby the value of such a transaction. In other words,
a learning process (such as filtering and forecasting of the underlying process)
might be applied to alter and improve the individual investor’s estimates of future
prices and their probabilities. For example, say that we move from time t to time
t + �t . Assuming that the option is tradable (it can be bought or sold at any time),
the expected value would be:

ct+�t = e−R f (T −t−�t)

∞∫

K

(
S̃ − K

)
dFT |t+�t (S̃)
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Figure 7.2 A plain call option.
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where FT |t+�t (S̃) expresses the future stock price distribution reached at time
t + �t . Under risk-neutral pricing, the value of the option at any time equals
its discounted expectation or ct+�t changing over time and with incoming new
information. As a result, if the option was bought at time t , it might be sold at
time t + �t for a profit (or loss) of (ct+�t − ct ), or it might be maintained with
the accounting change in the value of the option registered if it is not sold. If the
probabilities are ‘objective’ historical distributions, then of course, the profit –
loss parameters are in fact random variables with moments we can calculate (theo-
retically or numerically). The decision to act one way or the other may be based on
beliefs and the economic evaluation of the fundamentals or on technical analyses
whose ultimate outcomes are: ‘is the price of the stock rising or decreasing’, ‘will
the volatility of the stock increase or decrease’, ‘are interest rates changing or not
and in what direction’ etc. The option’s Greek sensitivity parameters (Delta, Vega
etc.) provide an assessment of the effects of change in the respective parameters.

The same principle applies to other products and contracts that satisfy the same
conditions, such as commodity trades, foreign exchange, industrial input factors,
interest rates etc. In most cases, however, each contract type has its own specific
characteristics that must be accounted for explicitly in our calculations. Further,
for each contract bought there must be an investor (or speculator) supplying such
a contract. In our case, in order to buy a long call, there must also be seller, who is
buying the call short – in other words, collecting the premium c against which he
will assume the loss of a profit in the case of the stock rising above the strike price
at its exercise. Such transactions occur therefore because investors/speculators
have varied preferences, allowing exchanges that lead to an equilibrium where
demand and the supply for the specific contract are equal.

Example: Short selling
A short sell consists in the promise to sell a security at a given price at some
future date. To do so, the broker ‘borrows’ the security from another client and
sells it in the market in the usual way. The short seller must then buy back the
security at some specified time to replace it in the client’s portfolio. The short
seller assumes then all costs and dividends distributed in the relevant period of
the financial sell contract. For example, if we short sell 100 GM shares sold in
January at $25 while in March the contract is exercised when the price of the stock
is $20, and in February 1, a dividend of $1 was distributed to GM shareholders,
then, the short seller profit is: 100(25 − 20 − 1) = $400.

In a similar manner we may consider long put options. They consist in the
option to sell a certain asset at a certain date for a certain strike price K or at the
market price S(T ), whichever is largest, or Max (S(T ), K ). The cost of such an
option is denoted byp, the strike is K and the exercise time is T . For a speculator,
such an option is bought when the investor expects the market to be bearish and/or
the asset volatility to be bullish. Unlike the long call, the long put combines a
limited upside exposure with a high gearing in a falling market. The costs/payoffs
of a portfolio based on a single long put option contract is therefore given by the
following.
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A put option

Time t = 0 Final time T

p + S0 Max (K , ST )

As a result, in risk-neutral pricing, the price of the put is:

p = e−R f T E∗[Max (K , S̃T |0)] − S0

Equivalently, it is possible at the time the put is bought, that a forward contract
F(0,T ) for the security to be delivered at time T is taken (see also Chapter 8). In
this case (assuming again risk-neutral pricing), F(0,T ) = eR f T S0 and therefore
the value of a put option can be written equivalently as follows:

p = e−R f T E∗{Max[K − F(0,T ), S̃T |0 − F(0,T )]}
Put–call parity can be proved from the two equations derived here as well. Note
that the value of the call can be written as follows:

c = e−R f T E∗(Max[S̃T |0 − K , 0]) = e−R f T E∗(Max[S̃T |0, K ]) − e−R f T K

and therefore: c + e−R f T K = e−R f T E∗(Max [S̃T |0, K ]). Thus, we have the call-
put parity seen in the previous chapter:

p + S0 = c + e−R f T K

Since p ≥ 0 and c ≥ 0 the put–call parity implies trivially the following bounds:
p ≥ e−R f T K − S0 and c ≥ S0 − e−R f T K . Thus, for a trader selling a put, the
put writer, the maximum liability is the value of the underlying stock. These
transactions are popular when they are combined with another (or several other)
transactions. These strategies are used to both speculate and hedge. For example,
say that a put option on CISCO is bought for a strike of $42 per share whose
premium is $2.25 while the stock current price is $46 per share. Then, an investor
would be able to contain any loss due to stock decline, to the premium paid for
the put (thereby hedging downside losses). Thus, if the stock falls below $42,
the maximum loss is: (46 − 42) + 2.25 = $6.25 per share. While, if the stock
increases to $52, the gain would be: −2.25 + {52 − 46} = 3.75.

Some firms use put options as a means to accumulate information. For example,
some investment firms buy puts (as warrants) in order to generate a signal from the
firm they intend to invest in (or not). If a firm responds positively to a request to a
put (warrant) contracts, then this may be interpreted as a signal of ‘weakness’ – the
firm willing to sell because it believes it is overpriced – and vice versa, if it does
not want to sell it might mean that the firm estimates that it is underpriced. Such
information eventually becomes common knowledge, but for some investment
firms, the signals they receive are private information which remains private for
at least a certain amount of time and provides such firms with a competitive
advantage (usually, less than four months) which is worth paying for and to
speculate with.
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7.4.2 Covered call strategies: selling a call and a share

Say that a pension fund holds 1000 GM shares with a current price of $130 per
share. A decision is reached to sell these shares at $140 as well as a call expiring
in 90 days with an exercise price of $140 at a premium of $5 per share. As a result,
the fund picks up an immediate income of $5000 while the fund would lose its
profit share for the stock when it reaches levels higher than $140. However, since
it intended to sell its holdings at $140 anyway, such a profit would have not been
made. This strategy is called a covered call. It is based on a portfolio consisting in
the purchase of a share of stock with the simultaneous sale of a (short) call on that
stock in order to pick up an extra income (the call option price), on a transaction
that is to be performed in any case. The price (per share) of such a transaction is
the expectation of the following random variable written as follows:

S − c = e−R f T E∗[Min (K , S̃T |0)]

where c is the call premium received, K is the strike price of the option with an
exercise at time T , while ST is the stock price at the option exercise time. Under
risk-neutral pricing, there is a gain for the seller of the call since he picks up the
premium on a transaction that he is likely to perform anyway.

A covered call

Time t Final time T

S − c Min (K , ST )

The buyer of the (short) call, however, is willing to pay a premium because he
needs the option to limit his potential losses. As a result, a market is created
for buyers and sellers to benefit from such transaction. The terminal payoff of a
covered call is given in the Figure 7.3.
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Figure 7.3 Terminal payoffs: covered call.
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Problem
Write the payoff equation for a covered call when the seller of the stock is financed
by a forward.

7.4.3 Put and protective put strategies: buying a put and a stock

The protective put is a portfolio that consists in buying a stock and a put on
the stock. It is a strategy used when we seek protection from losses below the
put option price. For this reason, it is often interpreted as an insurance against
downside losses. Buying a put option on stock provides an investor with a limit on
the downside risk while maintaining the potential for unlimited gains. Banks for
example, use a protective put to protect their principal from interest rate increases.
Similarly, say that a euro firm receives an income from the USA in dollars. If
the dollar depreciates or the euro increases, it will of course be financially hurt.
To protect the value of this income (in the local currency), the firm can buy a
put option by selling dollars and obtain protection in case of a downward price
movement. The protective put has therefore the following cash flow, summarized
in the table below.

A protective put strategy

Time t = 0 Final time T

p + S Max(K , ST )

where p is the put premium and:

p + S = e−R f T E∗[Max (K , S̃T |0)]

or, equivalently:

p = e−R f T E∗[Max (K − e−R f T S,S̃T |0 − e−R f T S)]

This is shown graphically in Figure 7.4 and illustrated by exercise of the put.
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Figure 7.4 Terminal payoffs: Protective put.



178 OPTIONS AND PRACTICE

7.4.4 Spread strategies

Spread strategy consists in constructing a portfolio by taking position in two
or more options of the same type but with different strike prices. For example,
a spread over two long call options can be written by W = c1 + c2 Where ci ,

i = 1, 2 are call option prices associated with the strike prices Ki , i = 1, 2. The
following table summarizes a spread strategy cash flow.

A call–call spread strategy

Time t = 0 Final time T

c1 + c2 Max (K1,ST ) + Max (K2,ST )

There are also long and short put spread versus call and, vice versa, long and
short call versus put. In a short put spread versus call, we sell a put with strike
price B and sell a put at a lower strike A and buy a call at any strike. The long
call will generally be at a higher strike price, C, than both puts. The return profile
turns out to be similar to that of a short put spread, but the long call provides
an unlimited profit potential should the underlying asset rise above C . Such a
transaction is performed when the investor expects the market and the volatility
to be bullish. In a rising market the potential profit would be unlimited while in
a falling market, losses are limited. This is represented graphically below. For
example, in the expectation of a stock price increasing, a speculator will buy a
call at a low strike price K1 and sell another with a high strike price K2 > K1 (this
is also called a bull spread). This will have the effect of delimiting the profit/loss
potential of such a trade, as shown in the Figure 7.5. In this case, the value of
such a spread is as follows.

A bull spread
The premium collected initially at time t = 0 is c1 − c2, while (under risk-neutral
pricing):

c1 − c2 = e−R f T E∗{Max[(S̃T |0 − K2), 0]} − e−R f T E∗{Max[(S̃T |0 − K1), 0]}

Profit

Stock price

1K 2K

Figure 7.5 A bull spread.
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Figure 7.6 Terminal payoffs: bullish spread.

By contrast, in the expectation that stock prices will fall, the investor/speculator
may buy a call option with a high strike price and sell a (short) call with a lower
strike price. This is also called a bear spread. In this case, the initial cash inflow
would be.

0 = c1 − c2 + e−R f T E∗{Max[(S̃T |0 − K2), 0]} − e−R f T E∗{Max[(S̃T |0 − K1), 0]}
For a bullish spread, however, we buy and sell:

Long call (K1,T ) + Short call (K2,T ) = C(K1,T ) − C(K2,T )

while the payoff at maturity is:

ST < K1 K1 < ST < K2 ST > K2 Calls

0 ST − K1 ST − K1 C(K1,T )
0 0 −(ST − K2) −C(K2,T )
0 ST − K1 K2 − K1

This is given graphically in Figure 7.6.

7.4.5 Straddle and strangle strategies

A straddle consists in buying both a call and a put on a stock, each with the
same strike price, K , at the exercise date, T , and selling a call at any strike. A
straddle is used by investors who believe that the stock will be volatile (moving
strongly but in an unpredictable direction). A straddle can be long and short. A
long straddle versus call consists of buying both a call and a put at the same strike
but in addition, selling a call at any strike. Similarly, expectation of a takeover or
an important announcement by the firm is also a good reason for a straddle. The
cash flows associated with a straddle based on buying a put and a call with the
same exercise price and the same expiration date is thus (see Figure 7.7):

p + c = e−R f T E∗ Max[S̃T |0 − K , K − S̃T |0]

In contrast to a straddle, a strangle consists of a portfolio but with different strikes
for the put and the call. The graph for such a strangle is given in Figure 7.8.
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Figure 7.7 A Straddle strategy: terminal payoffs.
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Figure 7.8 A strangle strategy.

7.4.6 Strip and strap strategies

If the investor believes that there is soon to be a strong stock price move, but
with potentially a stronger probability of a downward move, then the investor
can use a strip. This is similar to a straddle, but it is asymmetric. To implement a
strip, the investor will take a long position in one call and two in puts. Inversely,
if the investor believes that there is a stronger chance that the stock price will
move upwards, then the investor will implement a strap, namely taking a long
position on two calls and one on a put. In other words, the economic value of
such strategies are given by the following payoff:

Strip strategies

ST < K ST > K

1 Long call 0 ST − K
2 Long puts 2(K − ST ) 0

2(K − ST ) ST − K

The graph of such a cash flow is given in Figure 7.9.

Strap strategies
In a strap (see Figure 7.10) we make an equal bet that the market will go up or
down and thus a portfolio is constructed out of two calls and one put. The payoffs
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K

Figure 7.9 A strip strategy.

S

0
K

Figure 7.10 A Strap strategy.

are given by the following table.

ST < K ST > K

2 Long calls 0 2(ST − K )
1 Long put (K − ST ) 0

(K − ST ) 2(ST − K )

7.4.7 Butterfly and condor spread strategies

When investors believe that prices will remain the same, they may use butterfly
spread strategies (see Figure 7.11). This will ensure that if prices move upward
or downward, then losses will be limited, while if prices remain at the same level
the investor will make money. In this case, the investor will buy two call options,
one with a high strike price and the other with a low strike price and at the same
time, will sell two calls with a strike price roughly halfway in between (roughly
equalling the spot price). As a result, butterfly spreads merely involve options
with three different strikes. Condor spreads are similar to butterfly spreads but
involve options with four different strikes.

7.4.8 Dynamic strategies and the Greeks

In the previous chapter we have drawn attention to the ‘Greeks’, expressing
the option’s price sensitivity to the parameters used in calculating the option’s
price. These measures are summarized below with an interpretation of their signs
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1K
S

2K

3K

Figure 7.11 A butterfly spread strategy.

(Willmott, 2002). This sensitivity is used practically to take position on options
and stocks:

Delta

� =
{

Exposure to direction of price changes, Dollar change in position value

Dollar change in underlying security price

When Delta is negative, it implies a bearish situation with a position that benefits
from a price decline. When Delta is null, then there is little change in the position
as a function of the price change. Finally, when the sign is positive, it implies a
bullish situation with a position that benefits from a price increase.

Lambda

 =
{

Leverage of position price elasticity, Percentage change in position value

Percentage change in underlying security price

The Lambda has the same implications as the Delta.

Gamma

� =






Exposure to price instability; ‘non - directional price change’,
Change in position Delta

Dollar change in underlying security price

When Gamma is positive or negative, the position benefits from price instability,
while when it is null, it is not affected by price instability.

Theta

� =
{

Exposure to time decay, Dollar change in position value

Decrease in time to expiration

When Theta is negative the position value declines as a function of time and vice
versa when Theta is positive. When Theta is null, the position is insensitive to
time.
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Kappa

κ =
{

Exposure to changes in volatility of prices, Dollar change in position value

One percent change in volatility of prices

When Kappa is negative, the position benefits from a drop in volatility and
vice versa. Of course, when Kappa is null, then the position is not affected by
volatility.
The option strategies introduced above are often determined in practice by the
‘Greeks’. That is to say, based on their value (positive, negative, null) a strategy
is implemented. A summary is given in Table 7.1 (Wilmott, 2002).

Table 7.1 Common option strategies.

Delta Gamma Theta Strategy Implementation

Positive Positive Negative Long call Purchase long call option

Negative Positive Negative Long put Purchase long put option

Neutral Positive Negative Straddle Purchase call and put, both with same
exercise and expiration date

Neutral Positive Negative Strangle Purchase call and put, each equally out
of the money, and write a call and a put,
each further out of the money, and each
with the same expiration date

Neutral Positive Negative Condor Purchase call and put, each equally out
of the money, and write a call and a put,
each further out of the money than the
call and put that were purchased. All
options have the same expiration date

Neutral Negative Positive Butterfly Write two at-the-money calls, and buy
two calls, one in the money and the
other equally far out of the money

Positive Neutral Neutral Vertical
spread

Buy one call and write another call with
a higher exercise price. Both options
have the same time to expiration

Neutral Negative Positive Time spread Write one call and buy another call with
a longer time to expiration. Both op-
tions have the same exercise price

Neutral Positive Negative Back spread Buy one call and write another call with
a longer time to expiration. Both op-
tions have the same exercise price.

Neutral Neutral Neutral Conversion Buy the underlying security, write a
call, and buy a put. The options have the
same time to expiration and the same
exercise price
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Problem
Discuss the strategy buy a call and sell a put c − p. Discuss the strategy to buy
a stock and borrow the present value S − K/(1 + R f )T . Verify that these two
strategies are equivalent. In other words verify that: c − p = S − K/(1 + R f )T .

Problem: A portfolio with return guarantees
Consider an investor whose initial wealth is W0 seeking a guaranteed wealth level
aST + b at time T where ST is the stock price. This guarantee implies initially
that W0 ≥ aS0 + b e−R f T where R f is the risk-free rate. Determine the optimal
portfolio which consists of an investment in a zero coupon bond with nominal
value, BT at time T or BT = B0eR f T , an investment in a risky asset whose price
St is a given by a lognormal process and finally, an investment in a European put
option whose current price is P0 with an exercise price K .

7.5 STOPPING TIME STRATEGIES*

7.5.1 Stopping time sell and buy strategies

Buy low, sell high is a sure prescription for profits that has withstood the test of
time and markets (Connolly, 1977; Goldman et al., 1979). Waiting too long for
the high may lead to a loss, while waiting too little may induce insignificant gains
and perhaps losses as well. In this sense, trade strategies of the type ‘buy–hold–
sell’ involve necessarily both gains and losses, appropriately balanced between
what an investor is willing to gamble and how much these gambles are worth
to him.

Risk-neutral pricing (when it can be applied) has resolved the dilemma of what
utility function to use to price uncertain payoffs. Simply none are needed since the
asset price is given by the (rational) expectation of its future values discounted
at the risk-free discount rate. Market efficiency thus implies that it makes no
sense for an investor to ‘learn’, to ‘seek an advantage’ or even believe that he
can ‘beat the market’. In short, it denies the ability of an investor who believes
that he can be cunning, perspicacious, intuition-prone or whatever else that may
lead him to make profits by trading. In fact, in an efficient market, one makes
money only if one is lucky, for in the short run, prices are utterly unpredictable. Yet,
investors trade and invest trillions daily just because they think that they can make
money. In other words, they may know something that we do not know, are plain
gamblers or plain ‘stupid’. Or perhaps, they understand something that makes
the market incomplete and find potential arbitrage profits. This presumption, that
traders and investors trade because they believe that markets are incomplete,
results essentially in ‘market’ forces that will correct market incompleteness and
thus lead eventually to efficient markets. For as long as there are arbitrage profits
they will take advantage of the market inefficiency till it is no longer possible
to do so and the market becomes efficient. In this sense a market may provide
an opportunity for profits which cannot be maintained forever since the market
will be self-correcting. The cunning investor is thus one who understands that an
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opportunity to profit from ‘inefficiency’ cannot last forever, knows when to detect
it, identify and prospect on this opportunity and, importantly, knows as well when
to get out. For at some time, this inefficiency will be obliterated by other investors
who have realized that profits have been made and, wishing to share in it, will
necessarily render the market efficient.

For these reasons, in practice, there may be problems in applying the risk-
neutral framework. Numerous situations to be elaborated in Chapter 9, such as
risk-sensitive individual investors expressing varied preferences, using discrete
time and historical data, using private information etc. contribute to market inef-
ficiencies. In such a framework, future price distributions possess risk properties
that may be more or less desired by the individual investor/speculator who may
either use a risk-adjusted discount factor or provide a risk qualification for the
financial decisions he may wish to assume.

In this section we shall consider first a risk-neutral framework (essentially to
maintain the risk-free discounting of risk-neutral pricing) and consider the deci-
sion to buy or sell an asset under the martingale probability measure. We shall
show, using an example, that no profits can be made when the trade strategy
is to sell as soon as a given price (greater than the current price) is reached.
Of course, in practice we can use the actual probability measure (rather than
the risk-neutral measure) but then it would be necessary to apply the individ-
ual investor’s discount rate. This procedure is followed subsequently and we
demonstrate through examples how the risk premium associated with a trading
strategy for a risk-sensitive investor/trader is determined. Finally, we consider
a quantile risk-sensitive (Value at Risk – VaR) investor and assess a number of
trading strategies for such an investor. Both discrete and continuous-time price
processes are considered and therefore some of the problems considered may be
in an incomplete market situation. For practical purposes, when the risk-neutral
framework can be applied, simulation can be used to evaluate a trading strategy,
however complex it may be (since simulation merely applies an experimental
approach and assess performance of the trading strategy based on frequency and
average concepts). When this is not the case, simulation must be applied care-
fully for the discount rate applied to simulated cash streams must necessarily
account for the premium payments to be incurred for the cash flow’s random
characteristics.

To demonstrate the technique used, we begin again with the lognormal stock
price process:

dS

S
= αdt + σdW, S(0) = S0

Its solution at time t is simply:

S(t) = S(0) exp

(
α − σ 2

2

)
t + σ W (t), W (t) =

t∫

0

dW (t)

where W (t) is the Brownian motion. It is possible to rewrite this expression as
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follows (adding and subtracting in the exponential R f t):

S(t) = S(0) exp

{(
R f − σ 2

2

)
t + σ

(
W (t) + α − R f

σ
t

)}

In order to apply the risk-neutral pricing framework, we define another probability
measure or a numeraire with respect to which expectation is taken. Let

W ∗(t) =
(

W (t) + α − R f

σ
t

)
,

then

S(t) = S(0) exp

{(
R f − σ 2

2

)
t + σ W ∗(t)

}

which corresponds to the (transformed) price process:

dS

S
= R f dt + σdW ∗(t), S(0) = S0

And the current price equals the expected future price under risk neutral pricing
since:

S(0) = e−R f t E∗ (S(t)) = e−R f t E∗
(

S(0) exp

{(
R f − σ 2

2

)
t + σ W ∗(t)

})

= S(0) e−σ 2t/2 E∗ (
eσ W ∗(t)

)

Since E∗ is an expectation taken with respect to the risk neutral process, we have:

e−σ 2t/2 E∗ (
eσ W ∗(t)

) = e−σ 2t/2eσ 2t/2 = 1

Thus, the current price equals an expectation of the future price. It is important
to remember, however, that the proof of such a result is based on our ability to
replicate such a process by a risk-free process (and thereby value it by the risk-free
rate). In terms of the historical process, we have first:

dW ∗(t) = dW (t) + λdt, λ = α − R f

σ

which we insert in the risk-neutral process and note that:

dS

S
= R f dt + σ [dW (t) + λdt] = [R f + σλ] dt + σdW (t)

where R f is the return on a risk-free asset while λ = (α − R f )/σ is the premium
(per unit volatility) for an asset whose mean rate of return is α and its volatility is σ .
In other words, risk-neutral pricing is reached by equating the stock price process
whose return equals the risk-free rate plus a return of α − σλ that compensates
for the stock risk, or:

dS

S
= (R f + α − σλ) dt + σ [dW (t) + λ dt]

= R f dt + σ [dW (t) + λ dt] = R f dt + σdW ∗(t)
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Under such a transformation, risk-neutral pricing is applicable and therefore fi-
nancial assets may be valued by expectations using the transformed risk-neutral
process or adjusting the price process by its underlying risk premium (if it can be
assessed of course by, say, regressions that can estimate risky stock betas using
the CAPM). Consider next the risk-neutral framework constructed and evaluate
the decision to sell an asset we own (whose current price is S0) as soon as its
price reaches a given level S∗ > S0. The profit of such a trade under risk-neutral
pricing is:

π0 = E∗e−R f τ S∗ − S0

Here the stopping (sell) time is random, defined by the first time the target sell
price is reached:

τ = Inf{t > 0, S(t) ≥ S∗; S(0) = S0}
We shall prove that under the risk-neutral framework, there is an ‘equivalence’
to selling now or at a future date. Explicitly, we will show that π0 = 0. Again, let
the risk-neutral price process be:

dS

S
= R f dt + σdW ∗(t)

and consider the equivalent return process y = ln S

dy =
(

R f − σ 2

2

)
dt + σdW ∗(t), y(0) = ln(S0)

τ = Inf{t > 0, y(t) ≥ ln(S∗); y(0) = ln(S0)}
As a result, E∗

S(e−R f τ ) = E∗
y (e−R f τ ) which is the Laplace transform of the sell

stopping time when the underlying process has a mean rate and volatility given
respectively by µ = R f − σ 2/2, σ (see also the mathematical Appendix to this
chapter):

g∗
R f

(S∗, ln S0) = exp

[
ln S0 − ln S∗

σ 2

(
−µ +

√
µ2 + 2R f µσ 2

)]
,

σ > 0, −∞ < ln S0 ≤ ln S∗ < ∞
The expected profit arising from such a transaction is thus:

π0 = S∗E∗(e−R f τ ) − S0 = S∗g∗
R f

(ln S∗, ln S0) − S0

= S∗ exp

[
ln S0 − ln S∗

σ 2

(
−µ +

√
µ2 + 2R f µσ 2

)]
− S0

That is to say, such a strategy will in a risk-neutral world yield a positive return
if π0 > 0. Elementary manipulations show that this is to equivalent to:

π0 > 0 if
σ 2

2
> (R f − 1) µ or

σ 2

2
> (1 − R f )

(
σ 2

2
− R f

)
if R f >

σ 2

2
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As a result,

π0 =






> 0 if R f >
σ 2

2

< 0 if R f <
σ 2

2

The decision to sell or wait to sell at a future time is thus reduced to the simple
condition stated above. An optimal selling price in these conditions can be found
by optimizing the return of such a sell strategy which is found by noting that either
it is optimal to have a selling price as large as possible (and thus never sell) or select
the smallest price, implying selling now at the current (any) price. If the risk-free
rate is ‘small’ compared to the volatility, then it is optimal to wait and, vice versa,
a small volatility will induce the holder of the stock to sell. In other words,

dπ0

dS∗ =
{

> 0 R f < σ 2/2
< 0 R f > σ 2/2

Combining this result with the profit condition of the trade, we note that:





dπ0

dS∗ > 0, π0 < 0 if R f < σ 2/2

dπ0

dS∗ < 0, π0 > 0 if R f > σ 2/2

And therefore the only solution that can justify these conditions is π0 = 0,
implying that whether one keeps the asset or sells it is irrelevant, for under
risk-neutral pricing, the profit realized from the trade or of maintaining the stock
is equivalent. Say that R f < σ 2/2 then a ‘wait to sell’ transaction induces an
expected trade loss and therefore it is best to obtain the current price. When
R f > σ 2/2, the expected profit from the trade is positive but it is optimal to
select the lowest selling price which is, of course, the current price and then,
again, the profit transaction, π0 = 0 will be null as our contention states.

Similar results are obtained when the time to exercise the sell strategy is finite.
In this case,

π0,T = S∗E∗(e−R f τT ) − S0 = 0

which turns out to have the same properties as above.
For a risk-sensitive investor (trader or speculator) whose utility for money is

u(.), a decision to sell or wait will be based on the following (using in this case
the actual probability measure and an individual discount rate Ri ):

Max
S∗≥S0

Eu(π̃0) = Eu(S∗e−Ri τ̃ − S0)

If, at the end of the period, we sell the asset anyway, then the optimal trading/sell
condition is:

Max
S∗≥S0

T∫

0

Eu(S∗e−Ri τ − S0) e−Ri τ g(τ ) dτ + ES(T )u(S(T ) e−Ri T − S0)[1 − G(T )]
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where g(.) and G(.) are the inverse Gaussian probability and cumulative distri-
butions respectively.

g(S∗, t ; S0) = |S0 − S∗|√
2πσ 2t3

exp

[
− (S∗ − S0 − R f t)

2σ 2t

]
,

1 − G(T ) =
[

1 − 2�

(−(S∗ − S0)

σ
√

T

)]

When we use historical data, the situation is different, as we discussed earlier.
Say that the underlying asset has the following equation:

dS/S = b dt + σdW, S(0) = S0

To determine the risk-sensitive rate associated with a trading strategy, we can
proceed as follows. Say that a risk-free zero coupon bond pays S∗ at time T
whose current price is B∗. In other words, B∗ = e−R f,T T S∗ . Thus, S∗ = B∗eR f,T T

where R f,T is a known discount rate applied to this bond. Since (see also the
mathematical Appendix):

g∗
R f

(S∗, ln S0) = exp

[
− ln S∗/S0

σ 2

(
−b +

√
b2 + 2R f bσ 2

)]
, and

S0 = S∗ exp

[
− ln S∗/S0

σ 2

(
−b +

√
b2 + 2Ri bσ 2

)]

We obtain:

S0 = B∗ exp

[
R f,T T − ln(B∗eR f,T T /S0)

σ 2

(
−b +

√
b2 + 2Ri bσ 2

)]

This is solved for the risk-sensitive discount rate:

Ri =
[

1 + σ 2 [R f,T T − ln(S0/B∗)]

2b ln(B∗eR f,T T /S0)

]
[R f,T T − ln(S0/B∗)]

ln(B∗eR f,T T /S0)

Example: Buying and selling on a random walk
The problem considered above can be similarly solved for a buy/sell strategy in
a random walk. To do so, consider a binomial price process where price increase
or decline by $1 with probabilities p and q respectively. Set the initial price to
S0 = 0. When p = q = 1/2, the price process is a martingale. Assume that we
own no stock initially but we construct the trading strategy: buy a stock as soon
as it reaches the prices Sn = −a and sell it soon thereafter as soon as it reaches
the price Sn = b. Our problem is to assess the average profit (or loss) of such a
trade. First set the first time that a buy order is made to:

Ta = Inf {n, Sn = −a}, a > 0

Once the price ‘ − a’ is reached and a stock is bought, it is held until it reaches
the price b. This time is:

Tb = Inf {n, Sn = b, S0 = −a}



190 OPTIONS AND PRACTICE

At this time, the profit is (a + b). In present value terms, the profit is a random
variable given by:

π−a,b = −aE(ρ−Ta ) + bE(ρ−(Ta+Tb))

where ρ is the discount rate applied to the trade. Given the stoppin time generating
function (to be calculated below), we can calculate the expected profit. Of course,
initially, we put down no money and therefore, in equilibrium, it is also worth no
money. That is π−a,b = 0 and therefore a/b = E(ρ−(Ta+Tb))/E(ρ−Ta ).

Problem
Calculate π−a,b and compare the results under a risk-free discount rate (when
risk-neutral pricing can be applied and when it is not).

Now assume that we own a stock which we sell when the price decreases
by a or when it increases by b, whichever comes first. If −a is reached first,
a loss ‘−a’ is incurred, otherwise a profit b is realized. Let the probability of
a loss be Ua and let the underlying price process be a symmetric random walk
(and thereby a martingale), with E(Sn) = E(ST ) = 0, T = min (T−a, Tb) while
E(ST ) = Ua(−a) − (1 − Ua)b which leads to:

Ua = b

a + b

As a result, in present value terms, we have a profit given by:

θ−a,b = −aUa E(ρ−Ta ) + b(1 − Ua)E(ρ−Tb )

Some of the simple trading problems based on the martingale process can
be studied using Wald’s identity. Namely say that a stock price jump is Yi , i =
1, 2, . . . assumed to be independent from other jumps and possessing a generating
function:

φ(ν) = E(eνY1 ), Sn =
n∑

i=1

Yi , S0 = 0

Now set the first time T that the process is stopped by:

T = Inf {n, Sn ≤ −a, Sn ≥ b}
Wald’s identity states that:

E[(φ(ν))−T eνSn ] = 1 for any ν satisfying φ(ν) ≥ 1.

Explicitly, set a φ(ν∗) = 1 then by Wald’s identity, we have:

E[(φ(ν∗))−T eν∗Sn ] = E[eν∗Sn ] = 1

In expectation, we thus have:

1 = E[eν∗ST |ST ≤ −a] Pr{ST ≤ −a} + E[eν∗ST |ST ≥ b] Pr{ST ≥ b}
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and therefore:

Pr{ST ≥ b} = 1 − E[eν∗ST |ST ≤ −a]

E[eν∗ST |ST ≥ b] − E[eν∗ST |ST ≤ −a]

As a result, the probability of ‘making money’ (b) is Pr{ST ≥ b} while the prob-
ability of losing money (−a) is 1 − Pr{ST ≥ b}.

Problem: Filter rule
Assess the probabilities of making or losing money in a filter rule which consists
in the following. Suppose that at time ‘0’ a sell decision has been generated. The
trading rule generates the next buy signal (i.e. reaching price b first and then
waiting for price −a to be reached).

Problem: Trinomial models
Consider for simplicity the risk-neutral process (in fact, we could consider equally
any other diffusion process):

dS/S = R f dt + σ dW, S(0) = S0

and apply Ito’s Lemma to the transformation y = ln(S) and obtain:

dy =
(

R f − 1

2
σ 2

)
dt + σ dW, y(0) = y0

Given this normal (logarithmic) price process consider the trinomial random walk
approximation:

Yt+1 =






Yt + f1 w.p. p

Yt + f2 w.p. 1 − p − q

Yt + f3 w.p. q

where:

E (Yt+1 − Yt ) = p f1 + (1 − p − q) f2 + q f3 ≈
(

R f − 1

2
σ 2

)

E (Yt+1 − Yt )
2 = p f 2

1 + (1 − p − q) f 2
2 + q f 2

2 ≈ σ 2

First assume that p + q = 1 and calculate the stopping sell time for an asset we
own. Apply also risk neutral valuation to calculate the price of a European call
option derived from this price if the strike is K and if the exercise time is 2. If
p + q < 1, explain why it is not possible to apply risk-neutral pricing? In such a
case calculate the expected stopping time of a strategy which consists in buying
the stock at Y = −Ya and selling at Y = Yb.

Stopping times on random walks are often called the ‘gambler’s ruin’ problem,
inspired by a gambler playing till he loses a certain amount of capital or taking
his winnings as soon as they reach a given level. For an asymmetric birth–death
random walk with:

P(Yi = +1) = p, P(Yi = −1) = q, and P(Yi = 0) = r
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It is well known (for example, Cox and Miller, 1965, p. 75) that the probability
of reaching one or the other boundaries is given by,

P(Yt = −a) =





1 − (1/λ)b

1 − (1/λ)a+b
λ �= 1

b/(a + b) λ = 1
P(Yt = b) =






(1/λ)b − (1/λ)a+b

1 − (1/λ)a+b
λ �= 1

a/(a + b) λ = 1

where λ = q/p. Further,

E(T−a,b) =






[
1

1 − r

] [
λ + 1

λ − 1

] [
a(λb − 1) + b(λ−a − 1)

λb − λ−a

]
λ = q/p

ab

1 − r
λ = 1

Note that (λxn ; n ≥ 0) is a martingale which is used together with the stopping
theorem to prove these results (see also Chapter 4). For example, as discussed
earlier, at the first loss −a or at the profit b the probability of ‘making money’ is
P(ST (−a,b) = b) while the probability of losing it is P(ST (−a,b) = −a), as calcu-
lated above. The expected amount of time the trade will be active is also E(T−a,b).
For example, if a trader repeats such a process infinitely, the average profit of the
trader strategy would be given by:

π̄ (−a, b) = bP(ST (−a,b) = b) − a P(ST (−a,b) = −a)

E(T−a,b)

Of course, the profit from such a trade is thus random and given by:

π̃ =






−a w.p.






1 − (1/λ)b

1 − (1/λ)a+b
λ �= 1

b/(a + b) λ = 1

b w.p.






(1/λ)b − (1/λ)a+b

1 − (1/λ)a+b
λ �= 1

a/(a + b) λ = 1

And therefore, the expected profit, its higher moments and the average profit can
be calculated. When λ = 1 in particular, the long run average profit is null and
the variance equals 2ab, or:

E(π̃ ) = (−ab + ba)

a + b
= 0, var(π̃ ) = 2ab

Thus, a risk-averse investor applying this rule will be better off doing nothing,
since there is no expected gain. When ρ �= 1 while r = 0 (the random walk) we
have (Cox and Miller, 1965, p. 31):

P(ST (−a,b) = b) = λa − 1

λa+b − 1
; P(ST (−a,b) = −a) = λa+b − λa

λa+b − 1
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and

E(T−a,b) =
[
λ + 1

λ − 1

] [
a(λb − 1) + b(λ−a − 1)

λb − λ−a

]

while the long run average profit is:

π̄ (−a, b) = [b(λa − 1) − a(λa+b − λa)](λ − 1)(λb − λ−a)

[b(λ−a − 1) + a(λb − 1)](λ + 1)(λa+b − 1)

An optimization of the average profit over the parameters (a, b) when the under-
lying process is a historical process provides then an approach for selling and
buying.

Problem
Consider the average profit above and optimize this profit with respect to a and b
and as a function of λ > 1 and λ < 1.

Problem
Show that when p > q, then the mean time and its variance for a random walk
to attain the value b is equal to:

E(Tb) = b/(p − q) and var (Tb) = ([1 − (p − q)2] b)/(p − q)3

Finally, show that when the boundary b becomes large that the standardized
stopping time tends to a standard Normal distribution.

Example: Pricing a buy/sell strategy on a random walk∗

Consider again an underlying random walk price (where the framework of risk-
neutral pricing might not be applicable) (St ), t = 1, 2, . . . . The probability that
the price increases is s while the probability that the stock price decreases is q.
Assume that the current price is i0 and let i be a target selling price i = i0 + �i >

i0, given by the binomial probability distribution:

P (Sn = i = i0 + �i) =



n[

�i + n

2

]


 s(n+�i)/2q (n−�i)/2

=
(

�i + 2ν

�i + ν

)
s�i+νqν ; n − �i = 2ν, ν = 0, 1, 2, 3, . . .

where [ ] denotes the least integer. Since, prices i can be reached only at even
values of �i + n, it is convenient to rewrite the price process by:

P (S�i+2ν = i) =
(

�i + 2ν

�i + ν

)
s�i+νqν = s�i+νqν

ν!

ν∏

k=1

(�i + ν + k);

n − �i = 2ν, ν = 0, 1, 2, 3, . . .
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The amount of time τ (i) = n = 2ν + �i for an underlying process (s > q) that
can reach this price, however, is given by Feller (1957):

P(τ (i) = 2ν + �i) = �i

2ν + �i
P(S2ν+�i = i) = i

(2ν + i)

si+νqν

ν!

ν∏

k=1

(i + ν + k);

ν = 0, 1, 2, 3, . . . s > q

Thus, if a sell order for a stock is to be exercised at price i and if we use a
risk-sensitive adjusted discount rate ρ, then the current expected value of this
transaction is:

i0 = E(ĩ0) = iE(ρτ̃ (i)) = i2(ρs)i
∞∑

ν=0

ν∏
k=1

(i + ν + k)

(2ν + i)ν!
(ρ2sq)ν

Under risk-neutral pricing of course, the discount rate equals the risk free rate ρ f ,
that is ρ = ρ f = 1/(1 + R f ) and for convenience:

i0 = i2(ρs)ii (ρ); i (ρ) =
∞∑

ν=0

ν∏
k=1

(i + ν + k)

(2ν + i)ν!
(ρ2sq)ν

We can also set ρ = ρ f + π where π is the risk premium associated with selling
at a price i . A price i can also be obtained as well by buying a bond of nominal
value i in m periods hence without risk. In this case, we will have:

Bi (m) = i(ρ f )m or i = Bi (m)(ρ f )−m

Replacing i , we have

i0 = [Bi (m)(ρ f )−m]2(ρs)[Bi (m)(ρ f )−m ]Bi (m)(ρ f )−m (ρ)

This provides a solution for the risk-sensitive discount rate and therefore its risk
premium. Higher-order moments can be calculated as well. Set:

i0 = i2(ρ)
var (ĩ0) = i3(ρ2) − i42(ρ)

The probability distribution P(ĩ0|i0, var(ĩ0)) of the current trade which is a func-
tion of the discount rate provides a risk specification for such a trade. If we
have a quantile risk given by, P(ĩ0 ≤ i0 − �i |i0, var(ĩ0)) ≤ ξ , then by inserting
the mean variance parameters given above, and expressed in terms the discount
rate ρ, we obtain an expression of the relationship between this discount rate and
the VaR parameters (ξ, i0 − �i).

Say that the problem is to sell or wait and let i∗ > i0 be the optimal future selling
price (assumed to exist of course and calculated according to some criteria as we
shall see below). If price i∗ is reached for the first time at time n, then the price of
such a trade is i∗ρn which can be greater or smaller than the current price. If we
sell now, then the probability that this decision is ill-taken is P(i∗ρτ (i∗) ≥ i0). As
a result, the probability of a loss due to a future price increase has a quantile risk
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P(i∗ρτ (i∗) − i0 ≥ Vs) ≤ 1 − θs where Vs is the value at risk for such a decision
while 1 − θs is the assigned probability associated with the risk of holding the
stock. By the same token, if we wait and do not sell the stock, the probability of
having made the wrong decision is now:

P(i0 − i∗ρτ (i∗) ≥ Vh) = P(i∗ρτ (i∗) − i0 ≤ Vh) ≥ θs

where Vh denotes the value at risk of holding the stock. If a transaction cost is
associated with a trade and if we set c to be this cost (when there are no holding
costs), then we have:

P[(i∗ − c)ρτ (i∗) − (i0 − c) ≥ Vs] ≤ 1 − θs

or

P{i∗ρτ (i∗) − [i0 − c(1 − ρτ (i∗))] ≥ Vs} ≤ 1 − θs

Therefore, a transaction cost has the net effect of depreciating the current price
by c(1 − ρτ (i∗)) > 0 and thereby favouring selling later rather than now in order
to delay the cost of the transaction. In this sense, a transaction cost has the effect
of reducing the number of trades! By the same token, an investor may seek to
buy an asset believing that its current value is underpriced. In such a case, the
buyer will compare the future discounted price with the current price and reach a
decision accordingly. For example, the optimal buy price, based on the expected
discounted future prices would be:

i∗∗
0 = Max

i>i0

{
iE

(
ρτ (i)

) − i0|i∗∗ > i0 + d
}
, τ (i) = Inf {n, i > i0,}

where d is the buy transaction cost. An appropriate buy–sell–hold strategy is then
defined by:






Do nothing i∗
0 ≤ i0 ≤ i∗∗

0
Sell if i∗

0 ≤ i0

Buy if i∗∗
0 ≥ i0

In this framework, the quantile risk approach provides in a simple and a uniform
manner an approach to stopping as a function of the risks the investor is willing
to sustain. In Chapter 10, this measure of risk will be considered in greater detail,
however.

7.6 SPECIFIC APPLICATION AREAS

Foreign exchange is a fertile ground for the application of financial products,
their pricing and their analyses. Basic transactions (through the interbank or
the wholesale market) on spot, futures, forwards and swap and other prod-
ucts are applied extensively. FX trading is assuming greater importance. The
Philadelphia Exchange trades, for example, options on the British pound,
German mark, Japanese yen, Swiss franc and the Canadian dollar. The most
heavily traded contracts are the Deutschemark and Japanese yen American-style
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options. The strike price for each foreign currency option is the US dollar price of
a unit of foreign exchange. The expiration dates correspond to the delivery dates
in futures. Specifically, the expiration dates correspond to the Saturday before
the third Wednesday of the contract month. Contract months are March, June,
September and December plus the two near-term contracts. The daily volume
of contracts traded on the Philadelphia exchange has steadily increased to over
40 000 contracts per day.

Contract Strike price Premium
Currency size intervals quotations

Mark 62 500 1.0 Cents
Sterling 31 250 2.5 Cents
Swiss franc 62 500 1.0 Cents
Yen 6 250 000 0.01 Hundredth cent

Consider the British pound for example. Each contract is for 31 250 British
pounds. Newspapers report the closing spot price, in cents per pound sterling.
The strike prices are reported in cents per pounds, at 2.5-cent intervals. The call
and put premiums are also in cents per pound. Consider the theoretical price
of a European call option on the British pound that trades at the Philadelphia
Exchange. The time to expiration is 6 months. The spot is $1.60 per pound. An
at-the-money call is to be valued where the exchange rate volatility is 10 % per
year. The domestic interest rate and the foreign interest rate are both equal to
8 %. Using the theoretical price of the European call option given below, we find
the option price to be $0.0433. The equations for this problem are similar to
the Black–Scholes model, as we saw earlier and in the previous chapter, and are
summarized below.

Price of a European call option on foreign exchange

C E (0) = G(0)N (d∗
1 ) − K e−rT N (d∗

2 ); d∗
1 = 1

σ
√

T
ln [G(0)/K ]

+(r + σ 2/2)T ; d∗
2 = d∗

1 − σ
√

T

with σ the volatility of foreign exchange and G(0) = S(0) e−rF T where rF is the
risk-free rate in the foreign currency.

FX swap contracts are made by drafting purchase–repurchase agreements by
selling simultaneously one currency (say DM) in the spot and the forward market.
Swap contracts are immensely popular contracts and will be treated in the next
chapter in the context of interest-rate-related contracts.

In practice, financial products can be tailored to sources of risks and can respond
to specific business, industrial or other needs. For example, financial products that
meet firms’ risks related to climatic risks and energy supplies. Climatic factors in
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particular account for a substantial part of insurance firms’ costs. The December
1999 storm that hit France may have cost 44.5 billion francs! – hitting hard both
the French insurance companies and reinsurance firms throughout Europe. Cli-
matic risks also have an important effect on the US economy, accounting for
approximately 20 % of GNP according to the Department of Energy. There are
in fact few sectors that are immune to weather effects and thereby the importance
of all risk-management activities related to meteorological forecasting, robust
construction, tourism, fashion etc. Energy needs in particular, are determined by
the intensity of summer heat and winter cold, generating fluctuations in demand
and supply for energy sources. An expanding climatic volatility has only added
to the management of these risks. For this reason, firms such as ENRON (now
defunct), Koch, Aquila and Southern Energy have focused attention on the use
of financial energy-related products that can protect sources of supplies and meet
demands. As a result, since 1997, there have been energy products on the CME
and, since 2000, on London’s LIFFE, providing financial services to energy in-
vestors, speculators and firms. The underlying sources of risk of energy firms (as
well as many supply contract) span:

(a) Price risk whose effects are given by V �p where V is the quantity of the
energy commodity and �p is the price change of the commodity.

(b) Quantity risk, (�V )p.
(c) Correlation risk �V �p.

To manage these risks, derivative products on both the price and the supply
contract are used. These contracts, over multiple sources of risks, are difficult to
assess and are currently the subject of extensive research and applications.

7.7 OPTION MISSES

In the mid-nineties, media and regulators’ attention was focused on option misses
because of huge derivative-based losses that have affected significantly both large
corporate firms and institutions. The belief that options are primarily instruments
for hedging was severely shaken and the complexity and risks implied in trading
with derivatives revealed. Management and boards, certain that derivatives were
used only to hedge and reduce price risk, were astounded by the consequences
of positions taken in the futures and options markets – for the better and for
the worse. According to the Wall Street Journal for 12 April, 1996, J.P. Morgan
earnings in the first quarter jumped by 72 % from the previous year, helped by
an unexpectedly strong derivatives business that more than doubled the bank’s
overall trading revenue! By the same token, firms were driven to bankruptcy
due to derivative losses. Business managers also discovered that managing risk
with derivatives can be tempting, often only understood by a few mathematically
inclined financial academics. At the same time there is a profusion of derivatives
contracts, having a broad set of characteristics and responding in different ways
to the many factors that beset firms and individuals, which have invaded financial
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Table 7.2 Derivatives losses of industries and organizations.

Name Losses ($ million) Main cause

AIG 90 Derivatives revaluation
Air Product 113 Leveraged and currency swaps
Arco (Pension Fund) 25 Structured notes
Askine Securities 605 MBS model
Bank of America 68 Fraud
Procter & Gamble 450 Leveraged and currency swaps
Barings PLC 1400 Futures trading
Barnnet Banks 100 Leveraged swaps
Cargil 100 Mortgage derivatives
Codelco (Chile) 210 Futures trading–copper
Community Bankers 20 Leveraged swaps
Dell Computers 35 Leveraged swaps
Gestetner 10 Leveraged swaps
Glaxo 200 Derivatives and swaps
Harris Trust 52 Mortgage derivatives
Kashima Oil 1450 Currency derivatives
Kidder Peabody 350 Fraud trading
Mead 12 Leveraged swaps
Metalgesellschaft 1300 Futures trading
Granite Partners 600 Leveraged CMOs
Nippon Steel 30 Currency derivatives
Orange County 1700 Mortgage derivatives
Pacific Horizon 70 Structured notes
Piper Jaffray 700 Leveraged CMOs
Sandoz 80 Derivatives transactions
Showa/Shell Sekiyu 1400 Forward contracts
Salomon Brothers 1000 Fraud (cornering)
United Services 95 Leveraged swaps

Estimated losses 12 265

markets. In many cases too, derivatives hype has ignited investors’ imagination,
for they provided a response to many practical and real problems hitherto not
dealt with. An opportunity to manage risks, enhance yields, delay debt records
to some future time, exploit arbitrage opportunities, provide corporate liquidity,
leverage portfolios and do whatever might be needed are just a very few such
instances.

A derivative mania has generated at the same time their misuse, leading to
large losses, as many companies and individuals have experienced. Derivatives
became the culprit for many losses, even if derivatives could not intelligently
be blamed. For example, the continuous increase in interest rates during 1993–
94 pushed down T-bond prices so that the market lost hundreds of billions in
US dollars. Additionally, the sharp drop in the IBM stock price in 1992–94
from 175 to 50 created a market loss of approximately $70 billion for one firm
only! These losses could not surely be blamed on derivatives trading! Table 7.2
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summarizes some of the losses, assembled from various sources and sustained by
corporate America (Meir Amikam, 1996). These derivative losses were found to
be due to a number of reasons including: (1) a failure to understand and identify
firms’ sensitivities to different types of risk and calculating risk exposure; (2)
over-trusting – trusting traders with strong personality led to huge losses in Bar-
ings, megalomania in Orange County, Gestetner etc.; (3) miscalculation of risks
– overly large positions undertaken which turned out sour; (4) information asym-
metry – the lack of internal control systems and audits of trading activities has
led traders to assume unreasonable positions in hope; (5) poor technology – lack
of computer-aided tools to follow up trading activity for example; (6) applying
real-time trading techniques, responding to volatility rather than to fundamental
economic analysis, that have also contributed to ignoring risks.

Of courser, a number of risk management tools and models have been suggested
to institutional and individual investors and traders to prevent these risks wherever
possible. For example, value at risk, extremes loss distributions, mark to market
and using the Delta of model-based risk, to be considered in Chapter 10, have
been found useful. These models have their own limitations, however, and cannot
replace the expectations of qualified professional judgement. By the same token,
these expectations introduce a systematic risk that can lead to unexpected volatility
and cause severe losses, not only to speculators, but also to hedgers. Some of
the great failures in 1993–94, for example, were incurred because users were
caught by a surprise interest rate hike. A similar scenario occurred when the
price of oil dropped. Thus, the use of derivatives for speculation purposes can
cause large losses if traders turn out to be on the wrong side of their market
expectations.

There are some resounding losses, however, that have been the subject of intense
scrutiny. Below we outline a few such losses.

Bankers Trust/Procter & Gamble/Gibson Greeting: ‘Our policy calls for plain
vanilla type swaps’, Erick Nelson, CFO, Procter & Gamble.

Procter & Gamble incurred a loss of $157 million loss from interest swaps in
both US and German markets, swapping fixed for floating rates. In effect they
had a put option given to Bankers Trust. P&G’s strategic error was the belief that
exchange rates would continue to fall both in the USA and in Germany. Swaps
were thus made for the purpose of reducing interest costs. The actual state of
interest rates turned out to be quite different, however. In the USA, the expectation
of lower interest rates meant that the value of bonds would increase, rendering
the put option worthless to Bankers Trust. In fact interest rates did not fall and
therefore, Treasury bonds increased in value, forcing P&G to purchase the bonds
from Bankers Trust at a higher price. This resulted in a first substantial loss. By
the same token, the expectations of a decline in interest rates in Germany meant
that the German Bund would decline rendering again the put option worthless
to Bankers Trust. Therefore P&G would have lower interest costs as well. Rates
increased instead, and therefore, the value of the German Bund decreased, forcing
thereby a purchase of bonds from Banker’s Trust at higher prices then the current
market price – inducing again a loss. The combined losses reached $157 million.
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In other words, P&G took an interest-rate gamble instead of protecting itself in
case the ‘bet’ turned out to be wrong.

In April 1994, Procter & Gamble and Gibson Greetings claimed that Bankers
Trust, had sold them high-risk, leveraged derivatives. The companies claim that
those instruments, on which profits and losses can multiply sharply in certain
circumstances, had been bought without giving the companies adequate warning
of the potential risks. Bankers Trust countered that the firms were trying to escape
loss-making contracts. P&G sued Bankers Trust in October 1994, and again in
February 1995, for additional damages on the leveraged interest-rate swap tied
to the yields on Treasury bonds. P&G has also claimed damages on a leveraged
swap tied to DM interest rates for $195 million, insisting that the status of the
first swap was not fully and accurately disclosed. The case was settled out of
court in January 1995. It seemed in the course of the court deliberations that
Bankers Trust may have not accurately disclosed losses and Bankers Trust may
have hoped that market movements would turn to match their positions, so they
did not notify Gibson immediately of the true magnitude of the intrinsic risk
of the derivatives bought. Had Gibson been aware of the risk, the losses could
have been minimized. In response the bank has fired one manager, reassigned
others, and shacked up the leveraged derivatives unit. It also agreed to pay a
$10 million fine to regulators and entered into a written agreement with the
New York Federal Reserve Bank that allows regulators unprecedented oversight
of the bank’s leveraged derivatives business. The agreement is open-ended and
highly embarrassed Bankers Trust. In addition, the lawsuits have tarnished the
reputation of Bankers Trust. Outsiders have wondered if it was more the deal-
making culture that was to blame, rather than the official tale of a few rogue
employees. Other banks, such as Merrill Lynch, First Boston and J.P. Morgan have
also run into trouble selling leveraged derivatives and other high-risk financial
instruments.

The Orange County (California) case was a cause célèbre amplified by the media
and regulation agencies warning of the dangers of financial markets speculations
by public authorities. The Orange County strategy is called ‘On the street, a
kind of leveraged reverse repo strategy, also coined the death spiral because
one significant market move can blow down the strategy in one puff’. This can
occur if managers fail to understand properly the firm’s sensitivities to different
sorts of risks or do not regard financial risks as an integral part of the institution
or corporate strategy. Speculation by the Orange County treasurer, who initially
generated huge profits, ultimately bankrupted it. As the treasurer supervisor stated:
‘This is a person who has gotten us all millions of dollars. I don’t care how the
hell he does it, but it makes us all look good.’

The county lost $2.5 billion. Out of a $7.8 billion portfolio! The loss was
faulted on borrowing short to invest long in risk-structured notes. In other words,
the county treasurer leveraged the (public) portfolio by borrowing $2 for each
dollar in the portfolio, equivalent to investing on margin. The county then used
the repo (reverse purchase agreement) market to borrow short in order to purchase
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long (term) government bonds. In the repo agreement, the county pledged the
long-term bonds it was purchasing as collateral for secured loans. These loans
were then rolled over every three to six months. As interest rates began to rise, the
cost of borrowing increased while the value of long-term bonds decreased. This
situation resulted in a substantial loss. In effect, Orange County was betting that
interest rates would remain low or even decrease some and that spreads between
long- and short-term rates would remain high. Something else happened. When
interest rates rose, the cost of short-term borrowing increased, the value of the
long-term bonds purchased decreased, the rates on the inverse floaters (consisting
for an initial period of a fixed rate and then of a variable rate) fell and the rates
on the spread bonds (consisting of a fixed percentage plus a long-term interest
minus a short-term rate) fell as the yield curve flattened. This generated a huge
loss for Orange County.

Metalgesellschaft: ‘Pride in integrity takes a blow’ (Cooke and Cramb, Financial
Times). Metalgesellschaft, a $15 billion sales commodity and engineering con-
glomerate, blamed its near collapse on reckless speculation in energy derivatives
by its New York subsidiary. To save the firm that employed 46 000 people, banks
and shareholders provided a $2.1 billion bail-out. The subsidiary MGRM (MG
Refining & Marketing) negotiated long-term, fixed-price contracts to sell fuel
to gas stations and other small businesses in 1992. The fixed price was slightly
higher than the prevailing spot price. To lock in this profit and hedge against
rising fuel prices, the company hedged itself by buying futures on the New York
Mercantile Exchange (NYMEX). Maintaining such a ‘stacked rollover hedge’
when prices are falling could require large amounts of liquidity. To hedge the
long-term contracts, MGRM was obligated to buy short-term futures contracts to
cover its delivery commitment since matching its supply obligations with con-
tracts of the same maturity was impossible. That strategy was based on rolling
over the short-term futures just before they expired. The hedging depended on
the assumption that oil markets, which were in backwardation over two-thirds of
the time over the past decade, would remain in that state for most of the time.
By entering into futures contracts, MGRM would be able to hedge their short
positions in the forward sales contracts. This assumption was predicated on the
fact that, as expiration approaches, the future price MGRM paid for the contracts
would be less than the spot price. That trading and hedging strategy had some
inherent risks that happened to be crucial:

� Market fluctuations risk: oil prices, futures and spot price, that did not meet
expectations.

� Proper hedge risk: Resulting from mismatched timing of contracts and enter-
ing into a speculative hedge.

� Funding risk: futures contracts require marking to market; this margin call
caused by futures losses is not offset by forward contract gains, which are
unrealized until delivery.
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By September 1993, MGRM’s obligation was equivalent to 160 million barrels.
In November 1993, oil prices dropped by $5 to $14.5 as a reaction to OPEC’s
decision to cut production. That drop wiped out 20 % of MGRM short-term futures
contracts and led to a cumulative trading loss of $660 million. German GAAP
does not allow the offset of gains or losses on hedging positions using futures
against corresponding gains or losses on the underlying hedge asset, however.
Further, Deutsche Bank, advising MG and apprehensive about the short-term
losses as they mounted, convinced MG to close out its positions, thus causing the
loss. The risk MG was taking was using a short-term instrument hedging strategy
for a long-term exposure, creating thereby a mismatch that could be considered
a bet that turned out to be wrong. The paper loss converted into a real heavy
loss as the futures positions were closed. In 1994 the group announced that the
potential losses of unwinding its positions could bring the total losses up to $1.9
billion over the next three years. It is argued, though, among academics that the
strategy could have worked had MGRM not unwound their futures position. Thus,
liquidity was essential for this strategy to work. Alternatively MGRM could have
reversed its futures position when oil prices dropped. It is important to look at
current market conditions in reassessing the merits of one’s strategy. MGRM
traders did not (and, in fact, could not) properly hedge. They were speculating
on the correlation between the underlying and the cash market. They ignored the
risks of a speculative hedge, trusting that they could predict the relationship and
changes in prices from month to month.

Barings: ‘Ultimately, if you want to cover something up, it’s not that difficult
. . . Derivative positions change all the time and balance sheets don’t give a proper
picture of what’s going on. For anyone on the outside to keep track is virtually
impossible’ (SIMEX trader, quoted by the Financial Times, February 1995).

The much-publicized Barings loss of $1.3 billion was incurred by its branch
in Singapore. It was incurred in three weeks by trading on the Nikkei Index.
Leeson the Singapore Office Head of Trading was speculating that the Nikkei
Index would rally after the Kobe earthquake, so he amassed a $27 billion long
position in Nikkei Index futures. The Nikkei Index fell, however, and Leeson was
forced to sell put and call options to cover the margin calls. In an effort to recoup
losses, Leeson increased the size of his exposure and held 61 039 long contracts
on the Nikkei 225 and 26 000 short contracts on Japanese bonds. When he decided
to flee, the Nikkei dropped to 17 885. Leeson was betting that the Index would
trade in a range and he would therefore earn the premium from the contracts
(to pay the margins). No one was aware of such trades and the risk exposure it
created for Barings (as a result, it generated a much-needed and heated discussion
regarding the needs for controls. The main office ‘seemed’ to focus far more on
the potential gains rather than on the potential losses! This loss induced the demise
of Barings, a venerable and longstanding English institution, which was sold to
ABN AMRO.

Initially Leeson was responsible for settlement. In a short time he turned out
to be a successful trader whose main job was to arbitrage variations among the
prices of futures and options on the Nikkei 225, having the unique advantage
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that Barings had seats both on SIMEX and on OSE (Osaka Stock Exchange).
Contracts on the Nikkei 225 and Nikkei 300 were OSE’s only futures and options
and accounted for 30 % of SIMEX business. As a member he enjoyed the privilege
of seeing the orders ahead of non-members and of taking suitable positions with
low risk. His strategy was mainly based on small spreads in which he invested
large amount of money. Later on he was promoted to be responsible for trading
and for settlement.

Granite partners: Granite Partners lost $600 million in mortgage derivatives in
the mid-nineties. Fund managers promised their investors little risk in their invest-
ment policy since they used derivatives mainly for hedging purposes. By using
CMO derivatives they expected to take advantage of market movements. But the
disclosure emphasized that Granite had the option to wait, if need be, until mar-
ket conditions suited the funds’ position. Leveraging with CMO derivatives was
much more than what was promised. The portfolio was leveraged based on the
assumption of some in-house models. To their detriment, the bond market took
a direction that went against the funds’ positions. Since the portfolio was highly
leveraged, the losses grew tremendously and Granite was shut down.

Freddie Mac: In January 2003, PriceWaterhouseCoopers, Freddie Mac’s auditor
for less than a year, revealed that the company might have misreported some of
its derivatives trades. As a result, Freddie Mac later said that some earnings that
should have been reported in 2001 and 2002 were improperly shifted into the
future. It is not clear that the top executives were not attempting to distort the
company’s books. But recent corporate crises suggest that if someone wants to
hide something, derivatives can help (New York Times, 12 June 2003).

Lessons from these loss cases, as well as many others, are summarized in Table
7.3. Generally, the most common cause was speculation – the market moving
in directions other than presumed, the trade strategy collapsed – causing unex-
pected losses. There is little information relating to internal and external audit
and control, however, implying perhaps that in most cases management does
not realize the risk exposures they take on and thus controls end up being very
poor. There were no reports of written policies that were supposed to limit posi-
tions and losses. Had there been such policies, traders could have easily ignored
them, trusting their strategic ‘cunning and assessments’. Although these figures
were assembled from various sources, including the media, and the actual rea-
sons for such losses were varied, a distribution of the main causes for the losses
were: management, 18; poor audit or no controls, 20; wrong methods and trade
strategies applied, 21; market fluctuation (poor forecasts), 17; and, finally, frauds
and traders’ megalomania, 5. Problems associated with audit and controls are
resurging in various contexts today. For example, in the wake of multibillion-
dollar accounting scandals, companies are under intense pressure to make sure
that their financial results do not paint a misleading, rosy picture. Insurance firms
for example, are swamped with billions of dollars in corporate bonds that they
bought years ago and that are still maintained at their original value in their
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Table 7.3 Main reasons which led to losses.

Audit/ Methods/ Market Frauds/
Firm Management control strategy fluctuations megalomania

AIG + + +
Air Product + + +
Arco (Pension Fund) + + +
Askine Securities + +
Bank of America + +
Bankers Trust/

Procter and Gamble + + +
Barings PLC + + + +
Barnnet Banks + +
Cargil + + + +
Codelco (Chile) + + + +
Community Bankers + + + +
Dell Computers + + +
Gestetner + + + +
Glaxo + + + +
Harris Trust + +
Kashima Oil + + +
Kidder Peabody + + + +
Mead + +
Metalgesellschaft + + +
Granite Partners + +
Nippon Steel + +
Orange County + + + +
Pacific Horizon + + +
Piper Jaffray + + +
Sandoz + +
Showa/Shell Sekiyu + +
Salomon Brothers + +
United Services + +

books! Now, financial regulators are suggesting that they should be accounted at
their true value, which could lead many insurance firms to the brink, or at the
least to reporting huge losses and to borrowing large amounts of money to meet
their capital requirements (International Herald Tribune, 17 June 2003, Business
Section).
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APPENDIX: FIRST PASSAGE TIME∗

A first time to some state, say S (a given stock price, an exercise option price, a
given interest rate level and so on), may be defined by:

T (x0) = Inf {t > 0; x0) = x0, x(t) ≥ S}
where x0 is the initial state (at time t = 0). The ‘target state’ can be thought of as
an absorbing state. Let f (x,t) be the probability of state x at time t of a Markov
process. Thus, the probability that the passage time exceeds the current time
is:

Pr {T (x0) > t} =
S∫

−∞
f (x, t/x0) dx

As a result, the passage time probability can be written by deriving:
the Pr{T (x0) ≤ t} = 1 − Pr{T (x0) > t}, leading to the distribution function
g(S, t/x0), 0 ≤ t < ∞:

g(t) = − ∂

∂t

S∫

−∞
f (x, t/x0) dx

with the additional (existence) conditions:

g(S, t/x0) ≥ 0, ∀S, t, x0; 0 <

∞∫

0

g(S, t/x0) dt ≤ 1, ∀S, t, x0;

× Lim
x0→S

g(S, t/x0) = δ(t)

Of course, if the probability distribution f (. , .) can be found analytically, then the
stopping time distribution can be calculated explicitly in some cases. An example
to this effect is considered below, which clearly points out to some mathematical
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difficulties when analytical solutions are sought. Consider a forward Kolmogorov
(Fokker–Plank) equation (corresponding to the stochastic differential equation
with drift b(x) and diffusion a(x):

∂ f

∂t
= − ∂

∂x
[b(x) f ] + ∂2

∂x2
[a(x) f ]

which we write for convenience by the operator:

∂ f

∂t
= L f, L = − ∂

∂x
[b(x) f ] + ∂2

∂x2
[a(x) f ]

Using the fact that state S is absorbing, an expectation of the passage time can
be obtained by defining a simpler differential operator (expressed as a function
of the initial condition x0 and not of time and as we can see by the application of
Ito’s differential rule). That is to say, the Laplace transform of the passage time
distribution, defined in the terms of the initial state and the target (absorbing)
state, is defined by:

g∗
λ(S, x0) =

∞∫

0

e−λt g(S, t ; x0) dt, 0 < g∗
0(S, x0) ≤ 1, Lim

x0→S
g∗

λ(S, x0) = 1

An application of Ito’s differential rule yields the second-order differential equa-
tion:

a(x0)
d2g∗

λ

dx2
0

+ b(x0)
dg∗

λ

dx0
− λg∗

λ = 0

which we write in terms of an adjoint operator L+ by:

L+gλ = λgλ, L+ = ∂

∂x
[b(x0) f ] + ∂2

∂x2
[a(x0) f ]

If λ > 0, then the solution for gλ is necessarily bounded and is the Laplace
transform of a passage time distribution for an Ito stochastic differential equation
which is given by:

dx = b(x) dt + a(x) dw, x(0) = x0

For (a, b) constants, we have as a special case:

g∗
λ(S, x0) = exp

[
x0 − S

a2

(
−b +

√
b2 + 2λba2

)]
, a > 0, −∞ < x0 ≤ S < ∞

whose inverse transform yields the inverse Gaussian distribution:

g(S, t ; x0) = (x0 − S)√
2πa2t3

exp

[
− (S − x0 − bt)2

2a2t

]

In other words, if the decision is to sell a stock at a price S, then the probability
distribution of the time at which the stock is sold is given by g(S, t ; x0). The current
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discounted value of such a policy, however, is given by: V (S) = E(S e−Rτ ) where
E

(
e−Rτ

)
is the stopping time Laplace transform with the risk-free rate replacing

the transform’s variable. As a result, we have:

V (S) = S exp

[
x0 − S

a2

(
−b +

√
b2 + 2R f ba2

)]

For a study of first passage time problems the reader should refer to Darling and
Siegert (1953) as well as Capocelli and Ricciardi (1972) who provides the first
passage time distribution for a lognormal process as well.



CHAPTER 8

Fixed Income, Bonds and
Interest Rates

8.1 BONDS AND YIELD CURVE MATHEMATICS

Bonds are binding obligations by a bond issuer to pay the holder of the bond pre-
agreed amounts of money at future and given dates. Thus, unlike stocks, bonds
have payouts of known quantities and at known dates. Bonds are important instru-
ments that make it possible for governments and firms to raise funds now against
future payments. They are considered mostly safe investments, although they can
be subject to default and their dependence on interest rates affect their price. As a
result, although the nominal values of bonds are known, their price is derived from
underlying interest rates. There are as well many types of bonds, designed to meet
investors’ needs, firms and governments’ needs and payment potential when rais-
ing capital and funds. For example, there are zero-coupon bonds, coupon-bearing
bonds paid at discrete irregular and regular time intervals, there are floating rate
bonds, fixed rate bonds, repos (involving a repurchase agreement at some future
date and at an agreed-on price). There are also strips bonds (meaning Separate
Trading of Registered Interest and Principal of Securities) in which the coupon
and the principal of normal bonds are split up, creating an artificial zero-coupon
bond of longer maturity. There are options on bonds, bonds with call provisions
allowing their recall prior to redemption etc.

Bond values express investors’ ‘impatience’ measured by the rate of interest
(discount) used in determining their value. When a bond is totally risk-free, the
risk-free rate (usually the Treasury Bills rate of the US Government) is used.
When a bond is also subject to various sources of uncertainties (due to interest-
rate processes, due to defaults, inflation etc.) then a risk-sensitive discount rate
will be applied reflecting an attitude toward these uncertainties and interactions
between ‘impatience and risk’. We shall see later on that these ‘risk-sensitive
discount rates’ can also be determined in terms of the ongoing risk-free rates and
the rates term (of payments and time) structure.

Bond market sizes and trades dwarf all other financial markets and provide
therefore a most important source and fundamental information for the valuation
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of financial assets in general and the economic health of nations and firms. Rated
bonds made by financial agencies, such as Standard and Poors, Moody’s and their
like, are closely watched indicators that have a most important impact on both
firm’s equity value and governments’ liquidity.

In this chapter, essential elements of bond valuation and bond-derived contracts
will be elaborated. Further we shall also provide an introduction to interest-rate
modelling which is equivalent to bond modelling for one reflects the other and vice
versa. It is also a topic of immense economic practical and research interest. Irv-
ing Fisher in his work on interest (1906, 1907, 1930) gave the first modern insight
into the market interest rate as a balance between agents’ impatience (and atti-
tude towards time) and the productivity (returns) of capital (investments). These
studies were performed in the spirit of a general equilibrium theory whose foun-
dations were posed by Walras in his Elements d’Economie Politique Pure in 1874.
Subsequent economic studies (Arrow, 1953) have introduced uncertainty in equi-
librium theory based on this approach. A concise review can be found for example
in Magill and Quinzzi (1996). Subsequent studies have formalized both the theory
of interest rates and its relation to time (the term structure of interest rates) as well
as model the exogenous and endogenous sources of uncertainty in interest rates
evolution. These studies are of course of paramount importance and interest for
bond pricing, whether they are risk-free or default-prone (as it is the case for some
corporate bonds). When a bond is risk-free then of course we use the risk-free rate
associated with the time of payment. However, since interest rates may vary over
time, the bond ‘productivity or yield’ may shift in various ways (according to the
uncertain evolution of interest rates as well as the demand by borrowers and the
supply by lenders), which renders the risk-free rate time-varying. When bonds are
subject to default of various types, risks are compounded, affecting thereby the dis-
count rate applied to the payment of bonds (and thus the bond price). In this sense,
the study and the valuation of bonds is imbued with uncertainty and the risks it
generates.

In this chapter we introduce some basic notions for the valuation of bonds. We
consider rated bonds, with and without default, with reliable and unreliable rating,
for which a number of results and examples will be treated. These results are kept
simple except in some cases where over-simplification can hide some important
aspects in bond valuation. In such cases we ‘star’ the appropriate section. In
addition a number of results regarding options on bonds, the use of bonds to
value the cash flows of corporate rated firms (such as computing ‘net present
values’ of investment projects by such firms etc.) are derived.

Bond markets are, as stated above, both extremely large and active. By far,
the most-traded bonds are Treasury bills. These are zero-coupon bonds with a
maturity of less than one year. Treasury bills are issued in increments of $5 000
above a minimum amount of $10 000. In economic journals, T-bills are quoted
by their maturity, followed by a price expressed by the bank discount yield.
Below some simple examples are treated to appreciate both the simplicity and the
complexity of bond valuation. At the same time, we shall elaborate on a broad
number of transactions that can be valued using the bond terminology.
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8.1.1 The zero-coupon, default-free bond

A zero coupon bond consists in an obligation to pay at a given future date T
(the maturity date), a certain amount of money (the bond nominal value). For
simplicity, let this amount be $1. The price of such a bond at a given time t ,
B(t, T ), denotes the current price of a dollar payment at time T . The value of this
bond is essentially a function of:

(i) the time to payment or τ = T − t and
(ii) the discount factor used at t for a payment at T or, equivalently, it is expressed

in terms of the bond yield, denoted by y(t, T ).

In other words, the value of a bond can be written in terms of these variables by:

B(t, T ) = V (y(t, T ), τ ); τ = T − t ;
∂V (y(t, T ), τ )

∂y
< 0,

∂V (y(t, T ), τ )

∂τ
< 0

Note that the larger the amount of time left to payment (the bond redemption
time) the smaller the bond price (explaining its negative derivative). Further, the
larger the discount factor-yield at time t , the smaller the value of the bond (see
Figure 8.1).

The definition of a bond’s price and its estimation is essential for financial
management and mathematics. The behaviour of such a value and its proper-
ties underlies the process of interest-rate formation and vice versa, interest-rate
processes define the value of bonds. Some obvious properties for bond values are:

B(t, t) = 1; Lim
(T −t)→∞

B(t, T ) = 0; B(s ′, s) > B(s ′′, s) if s ′′ > s ′

In other words, a bond paid instantly equals its nominal value, while a bond
redeemed at infinity is null. Finally, two similar bond payouts, with one bond due
before the other, imply that the one is worth more than the other. Thus, to value a
bond, we need to express the time preference for money by the yield, representing

B(t,T)

0 t T

B(0,t)

B(T,T)

T-t

Figure 8.1
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the effective bond discount rate y(t, T ) at time t associated with a payment T − t
periods later. The yield is one of the important functions investors and speculators
alike seek to define. It is used by economists to capture the overall movement
of interest rates (which are known as ‘yields’ in Wall Street parlance). There are
various interest rates moving up and down, not necessarily in unison. Bonds of
various maturities may move independently with short-term rates and long-term
rates often moving in opposite directions simultaneously. The overall pattern of
interest-rate movement – and what it means about the future of the economy and
Wall Street – are the important issues to reckon with. They are thus like tea leaves,
only much more reliable if one knows how to read them. Ordinarily, short-term
bonds carry lower yields to reflect the fact that an investor’s money has less risk.
The longer our cash is tied up, the theory goes, the more we should be rewarded for
the risk taken. A normal yield curve, therefore, slopes gently upward as maturities
lengthen and yields rise. From time to time, however, the curve twists itself into
a few recognizable shapes, each of which signals a crucial, but different, turning
point in the economy. When those shapes appear, it is often time to alter one’s
assumptions about economic growth.

In discrete time, the value of a bond is given by discounting the future payout
over the remaining period of time using the yield associated to the payment to
be received. Of course, we can also calculate the yield as a function of the bond
price and its time to maturity. This is done when data regarding bond values are
more readily available than yields. For a discrete time bond, it would be written
as follows:

B(t, T ) = [1 + y(t, T )]−(T −t) or y(t, T ) = 1 − [B(t, T )]−1/T −t

while in continuous time, it is written as follows:

B(t, T ) = e−y(t,T )(T −t) or y(t, T ) = − ln(B(t, T ))

(T − t)

In other words, the yield and the bond are priced uniquely – one reflecting the
other and vice versa. If this were not the case, then markets would be incomplete
and ‘bond arbitrageurs’, for example, would identify such situations and profit
from the ‘mis-pricing’ of bonds. For example, say that a bond paying $1 in 2
years has a current market value of 0.85. Thus, the yield is found by solving the
following equation:

0.85 = [1 + y(0, 2)]−2 and therefore the yield is y(0, 2)

=
√[

1

0.85

]
− 1 = 0.08455

In this case, the bond has a return of 8.455 %. If risk-free interest rates for the same
period are 9 %, then clearly it is economically appealing to use the difference in
interest rates to make money.
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8.1.2 Coupon-bearing bonds

Pure discount bonds such as the above are one of the ‘building blocks’ of finance
and can be used to evaluate a variety of financial instruments. For example, if a
default-free bond pays a periodic payment of $c (the coupon payment) as well as
a terminal nominal payment F at time T (the bond face value at maturity), then
its price can be expressed in terms of zero-coupon bonds. Its value would be:

Bc(t, T ) = c
T −1∑

k=t+1

B(t, k) + FB(t, T )

The same value expressed in terms of the yield will be, of course:

Bc(t, T ) = c
T∑

k=t+1

[
1

1 + y(t, k)

]k−t

+ F
1

[1 + y(t, T )]T −t

For example, a bond whose face value is $1000, with a coupon payout of $50
yearly with a 9 % interest rate has a current value of $713.57. By the same token,
another bond whose current price is $800 and has the same properties (payout
and face value) has a yield which is necessarily smaller than putting money in the
bank and collecting money at the risk-free rate of 9 %.

Valuation in continuous time yields the following equation:

Bc(t, T ) = c

T∫

t

B(t, τ ) dτ + F B(t, T ) or as yields

Bc(t, T ) = c

T∫

t

e−y(t,τ−t)(τ−t) dτ + F e−y(t,T )(T −t)

Mortgage payments, debt payment of various forms and sorts, investments
yielding a fixed income etc. can be written in terms of bonds (assuming all pay-
ments to be default-free). In some cases, such as reverse mortgage, one may have
to be careful in using bonds for the valuation of a financial contract. For exam-
ple, in reverse mortgage, the bank would assume the responsibility of paying a
fixed amount, say c, every month to a homeowner, as long as he lives. At death
(which is a random time) the bank would ‘at last’ take ownership of the home.
The value of the bond, thus, equals a coupon payout made for a random amount
of time while receiving at the final random time (when the homeowner passes
away) an amount equalling the home (random) value. These situations, of course,
render the valuation of such contracts more difficult. What may seem at first a
profitable contract may turn out to be disastrous subsequently. For this reason,
considerable attention is devoted to these situations so that an appropriate pricing
procedure and protection (hedging) may be structured. If sources of uncertainty
can be determined in a fairly reliable manner, we can at least write the value of the
bond equation in terms of these uncertain ingredients and proceed to numerical
or simulation techniques to obtain a solution, providing that we can equate these
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Table 8.1 Term structure interest rates (source: ECB, 2000).

1 year 2 years 3 years 4 years 5 years

y(0, t) 0.0527 0.053 0.0537 0.0543 0.0551
y(1, t) — 0.0533 0.0542 0.0548 0.0557
y(2, t) — — 0.0551 0.0556 0.0565
y(3, t) — — — 0.0561 0.0572
y(4, t) — — — — 0.0583

values to some replicating risk-free portfolio that would allow calculation of the
appropriate discount rate. Additional problems are met when we introduce rated
bonds, default bonds, junk bonds etc., as we shall see subsequently.

Example
Consider a coupon-paying bond with a payout of $100 a year for 4 years at the
end of which the principal of $1000 is redeemed. The current yield is found and
given in Table 8.1. On the basis of this information, we are able to calculate the
current bond price. Namely, assuming that this is a default-free bond, the bond
price is:

B100(0, 5) = 100
4∑

k=1

[
1

1 + y(0, k)

]k

+ 1000
1

[1 + y(0, 5)]5

Table 8.1 provides the yields at and for various periods. Yields are calculated
by noting that if there is no arbitrage then a dollar invested at time ‘0’ for t periods
should have the same value as a dollar invested for s periods and then reinvested
for the remaining t − s periods. In other words, in complete markets, when there
can be no arbitrage profit, we have:

[1 + y(0, t)]t = [1 + y(0, s)]s [1 + y(s, t)]t−s and

y(s, t) =
(

[1 + y(0, t)]t

[1 + y(0, s)]s

)1/(t−s)

− 1

Thus, yields y(0, t) provide all the information needed to calculate the bond
current price. Say that we are currently in the year 2000. This means that we have
to insert the term structure rates of year 2000 in our equation in order to calculate
the current bond price, or:

B100(0, 5) = 100





1

(1 + 0.0527)
+ 1

(1 + 0.053)2
+

+ 1

(1 + 0.0537)3
+ 1

(1 + 0.0543)4





+ 1100
1

(1 + 0.0551)5
= 1192.84
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To determine the price a period hence, the appropriate table for the rates term
structure will have to be used. If we assume no changes in rates, then the bond
value is calculated by:

B100(1, 5) = 100
4∑

k=1

[
1

1 + y(1, k)

]k

+ 1000
1

[1 + y(1, 5)]5 = 1155.72

which is a decline in the bond value of 1192.84 − 1155.72 = 37.12 dollars.

8.1.3 Net present values (NPV)

The NPV of an investment providing a stream of known-for-sure payments over a
given time span can be also written in terms of zero-coupon bonds. The traditional
NPV of a payment stream C0, C1, C2, C3, . . . , Cn with a fixed risk-free discount
rate R f is:

NPV = C0 + C1

1 + R f
+ C2

(1 + R f )2
+ C3

(1 + R f )3
+ · · · + Cn

(1 + R f )n

There are some problems with this formula, however, for it is not market-
sensitive, ignoring the rates term structure and the uncertainty associated with
future payouts. If the payout is risk-free, it is possible to write each pay-
ment Ci , i = 0, 1, 2, . . . , n in terms of zero-coupon (risk-free) bonds. At time
t = 0,

NPV0 = C0 + C1 B(0, 1) + C2 B(0, 2) + C3 B(0, 3) + · · · + Cn B(0, n)

While a period later, we have:

NPV1 = C1 + C2 B(1, 2) + C3 B(1, 3) + · · · + Cn B(1, n)

with each bond valued according to its maturity. When a zero-coupon bond is
rated or subject to default (which has not been considered so far), applying a
constant discount rate to evaluate the NPV can be misleading since it might not
account for changes in interest rates over time, their uncertainty as well as the
risks associated with the bond payouts and the ability of the bond issuer to redeem
it as planned. If a bond yield is time-varying, deterministically or in a random
manner, then the value of the bond will change commensurately, altering over
time the NPV. Corporate bonds (rated by financial agencies such as Standard
and Poors, Moody’s, Fitch), the value of corporations’ cash flows must similarly
reflect the corporate rating and their associated risks. In section 8.3, we consider
these bonds and thereby provide an approach to valuing cash flows of rated
corporations as well. The net present value at time t of a corporate cash flow is
thus a random variable reflecting interest-rate uncertainty and the corporate rate
and its reliability. An appropriate and equivalent way to write the NPV (assuming
that cash payments are made for sure) using the yield y(0, i) associated with each
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zero-coupon bond with maturity i), is:

NPV(0 |�) = C0 + C1

1 + y(0, 1)
+ C2

(1 + y(0, 2))2
+ C3

(1 + y(0, 3))3
+ · · ·

+ Cn

(1 + y(0, n))n

Thus, generally, we can write a net present value at time t by:

NPV(t |�) =
n∑

i=t

Ci B(t, i) =
n∑

i=t

Ci

[1 + y(t, i)]i−t

In a similar manner, a wide variety of cash flows and expenses may be valued. The
implication of this discussion is that all cash flows, their timing and the uncertainty
associated with these flows may also be valued using ‘bond mathematics’. When
coupon payments are subject to default, we can represent the NPV as a sum
of default-prone bonds, as will be discussed later on. Similarly, if the NPV we
calculate is associated to a corporation whose debt (bond) is rated, then such
rating also affects the value of the bond and thereby the corporation’s cash flow.
Generally, bonds are used in many ways to measure asset values, to measure risks
and to provide an estimate of many contracts that can be decomposed into bonds
that can be, or are, traded.

8.1.4 Duration and convexity

‘Duration’ is a measure for exposure to risk. It expresses the sensitivity of the
bond price to (small) variations in interest rates. In other words, the duration at
time t of a bond maturing at time T , written by D(t, T ), measures the return per
unit for a move 	y in the yield, or

D(t, T ) = − 1

B(t, T )

[	B(t, T )]

	y(t, T )

For small intervals of time, we can rewrite this expression as follows:

D(t, T ) = −
[
	 log B(t, T )

]

	y(t, T )
≈ −d[log B(t, T )]

dy(t, T )

Since the bond rate of return is R(t, T ) = 	B(t, T )/B(t, T ) ≈ 	 log B(t, T ) and
	y(t, T ) is a rate move at time t , we can write:

R(t, T ) = −D(t, T ) [	y(t, T )]

In words:

Rate of returns on bonds = −(Duration) * (Yield rate move)

At time t , a zero-coupon bond maturing at time T has, of course, a duration of
T − t . For a coupon bond with payments of Ci at times ti , i = 1, . . . , n and a bond
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price yield denoted by B(0, n) and y(0, n), then (in continuous-time discounting):

B(0, n) =
n∑

i=1

Ci e−y(0,n)ti

and the duration is measured by time-weighted average of the bond prices:

D(0, n) =

n∑
i=1

Ci ti e−y(0,n)ti

n∑
i=1

Ci e−y(0,n)ti

This result can be proved by simple mathematical manipulations since:

−d(log B)

dy
= D implies −

d

(
log

n∑
i=1

Ci e−yti

)

dy
=

n∑
i=1

Ci ti e−yti

n∑
i=1

Ci e−yti

= D

While duration reflects a first-order change of the bond return with respect to its
yield, convexity captures second-order effects in yield variations. Explicitly, let
us take a second-order approximation to a bond whose value is a function of the
yield. Informally, let us write the first three terms of a Taylor series expansion of
the bond value:

B(t, y + 	y) = B(t, y) + ∂ B(t, y)

∂y
	y + 1

2

∂2 B(t, y)

∂y2
(	y)2

Dividing by the bond value, we have:

	B(t, y)

B
= 1

B

∂ B(t, y)

∂y
	y + 1

2

1

B

∂2 B(t, y)

∂y2
(	y)2

And, approximately, for a small variation in the yield of 	y, we have (replacing
partial differentiation by differences):

	B

B
= 1

B

	B

	y
	y + 1

2

1

B

	2 B

	y2
(	y)2

If we define convexity by:

ϒ(t, T ) = 1

B

	2 B

	y2

then, an expression for the bond rate of return in terms of the duration and the
convexity is:

	B

B
= −D(t, T )	y + 1

2
ϒ(t, T )(	y)2,
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or
(

Rate of
returns on bonds

)
= −(Duration) *

(
Yield

rate move

)

+ 1

2
(Convexity) *

(
Yield

rate move

)2

Thus, a fixed-income bond will lose value as the interest rate (i.e. 	y > 0) in-
creases and, conversely, it loses value when the interest decreases (i.e. 	y < 0).
For example, say that a coupon-bearing bond at time ti , i = 1, 2, 3, . . . with yield
y is given at time t by:

B(t, T ) = K e−y(T −t) +
Ci∑

i=1

e−y(ti −t)

Note that:

dB

dy
= −K (T − t) e−y(T −t) −

∑

i=1

Ci (ti − t) e−y(ti −t)

d2 B

dy2
= −K (T − t)2 e−y(T −t) −

∑

i=1

Ci (ti − t)2 e−y(ti −t)

And therefore the duration and the convexity express explicitly first- and second-
order effects of yield variation, or:

D(t, T ) = dB

Bdy
; ϒ(t, T ) = d2 B

Bdy2

Example
We consider the following bond and calculate its duration:

Actual price: 100
Nominal interest rate: 10 % (p.a.)
Buy back value: 100
Years remaining: 4
The actual market interest rate: 10 %

The duration is defined by:

Macaulay duration = − PV ′(Y )

PV (Y )
=

n∑
i=1

ti * ci * (1 + Y )−ti

n−1∑
i=1

ci * (1 + Y )−ti + (100 + ci ) * (1 + Y )−ti
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where PV′ is the derivative of PV (Y ). This means that the duration of the bond
equals:

DC
M =

[
1 * 10 000 * (1.1)−1 + 2 * 10 000 * (1.1)−2 + 3 * 10 000 * (1.1)−3 + 4 * 110 000 * (1.1)−4

]

100 000
= 3.5

If one invests in a bond at a given time and for a given period, the yield does not
represent the rate of return of such an investment. This is due to the fact that coupon
payments are reinvested at the same yield, which is not precise since yields are
changing over time and coupon payments are reinvested at the prevailing yields
when coupons are distributed. As a result, changing yield has two opposite effects
on the investor rate of return. On the one hand, an increase in the yield decreases
the bond value, as we saw earlier, while it increases the rate of return on the
coupon. These two effects cancel out exactly when the investor holds the bond
for a time period equal to its duration. Thus, by doing so, the rate of return will
be exactly the yield at the time he acquired the bond and thus his investment is
immune to changing yields. This strategy is called immunization. This strategy
is in fact true only for small changes in the yield.

Explicitly, let B(t, y) = B(t, y : T ) be the bond price at time t when the yield
is y and the maturity T . Consider another instant of time t + 	t and let the yield
at this time be equal y + 	y. In the (continuous) time interval [t, t + 	t] the
coupon payment c is reinvested continuously at the new yield and therefore the
bond values at time t and t + 	t are given by:

Time t : B(t, y)

Time t + 	t : B(t + 	t, y + 	y) +
t+	t∫

t

c e−(y+	y)(t+	t−z)dz

Thus, for immunization we require that the bond rate of return equals its current
yield, or:

y = 1

	t





B(t + 	t, y + 	y) +
t+	t∫

t
c e−(y+	y)(t+	t−z)dz − B(t, y)

B(t, y)





Since

t+	t∫

t

c e−(y+	y)(t+	t−z) dz = c

(y + 	y)

[
1 − e−(y+	y) 	t

] ≈ c 	t

and for small 	t ,

B(t + 	t, y + 	y) ≈ B(t, y + 	y) + ∂ B(t, y + 	y)

∂t
	t
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Inserting in our equation, we have:

1 + y 	t =




B(t, y + 	y) + ∂ B(t, y + 	y)

∂t
	t + c 	t

B(t, y)





and

∂ B(t + 	y)

∂t
= ∂

∂t




T∫

t

c e−(y+	y)(z−t) dz + e−(y+	y)(T −t)





= c (y + 	y)

T∫

t

e−(y+	y)(z−t) dz − c + (y + 	y) e−(y+	y)(T −t)

= (y + 	y) B − c

Replacing these terms in the previous equation, we have:

1 + y	t =
[

B(t, y + 	y) + (y + 	y) B 	t − c 	t + c 	t

B(t, y)

]

This is reduced to:

1 + y	t =
[

B(t, y + 	y)

B(t, y)

]
[1 + (y + 	y) 	t]

=
[

1 + B(t, y + 	y) − B(t, y)

B(t, y)

]
[1 + (y + 	y) 	t]

or

1 + y 	t =
[

1 + 	B

B	y
	y

]
[1 + (y + 	y) 	t]

= [1 − D(t, y)	y] [1 + (y + 	y) 	t]

Additional manipulations lead to the condition for immunization, namely that 	t
equals the duration or 	t = D(t, y) − D(t, y)(y + 	y) 	t ≈ D(t, y) and finally
for very small 	t

	t = D(t, y)

8.2 BONDS AND FORWARD RATES

A forward rate is denoted by F(t, t1, t2) and is agreed on at time t , but for payments
starting to take effect at a future time t1 and for a certain amount of time t2 − t1.
In Figure 8.2, these times are specified.

A relationship between forward rates and spot rates hinges on an arbitrage
argument. Roughly, this argument states (as we saw earlier), that two equivalent
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t1 2tt

Figure 8.2

investments (from all points of view) have necessarily the same returns. Say that
at time t we invest $1 for a given amount of time t2 − t at the available spot
rate (its yield). The price of such an investment using a bond is then: B(t, t2).
Alternatively, we could invest $1 for a certain amount of time, say t1 − t, t1 ≤ t2
at which time the moneys available will be reinvested at a forward rate for the
remaining time interval: t2 − t1. The price of such an investment will then be
B(t, t1)B f (t1, t2) where B f (t1, t2) = [1 + F(t, t1, t2)]−(t2−t1) is the value of the
bond at time t1 paying $1 at time t2 using the agreed-on (at time t) forward
rate F(t, t1, t2). Since both payments result in $1 both received at time t2 they
have the same value, for otherwise there will be an opportunity for arbitrage. For
this reason, assuming no arbitrage, the following relationship must hold (and see
Figure 8.3):

B(t, t2) = B(t, t1)B f (t1, t2) implying B f (t1, t2) = B(t, t2)

B(t, t1)

In discrete and continuous time, assuming no arbitrage, this leads to the following
forward rates:

[1 + F(t, t1, t2)]t2−t1 = [1 + y(t, t2)]t2−t

[1 + y(t, t1)]t1−t (discrete time)

F(t, t1, t2) = y(t, t2)(t2 − t) − y(t, t1)(t1 − t)

(t2 − t1)
(continuous time)

In practice, arbitrageurs can make money by using inconsistent valuations by bond
and forward rate prices. For complete markets (where no arbitrage is possible),
the spot rate (yield) contains all the information regarding the forward market
rate and, vice versa, the forward market contains all the information regarding
the spot market rate, and thus it will not be possible to derive arbitrage profits.
In practice, however, some pricing differences may be observed, as stated above,
opening up arbitrage opportunities.

 

t1 2tt

2( , )B t t

1( , )B t t 1 2( , )fB t t

Figure 8.3
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Problem
An annuity pays the holder a scheduled payment over a given amount of time
(finite or infinite). Determine the value of such an annuity using bond values at
the current time. What would this value be in two years using the current observed
rates?

Problem
What will be the value of an annuity that starts in T years and will be paid
for M years afterwards? How would you write this annuity it is terminated at
the time the annuity holder passes away (assuming that all payments are then
stopped)?

Problem
Say that we have an obligation whose nominal value is $1000 at the fixed rate
of 10 % with a maturity of 3 years, reimbursed in fine. In other words, the firm
obtains a capital of $1000 whose cost is 10 %. What is the financial value of the
obligation? Now, assume that just after the obligation is issued the interest rate
falls from 10 to 8 %. The firm’s cost of finance could have been smaller. What
is the value of the obligation (after the change in interest rates) and what is the
‘loss’ to the firm.

8.3 DEFAULT BONDS AND RISKY DEBT

Bonds are rated to qualify their standard risks. Standard and Poors, Moody’s and
other rating agencies use for example, AAA, AA, A, BB, etc. to rate bonds as
more or less risky. We shall see in section 8.4 that these rating agencies also
provide Markov chains, expressing the probabilities that rated firms switch from
one rating to another, periodically adapted to reflect market environment and the
conditions particularly affecting the rated firm (for example, the rise and fall of
the technology sector, war and peace, and their likes).

Consider a portfolio of B-rated bonds yielding 14 %; typically, these are bonds
which currently are paying their coupons, but have a high likelihood of defaulting
or have done so in the recent past. A Treasury bond of similar duration yields
5.5 %. Thus, in this example, the Junk–Treasury Spread (JTS) is 8.5 %. Now, let
us take a look at the spread’s history over the past 13 years (Jay Diamond, Grant’s
Interest Rate Observer data).

The spread depicted in Figure 8.4 corresponds roughly to a B-rated debt. Note
the very wide range of spreads, from just below 3 % to almost 10 %. What does
a JTS of 3 % mean? Very bad news for the junk buyer, because he or she will
have been better off in Treasuries if the loss rate exceeds 3 %. And even if the
loss rate is only half of that, a 1.5 % return premium does not seem adequate to
compensate for this risk. There is a wealth of data on the bankruptcy/default rate,
allowing us to evaluate whether the prevailing risk premium amounts to adequate
compensation.
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Figure 8.4 Junk–Treasury spread 1988–2000 (Jay Diamond, Grant’s Interest Rate
Observer data).

Rating agencies often use terms such as default rate and loss rate which are
important to understand. The former defines the proportion of companies default-
ing per year. But not all companies that default go bankrupt. The recovery rate
is the proportion of defaulting companies that do not eventually go bankrupt. So
a portfolio’s reduction in return is calculated as the default rate times one minus
the recovery rate: if the default rate is 4 % and the recovery rate is 40 %, then
the portfolio’s total return has been reduced by 2.4 %. The loss rate, how much
of the portfolio actually disappears, is simply the default rate minus the abso-
lute percentage of companies which recover. According to Moody’s, the annual
long-term default rate of bonds rated BBB/Baa (the lowest ‘investment grade’) is
about 0.3 %; for BB/Ba, about 1.5 %; and for B, about 7 %. But in any given year,
the default rate varies widely. Further, because of the changes in the high-yield
market that occurred 15 years ago, the pre-1985 experience may not be of great
relevance to high-yield investing today.

Prior to the use of junk bonds the overwhelming majority of speculative issues
were ‘fallen angels’, former investment-grade debt which had fallen on hard times.
But, after 1985, most high-yield securities were speculative right from their initial
offering. Once relegated to bank loans, poorly rated companies were for the first
time able to issue debt themselves. This was not a change for the better. Similar
to speculative stock IPOs, these new high-yield bond issues tended to have less
secure ‘coverage’ (based on an accounting term defined as the ratio of earnings-
before-taxes-and-interest to total interest charges) than the fallen angels of yore,
and their default rates were correspondingly higher.
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Many financial institutions hold large amounts of default-prone risky bonds
and securities of various degrees of complexity in their portfolios that require a
reliable estimate of the credit exposure associated with these holdings. Models of
default-prone bonds fall into one of two categories: structural models and reduced-
form models. Structural models specify that default occurs when the firm value
falls below some explicit threshold (for example, when the debt to equity ratio
crosses a given threshold). In this sense, default is a ‘stopping time’ defined by the
evolution of a representative stochastic process. Merton (1974) first considered
such a problem; it was studied further by many researchers including Black and
Cox (1976), Leland (1994), and Longstaff and Schwartz (1995). These models
determine both equity and debt prices in a self-consistent manner via arbitrage,
or contingent-claims pricing. Equity is assumed to possess characteristics similar
to a call option, while debt claims have features analogous to claims on the firm’s
value. This interpretation is useful for predicting the determinants of credit-spread
changes, for example.

Some models assume as well that debt-holders get back a fraction of the debt,
called the recovery ratio. This ratio is mostly specified a priori, however. While this
is quite unrealistic, such an assumption removes problems associated to the debt
seniority structure, which is a drawback of Merton’s (1974) model. Some authors,
for example, Longstaff and Schwartz (1995), argue that, by looking at the history
of defaults and recovery ratios for various classes of debt of comparable firms, one
can find a reliable estimate of the recovery ratio. Structural models are, however,
difficult to use in valuing default-prone debt, due to difficulties associated with
determining the parameters of the firm’s value process needed to value bonds.
But one may argue that parameters could always be retrieved from market prices
of the firm’s traded bonds. Further, they cannot incorporate credit-rating changes
that occur frequently for default-prone (risky) corporate debts.

Many corporate bonds undergo credit downgrades by credit-rating agencies
before they actually default, and bond prices react to these changes (often brutally)
either in anticipation or when they occur. Thus, any valuation model should
take into account the uncertainty associated with credit-rating changes as well as
the uncertainty surrounding default and the market’s reactions to such changes.
These shortcomings make it necessary to look at other models for the valuation of
defaultable bonds and securities that are not predicated on the value of the firm and
that take into account credit-rating changes. For example, a meltdown of financial
markets, wars, political events of economic importance are such cases, where the
risk is exogenous (rather than endogenous). This leads to reduced-form models.

The problem of rating the credit of bonds and credit markets is in fact more
difficult than presumed by analytical models. Information asymmetries compound
these difficulties. Akerlof in his 2001 Nobel allocution pointed to these effects
further.

A bank granting a credit has less information than the borrower, on his actual default risk. . . . On
the same token, banks expanding into new, unknown markets are at a particular risk. On the
one hand, due to their imperfect market knowledge, they must rely on the equilibrium between
supply and demand to a large extent. On the other hand, under asymmetric information, it is very
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Value

Time

Default level

Figure 8.5 Structural models of default.

easy for clients to hide risks and to give too optimistic profit estimates, possibly approaching
fraud in extreme cases. Adverse selection then implies a markedly increased default risk for
such banks. Banks can use interest rates and additional security as instruments for screening
the creditworthiness of clients when they estimate that their information is insufficient. Credit
risk and pricing models, of course, are complementary tools. Based on information provided
by the client, they produce risk-adjusted credit spreads and thus may set limits to the principle
of supply and demand. On the other hand, borrowers with a credit rating may use this rating to
signal the otherwise private information on their solvency, to the bank. In exchange, they expect
to receive better credit conditions than they would if the bank could only use information on
sample averages.

Technically, the value process is defined in terms of a stochastic process {x, t ≥ 0}
while default is defined by the first time τ (the stopping time) the process reaches
a predefined threshold-default level. In other words, let the threshold space be �,
then:

τ = Inf {t > 0, x(t) /∈ �}
where � is used to specify the set of feasible states for an operating firm. As soon
as the firm’s value is out of these states, default occurs.

Reduced-form models specify the default process explicitly, interpreting it as
an exogenously motivated jump process, usually expressed as a function of the
firm value. This class of models has been investigated, for example by Jarrow
and Turnbull (1995), Jarrow et al. (1997) and others. Although these models
are useful for fitting default to observed credit spreads, they mostly neglect the
underlying value process of the firm and thus they can be less useful when it is
necessary to determine credit spread variations. Jarrow et al. (1997) in particular
have adopted the rating matrix used by financial institutions such as Moody’s,
Standard and Poors and others as a model of credit rating (as we too shall do in
the next section).

Technically, default is defined exogenously by a random variable T̃ where
t < T̃ < T , with T , the bond expiry date. The conditional probability of default
is assumed given by:

P(T̃ ∈ (t + dt)
∣∣t < T̃ < T ) = q(x) dt + 0(dt)
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Jump time
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Figure 8.6 Reduced-form models default.

This means that the conditional probability of default q in a small time interval (t +
dt), given that no default has occurred previously, is a function of an underlying
stochastic process {x, t ≥ 0}. If the probability q is independent of the process
{x, t ≥ 0}, this implies that the probability of default is of the exponential type.
That is to say, it implies that at each instant of time, the probability of default
is time-independent and independent of the underlying economic fundamentals.
These are very strong assumptions and therefore, in practice, one should be very
careful in using these models.

A comparison between structural and reduced-form models (see Figure 8.6) is
outlined in Table 8.2. Selecting one model or the other is limited by the underlying
risk considered and the mathematical and statistical tractability in applying such
a model. These problems are extensively studied, as the references at the end of
the chapter indicate.

A general technical formulation, combining both structural and reduced-form
models leads to a time to default we can write by Min(τ, T̃ , T ) where T is the
maturity reached if no default occurs, while exogenous and endogenous default
are given by the random variables (τ, T̃ ). If the yield of such bonds at time t for a
payout at s is given by, Y (t, s) ≡ y(τ, T̃ , s), the value of a pure default-prone bond
paying $1 at redemption is then E exp(−Y (t, T ) Min(τ, T̃ , T )). Of course if there
was no default, the yield would be y(t, s) and therefore Y (t, s) > y(t, s) in order
to compensate for the default risk. The essential difficulty of these problems
is to determine the appropriate yield which accounts for such risks, however.
For example, consider the current value of a bond retired at Min(τ, T̃ , T ) and
paying an indexed coupon payout indexed to some economic variable or economic
index (inflation, interest rate etc.). Uncertainty regarding the coupon payment, its
nominal value and the bond default must then be appropriately valued through
the bond yield.

When a bond is freely traded, the coupon payment can also be interpreted as
a ‘bribe’ paid to maintain bond holding. For example, when a firm has coupon
payments that are too large, it might redeem the bond (provided it incurs the costs
associated with such redemption). By the same token, given an investor with
other opportunities, deemed better than holding bonds, it might lead the investor
to forgo future payouts and principal redemption, and sell the bond at its current
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Table 8.2 A comparison of selected models.

Model Advantages Drawbacks

Merton
(1974)

Simple to implement. (a) Requires inputs about the firm
value.

(b) Default occurs only at debt
maturity.

(c) Information about default and
credit-rating changes cannot be
used.

Longstaff
and Schwartz
(1995)

(a) Simple to implement.
(b) Allows for stochastic term

structure and correlation between
defaults and interest rates.

(a) Requires inputs related to the
firm value.

(b) Information in the history of
defaults and credit-rating
changes cannot be used.

Jarrow, Lando,
and Turnbull
(1997)

(a) Simple to implement.
(b) Can match exactly existing prices

of default-risky bonds and thus
infer risk-neutral probabilities for
default and credit-rating changes.

(c) Uses the history of default and
credit-rating change.

(a) Correlation not allowed between
default probabilities and the
level of interest rates.

(b) Credit spreads change only
when credit ratings change.

Lando
(1998)

(a) Allows correlation between default
probabilities and interest rates.

(b) Allows many existing
term-structure models to be easily
embedded in the valuation
framework.

Historical probabilities of defaults
and credit-rating changes are used
assuming that the risk premiums due
to defaults and rating changes, is
null.

Duffie and
Singleton
(1997)

(a) Allows correlation between default
probabilities and the level of
interest rates.

(b) Recovery ratio can be random and
depend on the pre-default value of
the security.

(c) Any default-free term-structure
model can be accommodated, and
existing valuation results for
default-free term-structure models
can be readily used.

Information regarding credit-rating
history and defaults cannot be used.

Duffie and
Huang
(1996) (swaps)

(a) Has all the advantages of Duffie
and Singleton.

(b) Asymmetry in credit qualities is
easily accommodated.

(c) ISDA guidelines for settlement
upon swap default can be
incorporated.

(a) Information regarding
credit-rating history and defaults
cannot be used.

(b) Computationally difficult to
implement for some swaps, such
as cross-currency swaps, if
domestic and foreign interest
rates are assumed to be random.
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market value. The number of cases we might consider is very large indeed, but
only a few such cases will be considered explicitly here.

Structural and reduced-form models for valuing default-prone debt do not in-
corporate financial restructuring (and potential recovery) that often follows de-
fault. Actions such as renegotiating the terms of a debt by extending the maturity
or lowering/postponing promised payments, exchanging debt for other forms of
security, or some combination of the above (often being the case after default),
are not considered. Similarly, institutional and reorganization features (such as
bankruptcy) cannot be incorporated in any of these models simply. Further, an-
ticipated debt restructurings by the market is priced in the value of a defaultable
bond in ways that none of these models captures. In fact, many default-prone se-
curities are also thinly traded. Thus, a liquidity premium is usually incorporated
into these bond prices, hiding their risk of default. Finally, empirical evidence for
these models is rather thin. Duffie and Singleton (1997, 1999) find that reduced-
form models have problems explaining the observed term structure of credit
spreads across firms of different credit qualities. Such problems could arise from
incorrect statistical specifications of default probabilities and interest rates or
from models’ inability to incorporate some of the features of default/bankruptcy
mentioned above. Bond research, just like finance in general, remains therefore
a domain of study with many avenues to explore and questions that are still far
from resolved.

8.4 RATED BONDS AND DEFAULT

The potential default of bonds and changes in rating are common and outstanding
issues to price and reckon with in bonds trading and investment. They can occur
for a number of reasons, including some of the following:

(1) Default of the payout or default on the redemption of the principal.
(2) Purchasing power risk arising because inflationary forces can alter the value

of the bond. For example, a bond which is not indexed to a cost of living
index may in fact generate a loss to the borrower in favour of the lender
should inflation be lower than anticipated thereby increasing the real or
inflation-deflated payments.

(3) Interest-rate risk, resulting from predictable and unpredictable variations in
market interest rates and therefore the bond yield.

(4) Delayed payment risk, and many other situations associated with the finan-
cial health of the bond issuer and its credit reliability.

These situations are difficult to analyse but rating agencies specializing in the anal-
ysis and the valuation of financial assets provide ratings to nations and corporate
entities that are used to price bonds. These agencies provide explicit matrices
that associate to various bond classes (AAA, AA, B etc.) probabilities (a Markov
chain) of remaining in a given class or switching to another (higher or lower) risk
(rating) class. Table 8.3 shows a scale of ratings assigned to bonds by financial
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Table 8.3 Ratings.

Moody’s S&P Definition

Aaa AAA Highest rating available
Aa AA Very high quality
A A High quality
Baa BBB Minimum investment grade
Ba BB Low grade
B B Very speculative
Caa CCC Substantial risk
Ca CC Very poor quality
C D Imminent default or in default

firms services (Moody’s, Standard and Poors etc.) that start from the best qual-
ity to the lowest. In addition to these ratings, Moody’s adds a ‘1’ to indicate a
slightly higher credit quality; for instance, a rating of ‘A1’ is slightly higher than
a rating of ‘A’ whereas ‘A3’ is slightly lower. S&P ratings may be modified by the
addition of a ‘+’ or ‘−’ (plus or minus). ‘A+’ is a slightly higher grade than ‘A’
and ‘A−’ is slightly lower. Occasionally one may see some bonds with an ‘NR’
in either Moody’s or S&P. This means ‘not rated’; it does not necessarily mean
that the bonds are of low quality. It basically means that the issuer did not apply
to either Moody’s or S&P for a rating. Government agencies are a good example
of very high quality bonds that are not rated by S&P. Other things being equal,
the lower the rating, the higher the yield one can expect. Insured bonds have the
highest degree of safety of all non-government bonds. Bond insurance agencies
guarantee the payment of principal and interest on the bonds they have insured
(since insurance reduces the bond’s risk). When bonds are insured by one of the
major insurance agencies, they automatically attain ‘AAA’ rating, identifying the
bond as one of the highest quality one can buy. Some of the major bond insurers
are AMBAC, MBIA, FGIC and FSA. In such circumstances, bonds have almost
no default risk.

The Moody’s rating matrix shown in Table 8.4 is an example. For AAA bonds,
the probability that it maintains such a rating is .9193 while there is a .0746
probability that the bond rating is downgraded to a AA bond and so on for
remaining values. These matrices are updated and changed from time to time as
business conditions change. Given these matrices we observe that even a triple
AAA bond is ‘risky’ since there is a probability that it be downgraded and its
price reduced to reflect such added risk.

In some cases, the price of downgrading the credit rating of a firm can be much
larger than presumed. For example, buried in Dynegy Inc.’s. annual report for
2001 is a ‘$301 million paragraph’. The provision is listed on page 28 of a 114-
page document is the only published disclosure showing that Dynegy will have
to post that much collateral if the ratings of its Dynegy Holdings Inc. unit are cut
to junk status, or below investment grade. Debtors like Dynegy, WorldCom Inc.
and Vivendi Universal SA are obligated to pay back billions of dollars if their
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Table 8.4 A typical Moody’s rating matrix.

AAA AA A BBB BB B CCC D NR

AAA 91.93 % 7.46 % 0.48 % 0.08 % 0.04 % 0.00 % 0.00 % 0.00 % —

AA 0.64 % 91.81 % 6.76 % 0.60 % 0.06 % 0.12 % 0.03 % 0.00 % —

A 0.07 % 2.27 % 91.69 % 5.12 % 0.56 % 0.25 % 0.01 % 0.04 % —

BBB 0.04 % 0.27 % 5.56 % 87.88 % 4.83 % 1.02 % 0.17 % 0.24 % —

BB 0.04 % 0.10 % 0.61 % 7.75 % 81.48 % 7.90 % 1.11 % 1.01 % —

B 0.00 % 0.10 % 0.28 % 0.46 % 6.95 % 82.80 % 3.96 % 5.45 % —

CCC 0.19 % 0.00 % 0.37 % 0.75 % 2.43 % 12.13 % 60.45 % 23.69 % —

D 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 100.00 % —

credit ratings fall, their stock drops or they fail to meet financial targets. Half of
these so-called triggers have not been disclosed publicly, according to Moody’s
Investors Service Inc., which has been investigating the presence of such clauses
since the collapse of the Enron Corp. (International Herald Tribune, May 9 May
2002, p. 15). In other words, in addition to a corporation’s rating, there are other
sources of information, some revealed and some hidden, that differentiate the
value of debt for such corporations, even if they are equally rated. In other words,
their yield may not be the same even if they are equally rated. The rating of bonds
is thus problematic, although there is an extensive insurance market for bonds
that index premiums to the bond rating. A dealer’s quotes in Moody’s provides,
for example, an estimate of insurance costs for certain bonds (determined by the
swap market), some of which are reproduced in Table 8.5. The premium paid
varies widely, however, based on both the rating and the perceived viability of the
company whose bond is insured.

Table 8.5 Date-Moody’s, 20 May 2002.

Premium cost per Moody’s Senior
Company $M for 5 years Debt Rating

Merrill Lynch 10 000 Aa3
Lehman Brothers 9 500 A2
American Express 8 000 A1
Bear Stearns 7 500 A2
Goldman Sachs 6 500 A1
GE Capital 6 500 Aaa
Morgan Stanley 6 500 Aa3
JP Morgan Chase 6 500 Aa3*
AIG 5 300 Aaa
Citigroup 4 000 Aa1*
Bank of America 4 000 Aa2*
Bank One 3 500 Aaa
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The valuation of rated bonds is treated next by making some simplifying as-
sumptions to maintain an analytical and computational tractability, and by solving
some problems that highlight approaches to valuing rated bonds. Rating can only
serve as a first indicator to future default risk. Good accounting, information
(statistical and otherwise) and economic analyses are still necessary.

8.4.1 A Markov chain and rating

Consider first a universe of artificial (and in fact non-existing) coupon-bearing
rated bonds with a payment of a dollar fraction �i at maturity T , depending on
the rating of the bond at maturity. Risk is thus induced only by the fraction 1 − �i

lost at maturity. Further, define the bond m-ratings matrix by a Markov chain [pij]
where

0 ≤ pij ≤ 1,

m∑

j=1

pij = 1

denotes the objective transition probability that a bond rated i in a given period
will be rated j in the following one. Discount factors are a function of the rating
states, thus a bond rated i has a spot (one period) yield Rit , Rit ≤ R jt for i < j
at time t . As a result, a bond rated i at time t and paying a coupon cit at this time
has, under the usual conditions, a value given by:

Bi,t = cit +
m∑

j=1

pij

1 + R jt
B j,t+1; Bi,T = �i , i = 1, 2, 3, . . . , m

Note that the discount rate R jt is applied to a bond rated j in the next period.
For example, for an ‘imaginary’ rated bond A and D only, each with (short-
term) yields (RAt , RDt ) at time t and a rating matrix specified by the transition
probabilities, [pij]; i, j = A, D, we have:

BA,t = cA,t +
[

pAA

1 + RAt
BA,t+1 + pAD

1 + RDt
BD,t+1

]
; BA,T = �A = 1

BD,t = cD,t +
[

pDA

1 + RAt
BA,t+1 + pDD

1 + RDt
BD,t+1

]
; BD,T = �D

where (cA,t , cD,t ) are the payouts associated with the bond rating and (�A, �D)
are the bond redemption values at maturity T , both a function of the bond rating.
In other words, the current value of a rated bond equals current payout plus the
expected discount value of the bond rated at all classes, using the corresponding
yield for each class at time t + 1. Of course, at the terminal time, when the bond
is due (since there is not yet any default), the bond value equals its nominal value.
If at maturity the bond is rated A, it will pay the nominal value of one dollar
(�A = 1) while if it is rated D, it will imply a loss of 1 − �D for a bond rated
initially A. If we define D as a default state (i.e. where the bondholder cannot
recuperate the bond nominal value), the �D can be interpreted as the recuperation
ratio. Of course, we can assume as well �D = 0 as will be the case in a number
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of examples below. In vector notation we have:

[
BA,t

BD,t

]
=

[
cA,t

cD,t

]
+





pAA

1 + RAt

pAD

1 + RDt

pDA

1 + RAt

pDD

1 + RDt





[
BA,t+1

BD,t+1

]
;

[
BA,T

BD,T

]
=

[
�A

�D

]
;

where �i is the nominal value of a bond rated i at maturity. And generally, for an
m-rated bond,

Bt= ct + Ft Bt+1, BT = L

Note that the matrix Ft has entries [pij/(1 + R jt )] and L is a diagonal matrix of
entries �i , i = 1, 2, . . . , m. For a zero-coupon bond, we have:

Bt =
T∏

k=t

FkL.

By the same token, rated bonds discounts qit = 1/(1 + Rit ) are found by solving
the matrix equation:





q1t

q2t

...

...

qmt



 =





p11 B1,t+1 p12 B2,t+1 ... ... p1m Bm,t+1

p21 B1,t+1 p22 B2,t+1 p2m Bm,t+1

...

...

pm1 B1,t+1 pm2 B2,t+1 pmm Bm,t+1





−1 



B1,t − c1t

B2,t − c2t

...

...

Bm,t − cmt





where at maturity T , Bi,T = �i . Thus, in matrix notation, we have:

q̄t = �−1
t+1 (Bt−ct )

Note that one period prior to maturity, we have: q̄T −1 = �−1
T (BT −1−cT −1) where

�T is a matrix with entries pij B j,T = pij� j . For example, for the two-ratings bond,
we have:

B1,t = c1t + q1t p11 B1,t+1 + q2t p12 B2,t+1; B1,T = �1

B2,t = c2t + q1t p21 B1,t+1 + q2t p22 B2,t+1; B2,T = �2

Equivalently, in matrix notation, this is given by:
[

q1t

q2t

]
=

[
p11 B1,t+1 p12 B2,t+1

p21 B1,t+1 p22 B2,t+1

]−1 [
B1,t − c1t

B2,t − c2t

]

In this sense the forward bond price can be calculated by the rated bond discount
rate and vice versa.

Example
We consider the matrix representing a rated bond supplied by Moody’s (Table 8.6).
The discount rates Ri , i = AAA, . . . , D for each class and the corresponding
coupon payments are given in Table 8.7. For example, the discount rate of an
AAA bond is 0.06 yearly while that of a BBB bond is 0.1. In addition, the AAA-
rated bond has a coupon paying $1, while if it were rated BB its coupon payment
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Table 8.6

AAA AA A BBB BB B CCC D

AAA 0.9193 0.0746 0.0048 0.0008 0.0004 0 0 0

AA 0.0064 0.9181 0.0676 0.006 0.0006 0.0012 0.0003 0

A 0.0007 0.0227 0.9169 0.0512 0.0056 0.0025 0.0001 0.0004

BBB 0.0004 0.0027 0.0556 0.8788 0.0483 0.0102 0.0017 0.0024

BB 0.0004 0.001 0.0061 0.0775 0.8148 0.079 0.0111 0.0101

B 0 0.001 0.0028 0.0046 0.0695 0.828 0.0396 0.0545

CCC 0.0019 0 0.0037 0.0075 0.0243 0.1213 0.6045 0.2369

D 0 0 0 0 0 0 0 1

would have to be $1.4. In this sense, both the size of the coupon and the discount
applied to the rated bond are used to pay for the risk associated with the bond. The
bond nominal value is $100 with a lifetime of ten years. An elementary program
will yield then the following bond value, shown above for each class at each year
till the bond’s redemption. For example, initially, the premium paid for a AAA
bond compared to a AA one is (63.10−58.81) = $4.29. At the end of the fifth
year, however, the AAA–AA bond price differential is only 82.59–80.11 = $2.48.
In fact, we note that the smaller the amount of time left to bond redemption, the
smaller the premium.

8.4.2 Bond sensitivity to rates – Duration

For the artificial rated bond considered above, we can calculate the duration
of a rated bond through the rated bond sensitivity to the yields of each rating.
For simplicity, assume that short yields are constants and calculate the partial
derivatives for a bond rated A or D only. In this case, we seek to calculate the
partials:

[
∂ BA,t

∂ RA
,
∂ BA,t

∂ RD
,
∂ BD,t

∂ RA
,
∂ BD,t

∂ RD

]
,

∂ BA,t

∂ RA
= − pAA

(1 + RA)2 BA,t+1+ pAA

1 + RA

∂ BA,t+1

∂ RA
+ pAD

1 + RD

∂ BD,t+1

∂ RA
;
∂ BA,T

∂ RA
= 0

∂ BA,t

∂ RD
=

[
pAA

1 + RA

∂ BA,t+1

∂ RD
− pAD

(1 + RD)2 BD,t+1+ pAD

1 + RD

∂ BD,t+1

∂ RD

]
;
∂ BA,T

∂ RD
= 0

∂ BD,t

∂ RA
=

[
− pDA

(1 + RA)2 BA,t+1 + pDA

1 + RA

∂ BA,t+1

∂ RA
+ pDD

1 + RD

∂ BD,t+1

∂ RA

]
;
∂ BD,T

∂ RA
= 0

∂ BD,t

∂ RD
=

[
pDA

1 + RA

∂ BA,t+1

∂ RD
− pDD

(1 + RD)2 BD,t+1 + pDD

1 + RD

∂ BD,t+1

∂ RD

]
;
∂ BD,T

∂ RD
= 0
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We can write in vector notation a system of six simultaneous equations given by:

Γt =
[

BA,t , BD,t ,
∂ BA,t

∂ RA
,
∂ BA,t

∂ RD
,
∂ BD,t

∂ RA
,
∂ BD,t

∂ RD

]
;

where Γt = Ct + ΦΓt+1,ΓT = [�A, �D, 0, 0, 0, 0] ; Ct = [cA, cD, 0, 0, 0, 0]

Φ =





pAA

1 + RA

pAD

1 + RD
0 0 0 0

pDA

1 + RA

pDD

1 + RD
0 0 0 0

− pAA

(1 + RA)2 0
pAA

1 + RA
0

pAD

1 + RD
0

0 − pAD

(1 + RD)2 0
pAA

1 + RA
0

pAD

1 + RD

− pDA

(1 + RA)2 0
pDA

1 + RA
0

pDD

1 + RD
0

0 − pDD

(1 + RD)2
0

pDA

1 + RA
0

pDD

1 + RD





A solution to this system of equations is found similarly by backward recursion.
Namely, for a time-invariant coupon payout, we have:

ΓT −n =
n∑

j=1

[Φ]j−1 C + [Φ]n ΓT L, n = 0, 1, 2, . . .

while for a nonpaying coupon bond, we have:

ΓT −n = [Φ]n ΓT , n = 0, 1, 2, . . .

These equations can be solved numerically providing thereby a combined estimate
of rated bond prices and their yield sensitivity.

Generally, we can also calculate rated bonds’ duration and their ‘cross-
duration’. Bond duration is now defined in terms of partial durations, expressing
the effects of all yields rates. Explicitly, say that a bond is rated i at time t and
for simplicity let the yields be time-invariant. The duration of a bond rated i with
respect to its yield is denoted by Dii (t, T ), i = 1, 2, . . . , m, with,

Dii (t, T ) = − 1

Bi,t

∂ Bi,t

∂ Ri

while the partial duration, of the bond rated i with respect to any other yield, R j ,
i �= j is:

Di j (t, T ) = − 1

Bi,t

∂ Bi,t

∂ R j
= −∂

(
log Bi,t

)

∂ R j
; i �= j
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By the same token, for convexity we have:

ϒi i (t, T ) = 1

Bi,t

∂2 Bi,t

∂ R2
i

and ϒi j (t, T ) = 1

Bi,t

∂2 Bi,t

∂ Ri∂ R j

The partial durations and convexities express the sensitivity of a bond rated i is
thus:

dBi,t

Bi,t
= 1

Bi,t

∂ Bi,t

∂t
dt + 1

Bi,t

m∑

j=1

∂ Bi,t

∂ R j
dR j + 1

2

1

Bi,t

m∑

j=1

∂2 Bi,t

∂ R j∂ Ri
dRi dR j

Or:

dBi,t

Bi,t
− ∂ log Bi,t

∂t
dt = −

m∑

j=1

Di j dR j + 1

2

m∑

j=1

ϒi j dRi dR j

Example
Consider a bond with three ratings (1, 2 and 3) and assume constant yields for
each given by (R1, R2, R3) = (0.05; 0.07; 0.10). Let the ratings transition matrix
be:

P =



0.9 0.1 0
0.05 0.8 0.15
0.00 0.05 0.95





Then the bond recursive equation for a pure bond paying $1 in two periods is:

Bi,t =
m∑

j=1

pij

1 + R j
B j,t+1; Bi,2 = �i , i = 1, 2, 3, . . . , m, t = 0, 1, 2

For m = 3, this is reduced to:

B1,0 = (0.81q11 + 0.005q12)�1 + (0.09q12 + q220.08)�2 + 0.015q23�3

B2,0 = (0.045q11 + 0.04q12)�1 + (0.005q12 + 0.64q22 + 0.0075q23) �2

+ (0.12q23 + 0.1425q33) �3

B3,0 = (0.0025q12) �1 + (0.04q22 + 0.0475q23)�2 + (0.0075q23 + 0.9025q33)�3

with the notation:

qi j = 1

1 + Ri

1

1 + R j

and,

q11 = .9068, q12 = 0.8899, q13 = 0.8656,

q22 = 0, 8732, q23 = 0.8494, q33 = 0.8262
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Thus,

B1,0 = 0.7389�1 + 0.097 88�2 + 0.0127�3

B2,0 = 0.0763�1 + 0.5695�2 + 0.2196�3

B3,0 = 0.002 22�1 + 0.0752�2 + 0.7456�3

Therefore, a bond rated ‘1’ is worth more than a bond rated ‘2’ and a ‘2’ is
worth more than a ‘3’ if B1,0 > B2,0 > B3,0. Their difference accounts for the
yield differential associated with each bond rating. Of course, if the rated bond
is secured throughout the two periods (i.e. it does not switch from class to class),
we have:

B1,0 = 1

(1 + R1)2
= 0.907; B2,0 = 1

(1 + R2)2
= 0.8734;

B3,0 = 1

(1 + R3)2
= 0.8264

The difference between these numbers accounts for a premium implied by the
ratings switching matrix. For the bond rated ‘3’, we note that the secured ‘rate 3’
bond is worth less than the rated bond, accounting for the potential gain in yield
if the bond credit quality is improved. Alternatively, we can use the risk-free
discount rate R f = 0.04 assumed for simplicity to equal 4 % yearly (since the
bond has no default risk). In this case,

B f,0 = 1

(1 + R f )2
= 1

(1 + 0.04)2
= 0.9245

The premium for such a risk-free bond compared to a secured bond rated ‘1’, is
0.9245 − 0.907l.

8.4.3 Pricing rated bonds and the term structure risk-free rates∗

When the risk-free term structure is available, and assuming no arbitrage, we can
construct a portfolio replicating the bond, thereby valuing the rated bond yields
for each bond class. Explicitly, consider a portfolio of rated bonds consisting of
Ni , i = 1, 2, 3, . . . , m bonds rated i , each providing �i dollars at maturity. Let
the portfolio value at maturity be equal to $1. That is to say

m∑

i=1

Ni Bi,T =
m∑

i=1

Ni�i = 1

One period (year) prior to maturity, such a portfolio would be worth

m∑

i=1

Ni Bi,T −1
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dollars. By the same token, if we denote by R f,T −1 the risk-free discount rate for
one year, then assuming no arbitrage, one period prior to maturity, we have:

m∑

i=1

Ni Bi,T −1 = 1

1 + R f,T −1
; Bi,T −1 = cit +

m∑

j=1

q j,T −1 pij B j,T ;

Bi,T = �i , i = 1, 2, . . . , m

with q jt = 1/(1 + R j,t ) and R j,t is the one-period discount rate applied to a
j-rated bond. This system of equations provides 2m unknown rates and the port-
folio composition with only one equation is therefore under-determined. For two
periods we have an additional equation:

m∑

i=1

Ni Bi,T −2 = 1

(1 + R f,T −1)2

While the bond price is given by:

Bi,T −2 = ci,T −2 +
m∑

j=1

q j,T −2 pij B j,T −1; Bi,T = �i , i = 1, 2, . . . , m

as well as:

Bi,T −2 = ci,T −2 +
m∑

j=1

q j,T −2,2 p(2)
ij B j,T ; Bi,T = �i , i = 1, 2, . . . , m

where p(2)
ij is the probability that the bond is rated j two periods hence while

q j,T −2,2 is the discount rate for a j-rated bond for two periods forward (that might
differ from the rate q j,T −2,1 applied for one period only). Here again, we see that
there are 2m rates while there are only two equations. For three periods we will
have three equations per rating and so on. Generally, k periods prior to maturity,
assuming no arbitrage, we have the following conditions for no arbitrage:

m∑

i=1

Ni Bi,T −k = 1

(1 + R f,T −k)k
k = 0, 12, 3, . . . , T

Bi,T −k = ci,T −k +
m∑

j=1

q j,T −k,h p(h)
ij B j,T −(k−h); Bi,T = �i ,

i = 1, 2, . . . , m; k = 1, 2, 3, . . . , T ; h = 1, 2, 3, . . . , k

where R f,T −k, k = 1, 2, 3, . . . , is the risk-free rate term structure and p(h)
ij is

the ij entry of the h-power of the rating matrix. These provide a system of T + 1
simultaneous equations spanning the bond life. In matrix notation this is given by:

NBT −k = 1

(1 + R f,T −k)k
k = 0, 1, 2, . . . , T ; N = (N1, . . . , Nm) ;

BT −k = (B1,T −k, . . . , Bm,T −k)
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as well as:

Bt−k = ct−k + F(h)
t Bt+(k−h); BT = L,

F(h)
t =

[
q j,T −k,h p(h)

ij

]
; h = 1, 2, . . . , k; k = 1, 2, . . . , T

This renders the estimation of the term structure of ratings discount grossly
under-determined. However, some approximations can be made which may be
acceptable practically. Such an approximation consists in assuming that the rates
at a given time are assumed time-invariant and the term structure of risk-free
rates is known and we only estimate the short ratings discount. We assume first
the case of a maturity larger than the number of rating classes.

Case T ≥ 2m
When the bond maturity is larger than the number of ratings T ≥ 2m, and
q j,T −k,h = q j,h, h = 1 and q j,1 = q j , the hedging portfolio of rated bonds is
found by a solution of the system of linear equations above (with h = 1), leading
to the unique solution:

N∗ = �−1Ω

where � is the matrix transpose of [Bi,T − j+1] and Ω is a column vector with
entries [1/(1 + R f,T −s)s], s = 0, 1, 2, . . . , m − 1. Explicitly, we have:





N1

N2

...

...

Nm



 =





B1,T B2,T B3,T ... Bm,T

B1,T −1 B2,T −1 B3,T −1 ... Bm,T −1

... ...

... ...

B1,T −m B2,T −m B3,T −m ... Bm,T −m





−1 



1
1/(1 + R f,T −1)1

...

...

1/(1 + R f,T −m)m





Thus, the condition for no arbitrage is reduced to satisfying a system of system
of nonlinear equations:

�−1ΩBT −k = 1

(1 + R f,T −k)k
; k = m, m + 1, . . . , T

For example, for a zero-coupon rated bond and stationary short discounts, we
have Bt−k = (F)k L and therefore, the no-arbitrage condition becomes:

�−1Ω (F)k L = 1

(1 + R f,T −k)k
; k = m, m + 1, . . . , T

where F has entries q j pij. This provides, therefore, T + 1 − m equations applied
to determining the bond ratings short (one period) discount rates q j .

Our system of equations may be over- or under-identified for determining
the ratings discount rates under our no-arbitrage condition. Of course, if T +
1 − m = m, we have exactly m additional equations we can use to solve the
ratings discount rates uniquely (albeit, these are nonlinear equations and can be
solved only numerically). If (T ≥ 2m + 1) we can use the remaining equations
to calculate some of the term structure discounts of bond ratings as well. For
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example, for a bond with maturity three times the number of ratings, T = 3m,
we have the following no-arbitrage condition:

�−1ΩBT −k = 1

(1 + R f,T −k)k
; k = m, m + 1, . . . , T

and

Bi,T −k = ci,T −k +
m∑

j=1

q j,1 p(1)
ij B j,T −(k−1); Bi,T = �i ,

Bi,T −k = ci,T −k +
m∑

j=1

q j,2 p(2)
ij B j,T −(k−2); Bi,T = �i ,

i = 1, 2, . . . , m; k = 1, 2, 3, . . . , T

Thus, when the bond maturity is very large (or if we consider a continuous-time
bond), an infinite number of equations is generated which justifies the condition
for no arbitrage stated by Jarrow et al. (1997).

When data regarding the risk-free term structure is limited, or for short bonds,
we have, m ≤ T < 2m and the Markov model is incomplete. We must, therefore,
proceed to an approach that can, nevertheless, provide an estimate of the ratings
discount rates. We use for convenience a sum of squared deviations from the rated
bond arbitrage condition, in which case we minimize the following expression
(for estimating the short discount rates only):

Minimize
0 ≤ q1,q2,....qm−1,qm ≤ 1

T∑

k=m

(
�−1ΩBT −k − 1

(1 + R f,T −k)k

)2

subject to a number of equalities used in selecting the portfolio, namely:

Bi,T −k = ci,T −k +
m∑

j=1

q j,1 p(1)
ij B j,T −(k−1); Bi,T = �i , k = 1, 2, . . . , T

Additional constraints, reflecting expected and economic rationales of the ratings
discounts q j might be added, such as:

0 ≤ q j ≤ 1 as well as 0 ≤ qm ≤ qm−1 ≤ qm−2 ≤ qm−3, . . . ,≤ q2 ≤ q1 ≤ 1

These are typically nonlinear optimization problems, however. A simple two-
ratings problem and other examples are considered to highlight the complexities
in determining both the hedging portfolio and the ratings discounts provided the
risk-free term structure is available.

Example: Valuation of a two-rates rated bond
For a portfolio of two-rates bonds over one period where �1 = 1, �2 = 0.2 we
have the following two equations that can be used to calculate the risk-free
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portfolio composition:

N1 + 0.2N2 = 1 or N2 = 5(1 − N1)

N1 B1,T −1 + 5(1 − N1)B2,T −1 = 1

1 + R f,T −1

and,

N1 = B2,T −1(1 + R f,T −1) − 0.2

(1 + R f,T −1)(B2,T −1 − 0.2B1,T −1)

If we assume a bond of maturity of three periods only, then only two additional
equations are available (T − 2, T − 3) providing a no-arbitrage estimate for the
rated bond discounts and given by:

(
B2,T −1(1 + R f,T −1) − 0.2

(1 + R f,T −1)(B2,T −1 − 0.2B1,T −1)

)

× (B1,T −2 − 5B2,T −2) + 5B2,T −2 = 1

(1 + R f,T −2)2

(
B2,T −1(1 + R f,T −1) − 0.2

(1 + R f,T −1)(B2,T −1 − 0.2B1,T −1)

)

× (B1,T −3 − 5B2,T −3) + 5B2,T −3 = 1

(1 + R f,T −3)3

B1,T −1 = c1,T −1 + q1 p11 + 0.2q2 p12;

B2,T −1 = c2,T −1 + q1 p21 + q2 p220.2

B1,T −2 = c1,T −2 + q1 p11 B1,T −1 + q2 p12 B2,T −1;

B2,T −2 = c2,T −2 + q1 p21 B1,T −1 + q2 p22 B2,T −1

B1,T −3 = [c1,T −3 + q1 p11c1,T −2 + q2 p12c2,T −2]

+ [q2
1 p2

11 + q1q2 p12 p21]B1,T −1 + [q2q1 p11 p12 + q2
2 p12 p22]B2,T −1

B2,T −3 = [c2,T −3 + q1 p21c1,T −2 + q2 p22c2,T −2]

+ [q1q1 p21 p11 + q1q2 p12 p21]B1,T −1 + [q2q1 p21 p22 + q2
2 p2

22]B2,T −1

where, B1,T −1, B1,T −2, B1,T −3 are functions of the bond redemption values and
the ratings discount rates q1 and q2. That is to say, we have a system of two
independent equations in two unknowns only that we can solve by standard
numerical analysis. For example, consider a zero-coupon bond with a rating
matrix given by:p11 = 0.8, p12 = 0.2, p21 = 0.1, p22 = 0.9. In addition, set
�1 = 1, �2 = 0.6 (and therefore a recuperation rate of 60 % on bond default)
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and R f,T −1 = 0.07, R f,T −2 = 0.08 thus:

B1,T −1 = 0.8q1 + 0.12q2; B2,T −1 = 0.1q1 + 0.54q2

B1,T −2 = 0.8q1 B1,T −1 + 0.2q2 B2,T −1; B2,T −2 = 0.1q1 B1,T −1 + 0.9q2 B2,T −1

B1,T −3 = [
0.64q2

1 + 0.02q1q2
]

B1,T −1 + [
0.16q2q1 + 0.18q2

2

]
B2,T −1

B2,T −3 = [
0.08q2

1 + 0.02q1q2
]

B1,T −1 + [
0.09q2q1 + 0.81q2

2

]
B2,T −1

and therefore
(

1.07B2,T −1 − 0.6

1.07((0.8q1 − 0.6)B1,T −1 + 0.2q2 B2,T −1)

)

× (0.6334q1 B1,T −1 − 1.2294.2q2 B2,T −1)

+ (0.1666q1 B1,T −1 + 1.4994q2 B2,T −1) = 0.8733

(
1.07B2,T −1 − 0.6

1.07((0.8q1 − 0.6)B1,T −1 + 0.2q2 B2,T −1)

)

×
([

0.5072q2
1 − 0.013 32q1q2

]
B1,T −1+

+ [
0.010 06q2q1 − 1.169 46q2

2

]
B2,T −1

)

+ ([
0.133 28q2

1 + 0.033 32q1q2
]

B1,T −1 + [
0.14994q2q1 + 1.3446q2

2

]
B2,T −1

)

= 0.7937

This is a system of six equations six unknowns that can be solved numerically by
the usual methods.

8.4.4 Valuation of default-prone rated bonds∗

We consider next the more real and practical case consisting in a bonds defaulting
prior to maturity and generally we consider the first time n, a bond rated initially
i , is rated j and let the probability of such an event be denoted by, fij(n). This
probability equals the probability of not having gone through a j th rating in prior
transitions and be rated j at time n. For transition in one period, this is equal to
the transition bond rating matrix (S&P or Moody’s matrix), while for a transition
in two periods it equals the probability of transition in two periods conditional on
not having reached rating j in the first period. In other words, we have:

fij(1) = pij(1) = pij; fij(2) = pij(2) − fij(1)pjj

By recursion, we can calculate these probabilities:

fij(n) = pij(n) −
n−1∑

k=1

fij(k)pjj(n − k)
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The probability of a bond defaulting prior to time n is thus,

Fkm(n − 1) =
n−1∑

j=1

fkm( j)

while the probability that such a bond does not default is:

F̄km(n − 1) = 1 − Fkm(n − 1)

At present, denote by i (n) the probability that the bond is rated i at time n. In
vector notation we write, ̄(n). Thus, given the rating matrix, [P] we have:

̄(n) = [P]
′
̄(n − 1), n = 1, 2, 3, . . . , and ̄(0) given

with [P]
′
, the matrix transpose. Thus, at time n, ̄(n) = [P

′
]n̄(0) and the present

value of a coupon payment (given that there was no default at this time) is therefore
discounted at R j,n, q j,n = 1/(1 + R j,n) if the bond is rated j . In other words, its
present value is:

m−1∑

j=1

c j,nqn
j,n j,n;  j,n =

m−1∑

i=1

i,0 p(n)
ij

where p(n)
ij is the ijth entry of the transpose power matrix [P

′
]n and i,0 is the

probability that initially the bond is rated i .
When a coupon-bearing default bond rated i at time s, defaults at time, s + 1,

T − (s + 1) periods before maturity with probability fim(s + 1 − s) = fim(1), we
have a value:

Vs,i = (
ci,T −s + q

�m,T −(s+1)

i

)
w.p. fim(1)

If such an even occurs at time, s + 2, with probability fim(s + 2 − s) = fim(2),
we have:

Vs,i =
(

ci,T −s +
m−1∑

k=1

qkck,T −(s+1)k,(s+1)−s + q2
i �m,T −(s+2)

)
w.p. fim(2)

where

k,1 =
m−1∑

i=1

i,0 p(1)
ik

and i,0 is a vector whose entries are all zero except at i (since at s we conditioned
the bond value at being rated i). By the same token three periods hence and prior
to maturity, we have:

Vs,i =
(

ci,T −s +
m−1∑

k=1

qkck,T −(s+1)i,0 p(1)
ik

+
m−1∑

k=1

q2
k ck,T −(s+2)i,0 p(2)

ik + q3
i �m,T −(s+3)

)
w.p. fim(3)



246 FIXED INCOME, BONDS AND INTEREST RATES

and, generally, for any period prior to maturity,

Vs,i =
(

ci,T −s +
τ−1∑

θ=1

m−1∑

k=1

qθ
k ck,T −(s+θ )i,0 p(θ )

ik + qτ
i �m,T −(s+τ )

)
w.p. fim(τ )

In expectation, if the bond defaults prior to its maturity, its expected price at time
s is,

EBi,D(s, T ) = ci,T −s +
T −s∑

τ=1

(
qτ

i �m,T −(s+τ ) +
τ−1∑

θ=1

m−1∑

k=1

qθ
k ck,T −(s+θ )i,0 p(θ )

ik

)
fim(τ )

With �m,T − j , the bond recovery when the bond defaults, assumed to be a function
of the time remaining for the faultless bond to be redeemed. And therefore, the
price of such a bond is:

Bi,ND(s, T ) =
(

ci,T −s +
m−1∑

k=1

qT −s
k �ki,0 p(T −s)

ik

+
T −s−1∑

θ=1

m−1∑

k=1

qθ
k ck,T −(s+θ )i,0 p(θ )

ik

) [
1 −

T −s∑

u=1

fim(u)

]

where �i denotes the bond nominal value at redemption when it is rated i.
Combining these sums, we obtain the price of a default prone bond rated i at
time s:

Bi (s, T ) = ci,T −s +
(

ci,T −s +
m−1∑

k=1

qT −s
k �ki,0 p(T −s)

ik

+
T −s−1∑

θ=1

m−1∑

k=1

qθ
k ck,T −(s+θ )i,0 p(θ )

ik

) [
1 −

T −s∑

u=1

fim(u)

]

+
T −s∑

τ=1

(
qτ

i �m,T −(s+τ ) +
τ−1∑

θ=1

m−1∑

k=1

qθ
k ck,T −(s+θ )i,0 p(θ )

ik

)
fim(τ )

For a zero-coupon bond, this is reduced to:

Bi (s, T ) =
(

m−1∑

k=1

qT −s
k �ki,0 p(T −s)

ik

) [
1 −

T −s∑

u=1

fim(u)

]

+
T −s∑

τ=1

(
qτ

i �m,T −(s+τ )
)

fim(τ )

To determine the (short) price discounts rates for a default-prone rated bond we
can proceed as we have before by constructing a hedged portfolio consisting of
N1, N2, . . . , Nm−1 shares of bonds rated, i = 1, 2, . . . , m − 1. Again, let R f,T −u

be the risk-free rate when there are u periods left to maturity. Then, assuming no
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arbitrage and given the term structure risk-free rate, we have:

m−1∑

i=1

Ni Bi (s, T ) = 1
(
1 + R f,T −s

)s , s = 0, 1, 2, . . .

with Bi (s, T ) defined above. Note that the portfolio consists of only m − 1 rated
bonds and therefore, we have in fact 2m − 1 variables to be determined based
on the risk-free term structure. When the system is over-identified (i.e. there are
more terms in the risk-free term structure than there are short ratings discount to
estimate), additional equations based on the ratings discount term structure can
be added so that we obtain a sufficient number of equations. Assuming that our
system is under-determined (which is the usual case), i.e. T ≤ 2m − 1, we are
reduced to solving the following minimum squared deviations problem:

Minimize
0 ≤ q1 ≤ q2 ≤ .... ≤ qm−1 ≤ 1;
N1, N2, N3......, Nm−1

T∑

s=0

(
m−1∑

k=1

Nk Bk (s, T ) − 1
(
1 + R f,T −s

)s

)2

subject to:

Bi (s, T ) = ci,T −s +
(

ci,T −s +
m−1∑

k=1

qT −s
k �ki,0 p(T −s)

ik

+
T −s−1∑

θ=1

m−1∑

k=1

qθ
k ck,T −(s+θ )i,0 p(θ )

ik

) [
1 −

T −s∑

u=1

fim(u)

]

+
T −s∑

τ=1

(
qτ

i �m,T −(s+τ ) +
τ−1∑

θ=1

m−1∑

k=1

qθ
k ck,T −(s+θ )i,0 p(θ )

ik

)
fim(τ )

This is, of course, a linear problem in Nk and a nonlinear one in the rated discounts
which can be solved analytically with respect to the hedged portfolio (and using
the remaining equations to calculate the ratings discount rates). Explicitly, we
have:

T∑

s=0

m−1∑

k=1

Nk B j (s, T ) Bk (s, T ) =
T∑

s=0

B j (s, T )
(
1 + R f,T −s

)s

This is a system of linear equation we can solve by:

m−1∑

k=1

Nk A jk = D j ; j = 1, 2, 3, . . . , m − 1; D j =
T∑

s=0

B j (s, T )
(
1 + R f,T −s

)s ;

A jk =
T∑

s=0

B j (s, T ) Bk (s, T )

and, therefore, in matrix notation

N∗A = D → N∗ = A−1D
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and obtain the replicating portfolio for a risk-free investment. This solution can be
inserted in our system of equations to obtain the reduced set of equations for the
ratings discount rates of the default bond. A solution can be found numerically.

Example: A two-rated default bond
Consider a two-rated zero-coupon bond and define the transition matrix:

P =
[

p 1 − p
0 1

]
with Pn =

[
pn 1 − pn

0 1

]

The probability of being in one of two states after n periods is (pn, 1 − pn).
Further,

f12(1) = 1 − p; f12(2) = p(2)
2 − (1) f12(1) = 1 − p2 − (1 − p) = p(1 − p)

Thus, for a no-coupon paying bond, we have:

Bi (s, T ) = ci,T −s + qT −s�

[
1 −

T −s∑

u=1

f12(u)

]
+

T −s∑

τ=1

(qτ �2,T −(s+τ )) f12(τ )

In particular,

B1(T, T ) = �

B1(T − 1, T ) = q� [1 − f12(1)] + q�2,0 f12(1)

B1(T − 2, T ) = q2� [1 − f12(1) − f12(2)] + q�2,1 f12(τ ) + q2�m,0 f12(2)

B1(T − 3, T ) = q3� [1 − f12(1) − f12(2) − f12(3)] + (
q�2,2

)
f12(1)

+ q2�2,1 f12(2) + q3�2,0 f12(3)

If we have a two-year bond, then the condition for no arbitrage is:

NB1(T, T ) = N� = 1 and N = 1 / �

NB1(T − 1, T ) = 1

1 + R f,T −1
⇒ 1 + R1,T −1 = 1 + R f,T −1

1 − (
1 − �2,0/�

)
f12(1)

If we set, �2,0 = 0, implying that when default occurs at maturity, the bond is a
total loss, then:

1 + R1,T −1 = 1 + R f,T −1

1 − f12(1)
= 1 + (1 − p) + R f,T −1

p
or

R1,T −1 = (1 − p) + R f,T −1

p

This provides an explicit determination of the rated ‘1’ bond in terms of the risk-
free rate. If there is no loss (p = 1), then, R1,T −1 = R f,T −1. If we have a two-year
bond, then the least quadratic deviation cost rating can be applied. Thus,

Minimize
0 ≤ q ≤ 1

Q = ((1/�)B(T − 1, T ) − (q f,T − 1))2

+ ((1/�)B(T − 2, T ) − (q f,T −2))2
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Subject to:

B1(T − 1, T ) = q� [1 − f12(1)] + q�2,0 f12(1)

B1(T − 2, T ) = q2� [1 − f12(1) − f12(2)] + q�2,1 f12(1) + q2�2,0 f12(2)

leading to a cubic equation in q we can solve by the usual methods. Rewriting
the quadratic deviation in terms of the discount rate yields:

Minimize
0 ≤ q ≤ 1

(q[1 − f12(1)(1 − (�2,0 / �))] − (q f,T −1))2

+ (q2[1 − f12(1) − (1 − �2,0/�) f12(2)] + q(�2,1/�) f12(1) − (q f,T −2))2

Set

a = [1 − f12(1)(1 − (�2,0 / �))]; b = [1 − f12(1) − (1 − �2,0/�) f12(2)];

c = (�2,1/�) f12(1)

Then an optimal q is found by solving the equation:

2q3b2 + 3q2bc + q(a2 − 2bq f,T −2 + c2) − (aq f,T −1 + cq f,T −2) = 0

Assume the following parameters,

R f,T −1 = 0.07; R f,T −2 = 0.08, p = 0.8, � = 1, �2,0 = 0.6, �2,1 = 0.4

In this case,

f12(1) = 1 − p = 0.2 and f12(2) = p(1 − p) = 0.16

For a one-period bond, we have:

1 + R1,T −1 = 1 + 0.07

1 − (0.084)
= 1.168

and, therefore, we have a 16.8 % discount, R1,T −1 = 0.168.

Problem
An AAA-rated bond has a clause that if it is downgraded to an AA bond, it must
increase its coupon payment by 12 % while if it is downgraded to a B bond, then
the firm has to redeem the bond in its entirety. For simplicity, say that the firm has
only credit-rating classes (AAA, AA, B) and that it cannot default. In this case,
how would you value the bond if initially it were an AAA bond?

Problem
By how much should a coupon payment be compensated when the bond class
is downgraded? Should we sell a bond when it is downgraded? What are the
considerations to keep in mind and how can they be justified?

Example
For simplicity, consider a coupon-paying bond with two credit ratings, A and D.
‘D’ denotes default and at redemption at time T , $1 is paid. Let q = 1 − p be a
constant probability of default. Thus, if default occurs for the first time at n ≤ T ,
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the probability that default occurs at any time prior to redemption is given by the
geometric distribution pn−1(1 − p) and therefore the conditional probability of
default at n ≤ T is given by:

f (n |n ≤ T ) = pn−1(1 − p)

1 − F(T )
, n = 1, 2, . . . , T

where F(T ) is the probability of default before or at bond redemption, or

F(T ) = (1 − p)

(
1 − pT +1

1 − p
− 1

)
= p(1 − pT )

As a result, if the yield of this bond is y, the bond price is given by:

B(0) =
{

c
T∑

j=1

(
1

1 + y

) j (
p j−1(1 − p)

1 − p(1 − pT )

)}
+

(
1

1 + y

)T

[1 − p(1 − pT )]

While for a risk-free bond we have at the risk-free rate:

B f (0) =
{

c
T −1∑

j=1

(
1

1 + R f

) j
}

+ 1

(
1

1 + R f

)T

The difference between the two thus measures the premium paid for a rated bond.
These expressions can be simplified, however. This is left as an exercise.

Problem
Following Enron’s collapse, Standard and Poors Corp. has said that it plans to
rank the companies in the S&P500 stock index for the quality of their public
disclosures as investors criticize the rating agency for failing to identify recent
bankruptcies. As a result, a complex set of criteria will be established to construct
a ‘reliability rating’ of S&P’s own rating. Say that the credit rating of a bond is now
given both by its class (AAA, AA, etc.) and by a reliability index, meaning that
to each rating, there is an associated probability with the complement probability
associated to a bond with lower rating. How would you proceed to integrate this
reliability in bond valuation?

Example: Cash valuation of a rated firm
Earlier we noted that the cash flow of a firm can be measured by a synthetic sum
of zero-coupon bonds. If these bonds are rated, then of course it is necessary
for cash flow valuation to recognize this rating. Let k, k = 1, 2, 3, . . . , m be the
m rates a firm assumes and let qk(t) be the probability that the bond is rated k
at time t . In vector notation we write q̄(t) which is given in terms of the rating
matrix transpose P

′
. In other words, q̄(t) = [P

′
]tq̄(0), k = 1, 2, 3, . . . and q̄(0)

given. Thus, the NPV of a rated firm is given by:

NPV(t |�) =
n∑

s=t

m∑

k=1

Cs Bk(t, s)qk(s),
m∑

k=1

qk(s) = 1



INTEREST-RATE PROCESSES, YIELDS AND BOND VALUATION 251

Our analysis can be misleading, however. Bonds entering in a given state may
remain there for a certain amount of time before they switch to another state.
Unstable countries and firms transit across rated states more often than say ‘stable
countries’ and ‘firms’. Further, they will usually switch to adjacent states or
directly to a default state rather than to ‘distant states’. For example, an AAA
bond may be rated after some time to an AA bond while it is unlikely that it would
transit directly to rating C. It is possible, however, that for some (usually external)
reason the bond defaults, even if initially it is highly rated. These possibilities
extend the Markov models considered and are topic for further empirical and
theoretical study.

8.5 INTEREST-RATE PROCESSES, YIELDS AND
BOND VALUATION∗

Bonds, derivative securities and most economic time series depend intimately
on the interest-rate process. It is therefore not surprising that much effort has
been devoted to constructing models that can replicate and predict reliably the
evolution of interest rates. There are, of course, a number of such models, each
expressing some economic rationale for the evolution of interest rates. So far we
have mostly assumed known risk-free interest rates. In fact, these risk-free (dis-
counting) interest rates vary over time following some stochastic process and as a
function of the discount period applied. Generally, and mostly for convenience, an
interest-rate process {r (t), t ≥ 0} is represented by an Ito stochastic differential
equation:

dr = µ(r, t) dt + σ (r, t) dw

where µ and σ are the drift and the diffusion function of the process, which
may or may not be stationary. Table 8.8 summarizes a number of interest
rates models. Note that while Merton’s model is nonstationary (letting the

Table 8.8

Author Drift Diffusion Stationary

Merton (1973) β σ no
Cox (1975) 0 σr 3/2 yes
Vasicek (1977) β(α − r ) σ yes
Dothan (1978) 0 σr yes
Brennan–Schwartz (1979) βr [α − ln(r )] σr yes
Courtadon (1982) β(α − r ) σr yes
March–Rosenfeld (1983) αr−(1−δ) + βr σr δ/2 yes
Cox–Ingersoll–Ross (1985) β(α − r ) σr 1/2 yes
Chan et al. (1992) β(α − r ) σrλ yes
Constantinidis (1992) α + βr + γ r 2 σ + γ r yes
Duffie–Kan (1996) β(α − r )

√
σ + γ r yes
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diffusion-volatility be time-variant), other models have attempted to model this
diffusion coefficient. Of course, to the extent that such a coefficient can be mod-
elled appropriately, the technical difficulties encountered when the coefficients
are time-variant can be avoided and the model parameters estimated (even though
with difficulty, since these are mostly nonlinear stochastic differential equations).
Further, note that the greater part of these interest rate models are of the ‘mean
reversion’ type. In other words, over time short-term interest rates are pulled
back to some long-run average level. Thus when the short rate is larger than
the average long rate, the drift coefficient is negative and vice versa. Black and
Karasinski (1991) (see also Sandmann and Sonderman, 1993) have also suggested
that interest models can be modelled as well as a lognormal process. Explicitly,
let the annual effective interest rate be given by the nonstationary lognormal
model:

dra(t)

ra(t)
= β(t) dt + σ (t) dW ; ra(0) = ra,0

and consider the continuously compounded rate R(t) = ln (1 + ra(t)). An appli-
cation of Ito’s Lemma to this transformation yields also a diffusion process:

dR(t) = (1 − e−R(t))

[
θ (t) − 1

2
(1 − e−R(t))σ 2

]
dt + σdW (t)

Another model suggested, and covering a broad range of distributional
assumptions, includes the following (Hogan and Weintraub, 1993):

dR(t) = R(t)

[
θ (t) − a ln R(t) + 1

2
σ 2

]
dt + R(t)σ dW (t)

The valuation of a bond when interest rates are stochastic is difficult because we
cannot replicate the bond value by a risk-free rate. In other words, when rates are
stochastic there is no unique way to price the bond. Mathematically this means
that there are ‘many’ martingales we can use for pricing the bond and determine
its yield (the integral of the spot-rate process). The problem we are faced with is,
therefore, to determine a procedure which we can use to select the ‘appropriate
martingale’ which can replicate observed bond prices. Specifically, say that the
interest-rate model is defined by a stochastic process which is a function of a
vector parameters �. In other words, we write the stochastic process:

dr = µ(r, t, �) dt + σ (r, t, �) dw

If this were the case, the theoretical price of a zero-coupon bond paying $1 at
time T is:

BT h(0, T ; �) = E∗exp



−
T∫

0

r (u, �)du



 = E∗(e−y(0,T ;�)T
)

where y(0, T ; �) is the yield, a function of the vector parameters �. Now assume
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that these bond prices can be observed at time zero for a whole set of future
times T and denote these observed values by, Bobs(0, T ). In order to determine
the parameters set � we must find therefore some mathematical mechanism that
would minimize in some manner some function of the ‘error’

	B = Bobs(0, T ) − BT h(0, T ; �)

There are several alternatives to doing so, as well as numerous mathematical tech-
niques we can apply to solving this problem. This is essentially a computational
problem (see, for example, Nelson and Siegel, 1987; Wets et al., 2002; Kortanek
and Medvedev, 2001; Kortanek, 2003; Delbaen and Lorimier, 1992; Filipovic,
1999, 2000, 2001).

The Nelson and Siegel approach is applied by many banks and consists in
estimating the zero-coupon yield curve by fitting for all available bonds data in a
sector credit combination the yield curve:

BT h(0, T ; �) = E
(
e−r (0,T ;�)T

)
; r [0, T ; �(βi ), i = 1, . . . , 4]

= β0 + (β1 + β2)

(
1 − e−β3T

β3T

)
− β2 e−β3T

where r (0, T ; � (βi ) , i = 1, . . . , 4) is the spot rate and � (βi ) are the model
parameters. The Roger Wets approach (www.episolutions.com) is based upon a
Taylor series approximation of the discount function in integral form. It is based
on an approximation, and in this sense it shares properties with purely spline
methods. Kortanek and Medvedev (2001), however, use a dynamical systems
approach for modelling the term structure of interest rates based on a stochastic
linear differential equation by constructing perturbation functions on either the
unobservable spot interest rate or its integral (the yield) as unknown functions.
Functional parameters are then estimated by minimizing a norm of the error
comparing computed yields against observed yields over an observation period,
in contrast to using the expectation operator for a stochastic process. When applied
to a future period, the solved-for spot-rate function becomes the forecast of the
unobservable function, while its integral approximates the yield function to the
desired accuracy.

Some prevalent methods for computing (extracting) the zeros, curve-fitting
procedures, equating the yield curve to observed data in the central bank include,
among others: in Canada using the Svensson procedure and David Bolder (Bank of
Canada); in Finland the Nelson–Siegel procedure; in France, the Nelson–Siegel,
Svensson procedures; in Japan and the USA the banks use smoothing splines
etc. (see Kortanek and Medvedev, 2001; Filipovic, 1999, 2000, 2001). Explicit
solutions can be found for selected models, as we shall see below when a number
of examples are solved. In particular, we shall show that approaches based on the
optimal control of selected models can also be used.
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8.5.1 The Vasicek interest-rate model

The Vasicek model has attracted much attention and is used in many theoretical
and empirical studies. Its validity is of course, subject to empirical verification.
An analytical study of the Vasicek model is straightforward since it is a classical
model used in stochastic analysis (also called the Ornstein–Uhlenbeck process,
as we saw in Chapter 4). In Vasicek’s model the interest-rate change fluctuates
around a long-run rate, α. This fluctuation is subjected to random and normal
perturbations of mean zero and variance σ 2dt however.

dr = β(α − r ) dt + σ dw

This model’s solution at time t when the interest rate is r (t) is r (u; t):

r (u; t) = α + e−β(u−t) (r (t) − α) + σ

u∫

t

e−β(u−τ ) dw(τ )

In this theoretical model we might consider the parameters set � ≡ (α, β, σ ) as
determining a number of martingales (or bond prices) that obey the model above,
namely bond prices at time t = 0 can theoretically equal the following:

Bth(0, T ; α, β, σ ) = E∗ exp



−
T∫

0

r (u; α, β, σ ) du





In this simple case, interest rates have a normal distribution with a known mean
and variance (volatility) evolution. Therefore

T∫

0

r (u,α, β, σ ) du

has also a normal probability distribution with mean and variance given by:

m(r (0), T ) = αT + (1 − e−βT )
r (0) − α

β

v(r (0), T ) = v(T ) = σ 2

2β3
(4 e−βT − e−2βT + 2βT − 3)

In these equations the variance is independent of the interest rate while the mean
is a linear function of the interest which we write by:

m(r (0), T ) = α

[
T − (1 − e−βT )

β

]
+ r (0)

(1 − e−βT )

β

This property is called an affine structure and is of course computationally de-
sirable for it will allow a simpler calculation of the desired martingale. Thus, the
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theoretical zero-coupon bond price paying $1 T periods hence can be written by:

Bth(0, T ; α, β, σ ) = E exp




T∫

0

r (u, α, β, σ ) du





= e−m(r (0),T )+v(T )/2 = eA(T )−r0 D(T )

A(T ) = −α

[
T − (1 − e−βT )

β

]
+ σ 2

4β3
(4 e−βT − e−2βT + 2βT − 3);

D(T ) = (1 − e−βT )

β

Now assume that a continuous series of bond values are observed and given by
Bobs(0, T ) which we write for convenience by, Bobs(0, T ) = e−RT T . Without loss
of generality we can consider the yield error term given by:

	T = RT − (A(T ) − r0 D(T ))

and thus select the parameters (i.e. select the martingale) that is closest in some
sense to observed values. For example, a least squares solution of n observed
bond values yields the following optimization problem:

Min
α,β,σ

n∑

i=1

(	i )
2

When the model has time-varying parameters, the problem we faced above turns
out to have an infinite number of unknown parameters and therefore the yield
curve estimation problem we considered above might be grossly underspecified.
Explicitly, let the interest rate model be defined by:

dr (t) = β [α(t) − r (t)] dt + σ dw

The theoretical bond value has still an affine structure and therefore we can write:

Bth[t, T ; α(t), β, σ ] = E∗ exp



−
T∫

0

r (u; α, β, σ ) du



 = eA(t,T )−r (t)D(t,T )

The integral interest-rate process is still normal with mean and variance leading
to:

A(t, T ) =
T∫

t

{
1

2
σ 2 D2(s, T ) − βα(s)D(s, T )

}
ds; D(t, T ) = 1

β

{
1 − e−β(T −t)

}

or:

dA(t, T )

dt
= α(t)

{
1 − e−β(T −t)

} − σ 2

2β2

{
1 − e−β(T −t)

}2
, A(T, T ) = 0
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in which α(t), β, σ are unspecified. If we equate this equation to the available
bond data we will obviously have far more unknown variables than data points
and therefore the yield curve estimate will depend again on the optimization
technique we use to generate the best fit parameters β∗, σ ∗ and the function,
α∗(t). Such problems can be formulated as standard problems in the calculus of
variations (or optimal control theory). For example, if we consider the observed
prices Bobs(t, T ), t ≤ T < ∞, for a specific time, T , and minimize the follow-
ing squared error in continuous time, we obtain the following singular control
problem:

Min
α(u)

=
t∫

0

[A(u, T ) − c(u, T )]2du

subject to:

dA(u, T )

du
= α(u)a(u, T ) − b(u, T ), A(T, T ) = 0

with

c(u, t) = yobs(u, T ) + r (u)

[
1

β

{
1 − e−β(T −u)

}]
,

a(u, t) = {
1 − e−β(T −u)

}
; b(u, t) = σ 2

2β2

{
1 − e−β(T −u)

}2

and α(u) is the control and A(u, T ) is the state which can be solved by the
usual techniques in optimal control. The solution of this problem leads either to
a bang-bang solution, or to a singular solution. Using the deterministic dynamic
programming framework, the long-run (estimated) rate is given by solving:

−∂ J

∂u
= Min

α(u)

{
[A(u, T ) − c(u, T )]2 + ∂ J

∂ A
[α(u)a(u, T ) − b(u, T )]

}

On a singular strip, ∂ J/∂ A = 0 where a(u, t) �= 0 and therefore in order to cal-
culate α(u), we can proceed by a change of variables and transform the original
control problem into a linear quadratic control problem which can be solved by
the standard optimal control methods. Explicitly, set:

y(u) = [A(u, T ) − c(u, T )]

with
dw(u)

du
= α(u) and z(u) = y(u) − a(u, T )w(u)

Thus, the problem is reduced to:

Min
w(u)

=
t∫

0

[z(u) + a(u, T )w(u)]2 du
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subject to:

dz(u)

du
= −ȧ(u, T )w(u) − b(u, T ) − c(u, T ); ȧ(u, T ) = da(u, T )/du

and at time T,

z(T ) = −c(T, T ) − a(T, T )w(T )

This is a linear control problem whose objective is quadratic in both the state and
the control. As a result, the problem solution of this standard control problem is
the linear feedback form:

w(u) = Q(u) + S(u)z(u) or α(t) =
t∫

0

w(u) du

The functions Q(u), S(u) can be found by inserting in the problem’s conditions
for optimality. This problem is left for self-study, however (see also Tapiero,
2003).

Problem: The cox–ingersoll–Ross (CIR) model
By changing the interest-rate model, we change naturally the results obtained.
Cox, Ingersoll and Ross (1985), for example, suggested a model, called the square
root process, which has a volatility given as a function of interest rates as well,
namely, they assume that:

dr = β (α − r ) dt + σ
√

rdw

First show that the interest rate process is not normal but its mean and variance
are given by:

E(r (t) |r0) = c(t)

[
4βα

σ 2
+ ξ

]
; Var(r (t) |r0) = c(t)2

[
8βα

σ 2
+ 4ξ

]

where

c(t) = σ 2

4β
[1 − e−βt ]; ξ = 4r0β

σ 2 [exp(βt) − 1]

Demonstrate then that this process has an affine structure as well by verifying
that:

B(r, t, T ) = E exp



−
T∫

t

r (T − u) du



 = e(A(t,T )−r D(t,T )); B(r, T, T ) = 1

and at the boundary A(T, T ) = 0, D(T, T ) = 0. Finally, calculate both A(t, T )
and D(t, T ) and formulate the numerical problem which has to be solved in order
to determine the bond yield curve based on available bond prices.
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Problem: The nonstationary Vasicek model
Show for the nonstationary model dr = µ(t)(m(t) − r ) dt + σr dw that its solu-
tion is:

r (t) = exp [−A(t)]



y +
t∫

0

µ(s)m(s) exp [−A(s)]





A(t) = M(t) + σ 2t/2 − σ

t∫

0

dw and M(t) =
t∫

0

µ(s) ds

8.5.2 Stochastic volatility interest-rate models

Cotton, Fouque, Papanicolaou and Sircar (2000) have shown that a single factor
model (i.e. with one source of uncertainty) driven by Brownian motion implies
perfect correlation between returns on bonds for all maturities T , which is not
seen in empirical analysis. They suggest, therefore, that the volatility in the Va-
sicek model ought to be stochastic as well. Their derivation, based on a mean
reverting model in the short rate, shows an exponential decay in the short-term,
(two weeks). This is small compared to bonds with maturities of several years.
Denote the variance in an interest model by V = σ 2(r, t), then an interest-rate
‘stochastic volatility model’ consists of two stochastic differential equations, with
two sources of risk (w1, w2) which may be correlated or not. An example would
be:

dr = µ(r, t) dt + √
V (r, t) dw1

dV = ν(V, r, t) dt + γ (V, r ) dw2

where the variance V appears in both equations. Hull and White (1988) for ex-
ample suggest that we use a square root model with a mean reverting variance
model given by:

dr

r
= µ dt +

√
V dw1; dV = α(β − V ) dt + γ r V λ dw2, ρ dt = E dw1 dw2

In this case, note that when stock prices increase, volatility increases. Further
when volatility increases, interest rates (or the underlying asset we are modeling)
increase as well. Cotton et al. (2000), in contrast, suggested that, in a CIR-type
model such as dr = (µ − r ) dt + σrγ dW , γ is not equal to a half but rather is
equal to one and half and thereby certainly greater than one. The model they
suggest turns out:

dr = θr (µr − r ) dt + √
αr + βr V dW ∗

dV = θV (µV − V ) dt + √
αV + βV V dZ∗

where (dW ∗, dZ∗) are Brownian motion under the pricing measure. Note here
that the volatility is a mean reverting driving process. The advantage in using
such a model is that it also leads to an affine structure where the time-dependent
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coefficients are given by the solutions of differential equations. In this case, esti-
mation of the yield curve can be reached, as we have stated above, by the solution
of an optimal control problem. In other words, once a theoretical estimate of the
bond price is found, and observed bond prices are available, we can calculate the
parameters of the model by solving the appropriate optimization problem.

8.5.3 Term structure and interest rates

Interest rates applied for known periods of time, say T , change necessarily over
time. In other words, if r (t, T ) is the interest rate applied at t for T , then at t + 1,
the relevant rate for this period T would be r (t + 1, T − 1), while the going
interest for the same period would be r (t + 1, T ). If these interest rates are not
equal, there may be an opportunity for refinancing. As a result, the evolution of
interest rates for different maturity dates is important. For example, if a model is
constructed for interest rates of maturity T , then we may write:

dr (t, T ) = µ(r, T ) dt + σ (r, T ) dw

The price of a zero-coupon bond is a function of such interest rates and is given
by B(t, T ) = exp [−r (t, T )(T − t)] whose differential equation (see the mathe-
matical Appendix to this chapter)

0 = ∂ B

∂t
+ ∂ B

∂r
[µ(r, T ) − λ(r, t)] + 1

2

∂2 B

∂r2
σ 2(r, T ) − r B

B(r, T, T ) = 1

where the price of risk, a known function of r and time t , is proportional to the
returns standard deviation and given by:

α(r, t, T ) = r + λ(r, t)
1

B

∂ B

∂r

The solution of this equation, although cumbersome, can in some cases be deter-
mined analytically, and in others it can be solved numerically. For example, if we
set (µ(r, T ) − λ(r, t)) = θ ; σ 2(r, T ) = ρ2 where (θ, ρ) are constant then a solu-
tion of the partial differential equation of the bond price (see the Mathematical
Appendix), we obtain an affine structure type:

B(r, t, T ) = exp

{
−r (T − t) − 1

2
θ (T − t)2 + 1

6
ρ2(T − t)3

}

Problem
Set the following equalities: µ(r, T ) − λ(r, t) = k(θ − r ); σ 2(r, T ) = ρ2r
(which is the CIR model seen earlier) and show that the solution for the bond
price equation is of the following form:

B(r, t, T ) = exp {A(T − t) + r D(T − t)}
A solution for the function A(.) and D(.) can be found by substitution.
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8.6 OPTIONS ON BONDS∗

Options on bonds are compound options, traded popularly in financial markets.
The valuation of these options requires both an interest-rate model and the valua-
tion of term structure bond prices (which depend on the interest rates for various
maturities of the bond). For instance, say that there is a T bond call option, which
confers the right to exercise it at time S < T . The procedure we adopt in valuing
a call option on a bond consists then in two steps. First we evaluate the term
structure for a T and an S bond. Then we can proceed to value the call on the T
bond with exercise at time S (used to replace the spot price at time S in the plain
vanilla option model of Black–Scholes). The procedure is explicitly given by the
following. First we construct a hedging portfolio consisting of the two bonds ma-
turities S and T (S < T ). Such a portfolio can generate a synthetic rate, equated
to the spot interest rate so that no arbitrage is possible. In this manner, we value the
option on the bond uniquely. An extended development is considered in the Math-
ematical Appendix while here we summarize essential results. Let, for example,
the interest process:

dr = µ(r, t) dt + σ (r, t) dw

A portfolio (nS, nT ) of these two bonds has a value and a rate of return given by:

V = nS B(t, S) + nT B(t, T ) and
dV

V
= nS

dB(t, S)

B(t, S)
+ nT

dB(t, T )

B(t, T )

The rates of return on T and S bonds are assumed given as in the previous section.
Each bond with maturity T and S has at its exercise time a $1 denomination, thus
the value of each of these (S and T ) bonds is given by BT (t, r ) and BS(t, r ). Given
these two bonds, we define the option value of a call on a T bond with S < T
and strike price K , to be:

X = Max [B(S, T ) − K , 0]

with B(S, T ) the price of the T bond at time S. The bond value B(S, T ) is of
course found by solving for the term structure equation and equating B(r, S, T ) =
B(S, T ). To simplify matters, say that the solution (value at time t) for the T bond
is given by F(t, r, T ), then at time S, this value is: F(S, r, T ) to which we equate
B(S, T ). In other words,

X = Max [F(S, r, T ) − K , 0]

Now, if the option price is B(.), then, as we have seen in the plain vanilla model
in Chapter 6, the value of the bond is found by solving for P(.) in the following
partial differential equation:

0 = ∂ B

∂t
+ µ(r, t)

∂ B

∂r
+ σ 2 1

2

∂2 B

∂r2
− r B, B(S, r ) = Max [F(S, r, T ) − K , 0]
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A special case of interest consists again in using an affine term structure (ATS)
model as shown above in which case:

F(t, r, T ) = eA(t,T )−r D(t,T )

where A(.) and D(.) are calculated by the term structure model. The price of an
option of the bond is thus given by the solution of the bond partial differential
equation, for which a number of special cases have been solved analytically. When
this is not the case, we must turn to numerical or simulation techniques.

8.6.1 Convertible bonds

Convertible bonds confer the right to the bond issuer to convert the bond into stock
or into certain amounts of money that include the conversion cost. For example,
if the bond can be converted against m shares of stock, whose price dynamics is:

dS = µS dt + σ S dw

Then, the bond price is necessarily a function of the stock price and given by
V (S, t). To value such a bond we proceed ‘as usual’ by constructing an equivalent
risk-free and replicating portfolio. Let this risk-free portfolio be:

π = V + αS and therefore dπ = dV + α dS

For this portfolio to be risk-free, we equate it to a portfolio whose rate of return is
the risk-free rate R f . Thus, dπ = dV + α dS = R f πdt = R f (V + αS) dt and
dV = R f (V + αS) dt − α dS. Using Ito’s Lemma, we calculate dV leading to:

∂V

∂t
dt +

(
∂V

∂S

)
dS + 1

2

∂2V

∂S2
(dS)2 = R f (V + αS) dt − α dS

which can be rearranged to:
[
∂V

∂t
+ µS

∂V

∂S
+ σ 2S2

2

∂2V

∂S2
+ αµS − R f V − αR f S

]
dt

+ σ S

(
∂V

∂S
+ α

)
dw = 0

A risk-free portfolio has no volatility and therefore we require:

σ S

(
∂V

∂S
+ α

)
dw = 0 or α = −∂V

∂S

Inserting α = − ∂V /∂S yields the following partial differential equation:

∂V

∂t
+ σ 2S2

2

∂2V

∂S2
+ R f S

∂V

∂S
− R f V = 0, V (S, T ) = 1

where at redemption the bond equals $1. If the conversion cost is C(S, t) = mS,
the least cost is Min {V (S, t), C(S, t)}. Therefore, in the continuation region (i.e.
as long as we do not convert the bonds into stocks), we have: V (S, t) ≥ C(S, t) =
mS while in the stopping region (i.e. at conversion) we have: V (S, t) ≤ mS. In
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other words, the convertible option has the value of an American option which
we solve as indicated in Chapter 6. It can also be formulated as a stopping time
problem, but this is left as an exercise for the motivated reader.

8.6.2 Caps, floors, collars and range notes

A cap is a contract guaranteeing that a floating interest rate is capped. For example,
let r� be a floating rate and let rc be an interest rate cap. If we assume that the
floating rate equals approximately the spot rate, r ≈ r� then a simple caplet is
priced by:

∂V

∂t
+ [µ(r, t) − λσ ]

∂ P

∂r
+ σ 2 1

2

∂2V

∂r2
− r V, V (r, T ) = Max [r − rc, 0]

with the cap being a series of caplets. By the same token, a floor ensures that the
interest rate is bounded below by the rate floor: r f . Thus, the rate at which a cash
flow is valued is: Max (r f − r�, 0), r� ≥ rc. Again, if we assume that the floating
rate equals the short rate, we have a floorlet price given by:

∂V

∂t
+ [µ(r, t) − λσ ]

∂ P

∂r
+ σ 2 1

2

∂2V

∂r2
− r V, V (r, T ) = Max

[
r f − r, 0

]

while the floor is a series of floorlets. A collar, places both an upper and a lower
bound on interest payments, however. A collar can thus be viewed as a long
position on a cap, with a given strike rc and a short position on a floor with a
lower strike r f . If the interest rate falls below r f , the holder is forced into paying
the higher rate of r f . The strike price of the call is often set up so that the cost of
the cap is exactly subsidized by the revenue from the sale of the floor. When the
interest rate on a notional principal is bounded above and below, then we have a
range note. In this case, the value of the range note can be solved by using the
differential equations framework as follows:

∂V

∂t
+ [µ(r, t) − λσ ]

∂ P

∂r
+ σ 2 1

2

∂2V

∂r2
− r V + �(r )

= 0; �(r ) =
{

r if r < r < r̄
0 otherwise

This is only an approximation since, in practice, the relevant interest rate will
have a finite maturity (Wilmott, 2000).

8.6.3 Swaps

An interest rate swap is a private agreement between two parties to exchange one
stream of cash flow for another on a specific amount of principal for a specific
period of time. Investors use swaps to exchange fixed-rate liabilities/assets into
floating-rate liabilities/assets and vice versa.

Interest rate swaps are most important in practice. They emerged in the 1980s
and their growth has been spectacular ever since. They are essentially customized
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commodity exchange agreements between two parties to make periodic payments
to each other according to well-defined rules. In the simplest of interest rate
swaps, one part periodically pays a cash flow determined by a fixed interest rate
and receives a cash flow determined by a floating interest rate (Ritchken, lecture
notes, 2002).

For example, consider Company A with $50 000 000 of floating-rate debt out-
standing on which it is paying LIBOR plus 150 bps (basis points), i.e. if LIBOR
is 4 %, the interest rate would be 5.5 %. The company thinks that interest rates
will rise, i.e. company’s interest expense will rise, and the company decides to
convert its debt from floating-rate into fixed-rate debt. Now consider Company
B which has $50 000 000 of fixed-rate 6 % debt. The company thinks that inter-
est rates will fall, which would benefit the company if it has floating-rate debt
instead of fixed-rate debt, since its interest expense will be reduced. By entering
into an interest rate swap with Company A, both parties can effectively convert
their existing liabilities into the ones they truly want. In this swap, Company A
might agree to pay Company B fixed-rate interest payments of 5 % and Com-
pany B might agree to pay Company A floating-rate interest payments of LIBOR.
Therefore Company A will pay LIBOR + 150 to its original lender and 5 % in
the swap, giving a total of LIBOR + 6.5 %; it receives LIBOR in the swap. This
leaves an all-in cost of funds of 6.5 %, a fixed rate. In the case of Company B, it
pays 6 % to its original lender and LIBOR in the swap, giving a total of LIBOR
+ 6 %. In return it receives 5 % in the swap, leaving an all-in cost of LIBOR +
1 %, a floating rate (see Figure 8.7).

There are four major components to a swap: the notional principal amount,
the interest rate for each party, the frequency of cash exchange and the duration
of the swap. A typical swap in swap jargon might be $20m, two-year, pay fixed,
receive variable, semi. Translated, this swap would be for $20m notional principal,
where one party would pay a fixed interest-rate payment for every 6 months
based on the $20m and the counterparty would pay a variable rate payment every
6 months based on the $20m. The variable-rate payment is usually based on a
specific short-term interest rate index such as the 6-months LIBOR. The time
period specified by the variable rate index usually coincides with the frequency
of swap payments. For example, a swap that is fixed versus 6 months LIBOR
would have semiannual payments. Of course there can be exceptions to this rule.

Figure 8.7 A swap contract.
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For example, the variable-rate payment could be linked to the average of all T-bill
auction rates during the time period between settlements.

Most interest rate swaps have payment date arrears. That is, the net cash flow
between parties is established at the beginning of the period, but is actually paid
out at the end of the period. The fixed rate for a generic swap is usually quoted
as some spread over benchmark US treasuries. For example a quote of ‘20 over’
for a 5-year swap implies that the fixed rate on a 5-year swap will be set at the
5-year Treasury yield that exists at the time of pricing plus 20 basis point. Usually,
swap spreads are quoted against the two, three, five, seven and ten benchmark
maturities. The yield used for other swaps (such as a 4-year swap) is then obtained
by averaging the surrounding yields.

Finally, a ‘swaption’ is an option to swap. It confers the right to enter into a
swap contract at a predetermined future date at a fixed-rate and be a payer at the
fixed rate. ‘Captions’ and ‘floortions’ are similarly options on caps and floors
respectively.

A swap price can be defined by a cap–floor parity, where

Cap = Floor + Swap

In other words, the price of a swap equals the price difference between the cap and
the floor. A caplet can be shown to be equivalent to the price of a put option expiring
at a time ti−1 prior to a bond’s maturity at time ti . Set the payoff Max(r� − rc, 0)
a period hence, which is discounted to ti−1 and yielding:

1

1 + r�

Max (r� − rc, 0) = Max

(
r� − rc

1 + r�

, 0

)
= Max

(
1 − 1 + rc

1 + r�

, 0

)

However (1 + rc)/(1 + r�) is the price of paying 1 + rc a period hence. Thus a
caplet is equivalent to a put option expiring at ti−1 on a bond with maturity ti .
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MATHEMATICAL APPENDIX

A.1: Term structure and interest rates

Let the interest-rate process:

dr (t, T ) = µ(r, T ) dt + σ (r, T ) dw

The price of a zero-coupon bond is a function of such interest rates which we can
assume to be:

dB(t, T )

B(t, T )
= α(r, t, T ) dt + β(r, t, T ) dw

with (α(r, t, T ), β(r, t, T )) the parameters denoting the drift and diffusion of the
bond’s return. To determine these parameters, we apply Ito’s Lemma’s to:

B(t, T ) = exp[−r (t, T )(T − t)]

leading to:

dB(t, T ) =
[
∂ B

∂t
+ ∂ B

∂r
µ(r, T ) + 1

2

∂2 B

∂r2
σ 2(r, T )

]
dt + ∂ B

∂r
σ (r, T ) dw

and therefore, by equating the two equations, the bond and the term structure
interest-rate model, we have:

α(r, t, T )B =
[
∂ B

∂t
+ ∂ B

∂r
µ(r, T ) + 1

2

∂2 B

∂r2
σ 2(r, T )

]
; β(r, t, T )B = ∂ B

∂r
σ (r, T )

Now assume that the risk premium is proportional to the returns standard devia-
tion. Assuming that the price of risk is a known function of r and time t , we have
thus:

α(r, t, T ) = r + λ(r, t)
1

B

∂ B

∂r

which we insert in the Bond equation derived above leading to:

r B + λ(r, t)
∂ B

∂r
=

[
∂ B

∂t
+ ∂ B

∂r
µ(r, T ) + 1

2

∂2 B

∂r2
σ 2(r, T )

]
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and finally we obtain a partial differential equation whose solution provides the
price of a zero-coupon bond with maturity T ,

0 = ∂ B

∂t
+ ∂ B

∂r
(µ(r, T ) − λ(r, t)) + 1

2

∂2 B

∂r2
σ 2(r, T ) − r B

B(r, T, T ) = 1

A.2: Options on bonds

Let for example, the interest process:

dr = µ(r, t) dt + σ (r, t) dw

A synthetic portfolio (nS, nT ) of two S and T bonds has a value and a rate of
return given by:

V = nS B(t, S) + nT B(t, T ) and
dV

V
= nS

dB(t, S)

B(t, S)
+ nT

dB(t, T )

B(t, T )

The rates of return on the T and S bonds are (as shown previously):

dB(t, T )

B(t, T )
= αT (r, t) dt + βT (r, t) dw

αT (r, t) = 1

B(t, T )

[
∂ B

∂t
+ ∂ B

∂r
µ(r, T ) + 1

2

∂2 B

∂r2
σ 2(r, T )

]
;

βT (r, t) = 1

B(t, T )

∂ B

∂r
σ (r, T )

dB(t, S)

B(t, S)
= αS(r, t) dt + βS(r, t) dw

αS(r, t) = 1

B(t, S)

[
∂ B

∂t
+ ∂ B

∂r
µ(r, S) + 1

2

∂2 B

∂r2
σ 2(r, S)

]
;

βS (r, t) = 1

B(t, S)

∂ B

∂r
σ (r, S)

We replace these terms in the synthetic bond portfolio leading to:

dV

V
= (nSαS + nT αT ) dt + (nSβS + nT βT ) dw

A risk-free portfolio has no volatility, however. If the portfolio initial value is one
dollar (V = 1), we can then specify two equations in the two unknown portfolio
parameters (nS, nT ) which we can solve simply. Explicitly, these equations are:

{
nSβS + nT βT = 0

nS + nT = 1 and






nS = βT

βT − βS

nT = − βS

βT − βS
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The risk-free (synthetic) portfolio has thus a rate of growth, called the synthetic
rate k(t), explicitly given by:

dV

V
=

(
βT αS − βSαT

βT − βS

)
dt = k(t) dt

This rate is equated to the spot rate r (t), providing thereby the following equality:

r (t) = βT αS − βSαT

βT − βS
or λ(t) = r (t) − αS

βS
= r (t) − αT

βT

where λ(t) denotes the price of risk per unit volatility. Each bond with maturity T
and S has at its exercise time a $1 denomination, thus the value of each of these
(S and T ) bonds is:

0 = ∂ BT

∂t
+ ∂ BT

∂r
[µ(r, T ) − λβT ] + 1

2

∂2 B

∂r2
β2

T − r BT , B(r, T ) = 1

0 = ∂ BS

∂t
+ ∂ BS

∂r
[µ(r, S) − λβS] + 1

2

∂2 B

∂r2
β2

S − r BS, B(r, S) = 1

Given a solution to these two equations, we define the option value of a call
on a T bond with S < T and strike price K , to be: X = Max [B(S, T ) − K , 0]
with B(S, T ) the price of the T bond at time S. The bond value B(S, T ) is of
course found by solving for the term structure equation and equating B(r, S, T ) =
B(S, T ). To simplify matters, say that the solution (value at time t) for the T bond
is given by F(t, r, T ), then at time S, this value is: F(S, r, T ) to which we equate
B(S, T ). In other words,

X = Max [F(S, r, T ) − K , 0]

Now, if the option price is B(.), then as we have seen in the plain vanilla model
in the previous chapter, the value of the bond is found by solving for B(.) in the
following partial differential equation:

0 = ∂ B

∂t
+ µ(r, t)

∂ B

∂r
+ σ 2 1

2

∂2 B

∂r2
− r B, B(S, r ) = Max [F(S, r, T ) − K , 0]

as indicated in the text.



CHAPTER 9

Incomplete Markets and
Stochastic Volatility

9.1 VOLATILITY DEFINED

Volatility pricing, estimation and analysis are topics of considerable interest in
finance. The value of an option, for example, depends on the volatility, which
cannot be observed directly but must be estimated or guessed – the larger the
volatility the larger the value of an option. Thus, trading in options requires that
volatility be predicted and positions taken to profit from forthcoming high volatil-
ity and vice versa from forthcoming low volatility. In many instances, attempts
are also made to manage volatility, either by using derivative-based strategies
or by some other creative means, such as ‘certification’. In a past issue of The
Economist (18 August 2001, p. 56), an article on ‘Fishy Math’ pointed out that
salmon certification may stabilize prices and thereby profit Alaska’s fishermen.
To do so, options were used by the MSC (the Marine Stewardship Council, a
not-for-profit agency that campaigns for sustaining fishing), to value the certi-
fication of Alaska salmon, claimed to ensure a certain standard of fishery and
environmental management which customers are said to value. For fishermen, a
long-term benefit would be to reduce the volatility of salmon prices and thereby
increase the value of their catch. The valuation of such profits was found by the
MSC using Black–Scholes options. That is to say, the options prices implied by
those two levels of volatility – what a reasonable person would expect to pay to
hedge the price risk before and after certification – were calculated and compared,
indicating a profit for fishermen, a profit sufficient to cover the cost of certification.
Choosing a model of volatility is critical in the valuation of derivatives, however.
In a stable economic environment it makes sense to use plain vanilla models.
However, there is ample historical evidence that this may not be the case and
therefore volatility, and in particular stochastic volatility, can be the cause of mar-
ket incompleteness and create appreciable difficulties in pricing assets and their
derivatives. The study of volatility is thus important, for both these and many other
reasons. For example, the validation of fundamental financial theory presumes
both the ‘predictability’ of future prices and interest rates, as well as other relevant
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time series. Financial markets and processes where the underlying uncertainty is
modelled by ‘random walks’ are such an instance, since they can provide future
predictions, albeit characterized by a known probability distribution. The random
walk hypothesis further implies, as we saw earlier; independent increments, inde-
pendently and identically distributed Gaussian random variables with mean zero
and a linear growth of variance. Statistically independent increments imply in
fact, ‘a linear growth of uncertainty’. Technically, this is shown by noting that the
functional relationship, implying independence, f (t + s) = f (t) + f (s) implies
a linear growth since it is uniquely given by the linear time function, f (t + s) =
(t + s) f (0).

This facet of ‘linear growth of uncertainty’ has been severely criticized as too
simplistic, ignoring the long-term dependence of financial time series. Further,
empirical evidence has shown that financial series are not always ‘well-behaved’
and thus, cannot be always predicted. For this reason, extensive research has
been initiated seeking to explain, for example, the leptokurtic character of rates
of returns distributions, the ‘chaotic behaviour’ of time series, underscoring the
‘unpredictability of future asset prices’. These approaches characterize ‘nonlin-
ear science’ approaches to finance. Practically, ‘bursts’ of activity, ‘feedback
volatility’ and broadly varying behaviours by stock market agents, ‘memory’
etc., are contributing to processes which do not exhibit predictable price pro-
cesses and therefore violate the presumptions of fundamental finance. The study
of these series has motivated a number of approaches falling under a number
of themes spanning: fat tails (or Pareto–Levy stable) distribution analysis char-
acterized by infinite variance; long-term memory and dependence characterized
by explosive growth of volatility; chaotic analysis; Lyapunov stability analy-
sis; complexity analysis; fractional Brownian motion; multifractal time series
analysis; R/S (range to scale) analysis etc. Extensive study has been devoted to
these methods (see, for example, the review papers of Mandelbrot (1997a) and
Lo (1997)).

Volatility modelling and estimation is often specialized to the second mo-
ment evolution of a price process, but it is much more. Generally, we say that
a random variable, say the returns x is more volatile than a random variable
y if for all a > 0, the cumulative density functions of the returns distributions
FX (.), FY (.) satisfies, FX (a) > FY (a). The mathematics of ‘stochastic ordering’
consisting in comparing and ordering distributions, as above, has focused finan-
cial managers’ attention on such measurements using terms such as ‘stochastic
dominance’ (or first, second and third degree), ‘hazard rate dominance’, convex
dominance, etc. These techniques have the advantage of being utility-free, but they
are not easy to apply, nor is it always possible to do so. A practical measurement
of volatility is thus problematic. When the underlying distribution of a process is
Normal, consisting of two parameters, the mean and the variance, it makes sense
to accept the standard deviation as a measure of volatility. However, when the un-
derlying distribution is not Normal (as with leptokurtic distributions, expressing
asymmetry in the distribution), the definition of what constitutes volatility has
to be dealt with carefully. An appropriate measure of volatility is thus far from
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being unique, albeit a process standard deviation is often used and will be used
in this chapter. There are other indicators of volatility, such as the range R, the
semi-variance, R/S statistics (see the last section in this chapter for a develop-
ment and explanations of such statistics) etc. providing thereby more than one
approach and more than one statistical measurement to express the volatility of a
series.

Given the importance of volatility, a broad number of approaches and tech-
niques have been applied to measure and model it. The simplest case is, of course,
the constant (variance) volatility model implied in random walk models. When
the variance changes over time (whether it is stochastic or not), models of volatil-
ity are needed that are both economically acceptable and statistically measurable.
We shall provide a brief overview of these techniques in this chapter since they
are currently a ‘workhorse’ of financial statistics.

9.2 MEMORY AND VOLATILITY

‘Memory’ represents quantitatively the effects of past states on the current one
and how we use it to construct forecasts of future states. A temporal ‘indepen-
dence’ is equivalent to a ‘timeless’ situation in which the events reached at
one point in time are independent of past and future states. In this circum-
stance, there is no ‘memory’ and volatility tends to be smaller. A temporal de-
pendence induces time correlations, however, and thereby a process variance
(volatility) growth. Time and memory, in both psychological and quantitative
senses, can also form the basis for distinguishing among past, present and future.
Objectively, the present is now; subjectively, however, the present also consists of
past and future. This idea has been stated clearly by St Augustine (Confessions,
Book XI, xx):

yet perchance it might be properly said, ‘there be three times; a present of things past, a present
of things present, and a present of things future.’ For these three do exist in some sort, in the
soul, but otherwise I do not see them; present of things past, memory; present of things present,
sight; present of things future, expectation.

We are thus always in the present. But the present has three dimensions:

(1) The present of the past.
(2) The present of the present.
(3) The present of the future.

Technically, we construct the past with experiences and empirical observa-
tions of the (price) process as it unfolds over time; our construction of the future
(prices), on the other hand, must be in terms of indeterminate and uncertain events
which are our best assessment of the future (price) at a given (filtered) present
time. To a large extent, ‘technical analysis’ in finance uses such an approach. We
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have different mechanisms for establishing things past and establishing things
future. Our ability to relate the past and the future to each other – i.e. to make
sense of temporal change – by means of a temporal ‘sequentiality’ is the prime
reason for studying memory processes. For example, ‘remembering that stock
markets behave cyclically’ might induce a cyclical behaviour of prices (which
need not, of course, be the case). ‘Remembering’, i.e. recording the claims history
of an insured over the last years, may be used to determine a premium payments
schedule. The ‘health’ history of a patient might provide important clues to deter-
mining the probabilities of his survival over time as he approaches ages where a
population has a tendency to be depleted. In finance, these issues are particularly
relevant. Rational expectations and its risk-neutral pricing framework squarely
states that ‘there is no memory of the past’ since all current price values are ‘an
estimate of future prices’. In this sense, in a rational expectations framework, the
‘present is the anticipation of the future at the known risk-free rate’. By the same
token, the SDF (stochastic discount factor) claims essentially the same but with-
out specifying a deterministic kernel for discounting future states. By contrast,
charting approaches in finance state that there is a memory of the past which
is used through modelling based on past data to determine current prices. The
financial dilemma regarding rational expectations and charting is thus reduced
to a memory issue and how it affects the process of price formation. Potential
approaches can be summarized by:

(1) No memory in which case the past and the future have no effect on current
prices.

(2) Anticipative (rational expectations or SDF) memory in which current prices
are defined in terms of a predictable ‘expectation’ of future prices.

(3) Long-run memory, expressing the inter-relationship of past events and
current prices and therefore the omnipresent effects of the past in any
present.

For example, if speculative prices exhibit dependency, then the existence of such
dependency would be inconsistent with rational expectations and would thus
make a strong case for technical forecasting on stock prices (contrary to the con-
ventional assumption that prices fluctuate randomly and are thus unpredictable).
In addition, the notion of market efficiency is dependent on ‘market memory’.
Fama (1970) defines explicitly an efficient market as one in which information is
instantly reflected in the market price. This means that, provided all the past infor-
mation F(t) at time t is used, a market is efficient if its expected price conditioned
by this information equals the current price. Thus for a given time t + T and
price p(t), we have, as seen previously: p(t) = E[p(t + T ) |F(t)] . As time goes
by, additional information is obtained and F(t) grows to include more informa-
tion (a new filtration) F(t + 1) and thus p(t + 1) = E[p(t + 1 + T ) |F(t + 1)] .
This property of markets efficiency (assuming that it exists) underlies the martin-
gale approach to finance, as we saw earlier. Without it, markets have a mea-
sure of ‘predictability’ and can thus lead to some investor making arbitrage
profits.
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9.3 VOLATILITY, EQUILIBRIUM AND INCOMPLETE MARKETS

Volatility, and in particular stochastic volatility, is an increasingly important issue
dealt with by financial managers. The Financial Times for example, reported in
1997 (although it could be any year):

The New York Stock Exchange (NYSE) has been swinging far more wildly than in previous
years. The events of 1997 that struck stock markets throughout Asia and subsequently in Europe
and in the US are additional proof that volatility (stochastic) is becoming a determinant factor
of stock values. This has an important effect on investments and investing behaviour. Some
investors, for example, are ‘tiptoeing’ away from the stock market and sitting on cash rather
than stocks. Others are lulled by the swings in stock values and as a result are becoming less
sensitive to these variations (which may be a costly strategy to follow if the stock market were
to decline significantly). This year for example, there were daily price drops of more than 3 %,
a phenomenon which in years past would have attracted a great deal of attention and warnings.
Past experience has also indicated that when the volatility increases, it may signal a downturn
on the stock market (although, it has also signalled upturns on the stock market – but less
often). In any case, a growth of volatility makes investors rethink their strategy and thereby, to
change their portfolio holdings.

Stochastic volatility is often used as a proof that markets are incomplete (since
the former implies the latter). In other words, it implies an underlying departure
from conventional approaches to economics and finance that invalidates risk-
neutral pricing. Incompleteness, thus, reflects our inability to explain uniquely
prices’ formation. Ever since the Second World War change has been plentiful,
providing an opportunity to explain why volatility may have grown or changed.
Some factors contributing to an appreciable change in economics and finance
theories that seek to explain the behaviour of financial markets include among
others:

� The demise of Bretton Woods.
� The liberalization of the financial sector worldwide.
� Globalization through the growth of multinational firms, cross-boundary cap-

ital flows etc.
� The growth of derivatives and related products that have enriched financial

theories and financial markets but at the same time have allowed the use of
financial products on an unprecedented scale.

Explicitly, economic theory has changed! Classical equilibrium precepts,
coined by the Arrow–Debreu–Mackenzie studies have diverted attention to dis-
equilibrium theories, information asymmetries, organization and the effects of
contracts on economic behaviour. Economic and finance theories have recog-
nized these changes that led to new approaches – both theoretical and practical
and underlie to a large extent fundamental finance. The assumption of the ratio-
nal expectations hypothesis that markets clear (i.e. decision and expectations are
compatible both in current and derivatives markets in the present and the future),
the assumption that decision makers are homogeneous, self-interested, rational
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and informed, with common knowledge of the market statistics came in some
cases to be doubtful. As a result, the study of incompleteness and situations in-
volving bounded rationality, information asymmetry, utility maximizing decision
makers etc. have also become important elements to reckon with in devising a
mechanism for the valuation and pricing of assets.

Although financial economics has greatly contributed to finance practice, both
through its approach to valuation by risk-neutral pricing and in a better under-
standing of financial market mechanisms, there are some problems to be reck-
oned with. First, financial theory is based on assumptions that are not always
right. In this case, we ought to develop other theories to compensate for the-
oretical imperfections. For these reasons, making sure that financial theory as-
sumptions are validated is essential for making money using ‘complete market
models’.

9.3.1 Incomplete markets

Markets are incomplete when any random cash flow cannot be generated by some
portfolio strategy. The market is then deemed ‘not rich enough’. Technically, this
means that the number of assets that make up a portfolio is smaller than the
number of market risk sources plus one, or:

number of assets ≤ Number of risk sources + 1

When this is not the case, we cannot replicate, for example, an option’s implied
cash flow and thus, are unable to value the option uniquely. For this, as well as
other reasons, incompleteness, implying non-uniqueness in pricing, is particularly
important. Non-uniqueness can arise for many reasons, however, including for
example issues:

� Due to pricing, rationality and psychology.
� Due to information asymmetries and networking.
� Due to transaction costs.
� Due to stochastic volatility.

If markets are not complete or close to it, financial markets have problems to value
assets and investments. Some cases are well studied, however (transaction costs
for certain types of assets, some problems associated with stochastic volatility),
where one uses additional sources of information to replicate a derived finan-
cial asset. Financial markets may be perceived as too risky, perhaps ‘chaotic’, and
therefore profits may be too volatile; the risk premium would then be too high and
investment horizons smaller, thereby reducing investments. Finally, contingent
claims may have an infinite number of prices (or equivalently an infinite number
of martingale measures). As a result, valuation becomes forcibly utility-based,
which is ‘subjective’ rather than based on the market mechanism. In these circum-
stances, the SDF (stochastic discount factor) framework presented in Chapter 3 is
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particularly useful, providing an empirical approach to pricing (risk-discounting)
financial assets.

Example: Sources of incompleteness
(1) Incompleteness can arise in many circumstances. Below, a few are summa-

rized briefly:
� Because of lack of liquidity (leading to market-makers’ and bid/ask

spreads – for which trading micro-models are constructed).
� Because of excessive friction defined in terms of: taxes; indivisibility of

assets; varying rates for lending and borrowing, such as no short sales
and various portfolio constraints.

� Because of transaction costs leading to ‘friction’ in market transactions.
� Because of insiders trading introducing a risk originating in information

asymmetries and leading thereby to assets mis-pricing.
(2) Arbitrage: The existence of arbitrage opportunities implies nonviable mar-

kets rendering the unique determination of contingent claim prices impos-
sible. If there is arbitrage, there will be trade only out of equilibrium and
thus the fundamental theory of finance will not be again applicable and
risk-neutral pricing cannot be applied.

(3) Network and information asymmetries: Networks of hedge funds, commu-
nicating with each other and often coordinated explicitly and implicitly and
herding into speculative activities can lead to market inefficiencies, thus
contradicting a basic hypothesis in finance assuming that agents are price
takers. In networks, the information exchange provides a potential for in-
formation asymmetries or at least delays in information. In this sense, the
existence of networks in their broadest and weakest form may also cause
market incompleteness.

(4) Pricing and classical contract theory: Transaction costs, informational
asymmetries in the Arrow–Debreu paradigm, lead to significant amend-
ments of classical analysis. For example, analysis of competition in the
presence of moral hazard and adverse selection lead to stressing substantial
differences between trade on ‘contracts’ and trade on contingent commodi-
ties. The profit associated with the sale of one unit of a (contingent) good
depends then only on its price. Further, the profitability of the sale of one
contract may also depend on the identity of the buyer. Identity matters, either
because the buyer has bought other contracts (the exclusivity problem) or
because profitability of the sales depends on the buyer’s characteristics, also
known as the screening problem. These issues relate to financial intermedia-
tion too, where special attention must be given to the effects of informational
asymmetries to better understand prices and how they differ from the ‘social
values of commodities’.

(5) Psychology and rationality: The Financial Times has pointed out that some
investment funds seek to capitalize on human frailties to make money. For
example: Are financial managers human? Are they always rational, mim-
icking Star Trek’s Mr Spock? Are they devoid of emotions and irrationality?
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Psychological decision-making processes integrated in economic rationales
have raised serious concerns regarding the rationality axioms of DM pro-
cesses, as was discussed in Chapters 2 and 3. There are, of course, many
challenges to reckon with in understanding human behaviour. Some of these
include:
� Thought processes based on decision-making approaches focusing on

the big picture versus compartmentalization.
� The effects of under- and over-confidence on decision making.
� The application of heuristics of various sorts applied to trading.

These psychological aspects underpin an important trend in finance called ‘Be-
havioral Finance’ and at the same they provide and presume important sources of
incompleteness, stimulating research to bridge observed and normative economic
behaviour.

9.4 PROCESS VARIANCE AND VOLATILITY

Say that a stock price has a time-variant mean and standard deviation given by
(µt , σt ). In other words, if we let zt be a standard random variable then the
record of the series can be written as follows : xt = µt + σt zt . When the standard
deviation is known, the time series can be used to estimate the mean parameter
(even if it is time-variant). When the variance is not known, it is necessary to
estimate it as well. Such estimation is usually difficult and requires that specific
models describing the evolution of the variance be constructed. For example, if
we standardize the time series, we obtain a standard normal probability random
variable for the error as seen below,

zt = xt − µt

σt
∼ N (0, 1)

We can rewrite this model by setting εt = σt zt where the error has a zero mean
(usually obtained by de-trending the time series). If the standard deviation is
not known, then of course the error is no longer normal and therefore there are
statistical problems associated with its estimation. Models of the type ARCH and
GARCH seek to estimate this variance by using the residual squared deviations.
There are many ways to proceed, however, from both a modelling and a statistical
point of view, rendering volatility modelling a challenging task. Empirical finance
research has sought to explain volatility in terms of the randomness of incoming
information and trading processes. In the first instance, volatility is explained
by the effects of external events which were not accounted for initially, while
in the latter instance it is based on the behaviour of traders, buyers and sellers
that induce greater volatility (such as herd or other systematic and unsystematic
behaviours). The number of approaches and statistical techniques one may use for
estimating volatility vary as well. For this reason, we shall consider some simple
cases, although numerous studies, both methodological and empirical, abound.
Many references related to these topics are included as well in the ‘References
and additional reading at the end of the chapter.
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Example
Let Rt+1, the returns of a firm at time t + 1, be unknown at time t and assume
that mean returns forecast at time t are given by the next period expectation µt =
Et (Rt+1).This means that the conditional expectation of the one-period returns
‘forecast’ can be calculated. Such a model assumes rational expectations since
current returns are strictly an expectation of future ones. At present, hypothesize
a model for the error, given by εt – also called the innovation. Thus, a one-period
ahead return can be written by:

Rt+1 = µt + εt+1

The volatility (or the return variance) is by definition:

σ 2
t = Et

(
R2

t+1

) − µ2
t = Et

(
ε2

t+1

)

which is presumed either known or unknown, in which case it is a stochastic
volatility model. A simple variance estimate can be based on statistical historical
averages. That is to say, using closing daily financial prices Pt (spot on stocks for
example) and in particular using daily proportional price change: Rt = ln Pt −
ln Pt−1, we obtain (historical) estimates for the mean and the variance:

µ = 1

T

T∑

t=1

Rt ; σ 2 = 1

T − 1

T∑

t=1

(Rt − µ)2

By the same token we can use the daily range (or a Hi, Lo statistic) for volatil-
ity estimation. This is justified by the fact that for identically and independently
distributed (iid) large sample statistics, the range and the variance have, approxi-
mately, equivalent distributions. Then,

σ = 0.627

T − 1

T∑

t=1

ln (Ht/Lt )

where (Ht , Lt ) are the high and low prices of the trading day respectively.
Historical estimation can be developed further by building weighted estimation

schemes, giving greater prominence to recent data compared to past data. In other
words, say that a volatility estimate is given by a weighted sum of squares of past
returns:

σ̂ 2
t = Et

(
R2

t+1

) = w0 +
k∑

i=1

wi (t)R2
t+i−1

where wi (t) denotes the weight at time t associated to past returns. Variance
models may be differentiated then by the weighting schemes we use. For the
naı̈ve historical model, we have:

σ̂ 2
t = Et

(
R2

t+1

) = 1

T

T∑

i=1

R2
t+i−1; wi (t) = 1

T

For an exponential smoothing of volatility forecasts, as done by Riskmetrics, we
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have:

σ̂ 2
t = Et

(
R2

t+1

) =
∞∑

i=1

θ i−1 R2
t+i−1; wi (t) = θ i−1, 0 ≤ θ i−1 ≤ 1

since:

σ̂ 2
t =

∞∑

i=1

θ i−1 R2
t+i−1 = R2

t−1 + θ

∞∑

i=1

θ i−1 R2
t−1+i−1

and we obtain the recursive scheme:

σ̂ 2
t = R2

t−1 + θσ̂ 2
t−1

Extensions were suggested by Engle (1987, 1995) (ARCH models) and Bollerslev
(GARCH models). There are other estimation techniques such as nonparametric
models that are harder to specify. In these cases, the weighting function w(xt−i )
expresses a memory based on a number of state variables. Such approaches are in
general difficult to estimate. The importance of ARCH and GARCH modelling
in financial statistics cannot be overestimated, however. Econometric software
makes it possible to perform such statistical analyses with great ease, using general
models of the variance. For further study we refer to Bollerslev (1986), Nelson
and Foster (1994), Taylor (1986), and Engle and Bollerslev (1986).

Example: Stochastic volatility and process discretization
A stochastic volatility model can be obtained by discretization of a plain vanilla
continuous-time model. This demonstrates that in handling theoretical models
for practical ends and discretizing the model we may also introduce problems
associated with stochastic volatility. Say that an asset price is given by the often-
used lognormal model:

dS

S
= µ dt + σ dW

where µ is asset rate of return and σ is its volatility. An application of Ito’s
differential rule to Y = ln S, yields:

dY =
(

µ − σ 2

2

)
dt + σ dW

A simple discretization with a time interval �k, needed for estimation purposes,
yields:

Yk − Yk−1 =
(

µ − σ 2

2

)
�k +

(
σ
√

�k
)

Zk ; Zk ∼ N(0, 1); k = 1, 2, . . .

A linear regression provides an estimate of
(
µ − σ 2/2

)
, requiring that the volatil-

ity be presumed known and constant for the estimate to be meaningful. If the
volatility is not known but it is also estimated by the data at hand, then another
regression is needed, supplied potentially by the ARCH–GARCH apparatus and
providing a simultaneous estimation of the model’s parameters. Such estimation
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subsumes, however, a stochastic volatility (since the volatility is error-prone and
estimated using historical values). As a result, discretization, even when it is
properly done, can lead to estimation problems that imply stochastic volatility.

9.5 IMPLICIT VOLATILITY AND THE VOLATILITY SMILE

It is possible to estimate volatility for traded stocks, exchange rates and other
financial instruments using the Black–Scholes (BS) equation. Note that the BS
equation is given as a function of volatility and a number of other variables
which are recorded easily or market-specified. As a result, we can use recorded
option prices to calculate, other things being equal, the corresponding volatility.
This is also called the implicit volatility. When there is no arbitrage (and the
BS equation provides the option price), the implicit volatility corresponds to the
actual volatility. Otherwise, there may be some opportunity for arbitrage profit.
Ever since the stock market crash of 1987, it has been noted that options’ implicit
volatility with the same maturity are a function of the strike. This is known as the
volatility smile, shown graphically in Figure 9.1. It is believed that this effect is
due to some extent to agents’ willingness to pay to hedge their position in case of
sudden and unpredictable market reversal. Of course, such a ‘smile’ has a direct
effect on return distributions which may no longer be normal but rather be defined
by a skewed distribution.

Explicitly, say that we use the BS formula, specified in Chapter 6:

W = F(p, t ; T, K , R f , σ ) = p(t)�(d1) − K e−R f (T −t)�(d2)

where σ is the volatility, T is the exercise (maturity) date, K is the exercise price
and R f is the risk-free interest rate and, of course, W , is the option price of the
underlying asset whose price a time t is equal to p(t) with:

�(y) = (2π )−1/2

y∫

−∞
e−u2/2 du,

d1 =
[

log(p(t)/K ) + (T − t)(R f + σ 2/2)

β
√

T − t

]
, d2 = d1 − σ

√
T − t,

A solution for σ , leads by implicit numerical techniques to a function which is

Figure 9.1
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given by:

σ = �(p, t ; T, K , R f , W )

In this manner, and using data for the option price, the volatility can be calculated.
This analysis presumes, of course, that the BS option is the proper function for
valuing an option on the stock exchange.

9.6 STOCHASTIC VOLATILITY MODELS

Stochastic volatility models presume that a process’s volatility (variance) varies
over time following some stochastic process, usually well specified. As a result,
it is presumed that volatility growth increases market unpredictability, thereby
rendering the application of the rational expectations hypothesis, at best, a tenuous
one. Modelling volatility models might require then a broad number of approaches
not falling under the ‘random walk hypothesis’. Techniques such as ARCH and
GARCH, we referred to, might be used to estimate empirically the volatility in
such cases. Below, we consider a number of problems and issues associated with
stochastic volatility in the valuation of financial assets.

Stochastic volatility introduces another ‘source of risk’, a volatility risk, when
we model an asset’s price (or returns). This leads to incompleteness and thus
to non-unique asset prices. Risk-neutral pricing is no longer applicable since the
probabilities calculated by the application of rational expectations (i.e. hedging to
eliminate all sources of risk and using the risk-free rate as a mechanism to replicate
assets) do not lead to risk-neutral valuation. For this reason, unless some other
asset can be used to ‘enrich’ a hedging portfolio (for the volatility risk as well),
we are limited to using approximations based on an economic rationale or on
some other principles so that our process can be constructed (and on the basis
of which risk-neutral pricing can be applied). A number of approaches can be
applied including:

� time contraction,
� approximate replication,
� approximate risk–neutral pricing valuation,
� bounding.

These approaches and related ones are the subject of much ongoing research.
Again, we shall consider some simple cases and, in some cases, define only a
quantitative framework of the problem at hand.

9.6.1 Stochastic volatility binomial models∗

Stochastic volatility has an important effect on the process underlying uncertainty,
altering the basic assumption of ‘normal’ or ‘binomial’ driving disturbances. To
see these effects we consider the simple binomial model we have used repeatedly
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Figure 9.2

and given below:

xt+1 − xt

xt
= αεt ; εt =

{
H p
L q

;

Here α denotes the process constant volatility. Now assume a mild stochastic
volatility. Namely, we let the volatility α assume a value of 1 and zero with
probabilities (pα, qα) leading to:

xt+1 − xt

xt
= α̃tεt ; εt =

{
H p
L q ; α̃t =

{
1 pα

0 qα

In this case, the random (binomial) volatility is reduced to a trinomial model (see
Figure 9.2) where p is the probability of the constant volatility model and pα

is the probability that volatility equals one and qα is the probability that there
is no volatility. For this simple case, already it is not possible to construct a
perfect hedge for, say, an option as we have done earlier. This is because there are
two sources of risk – one associated with the price and the other with volatility.
Assuming one asset only, the number of risk sources is larger than the number of
assets and therefore we have an incomplete market situation where prices need
not be unique.

When volatility is constant, note that αtεt is a random walk, but when volatility
is a random variable, the process α̃tεt is no longer a random walk. Let zt = α̃tεt

have a density function Fzt (.) and assume that the random walk and the volatility
are statistically independent (which is a strong assumption). Using elementary
probability calculations, we have:

Fzt (z) =
∞∫

0

Fα(α)Fε

( z

α

)dα

α
−

0∫

−∞
Fα(α)Fε

( z

α

)dα

α

For example, if the random walk εt = (+1, −1) is biased and with probabilities
(p, p̄), while volatility assumes two values α̃ = (a, b) with probabilities (q, q̄),
the following quadrinomial process results:

zt =






+a w.p. pq
+b w.p. pq̄
−b w.p. pq
−a w.p. p̄q

In other words, stochastic volatility has generated incompleteness in the form of
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a quadrinomial process. By enriching the potential states volatility may assume
we are augmenting the ‘volatility stochasticity’. Note, that it is not the size of
volatility that induces incompleteness but its uncertainty. We shall see below,
using a simple example, that the option of a ‘mild volatility’ process is larger
than a larger (constant) volatility process – hence, emphasizing the effects of
incompleteness (stochastic volatility) on option prices which in some cases can
be more important to greater (but constant) volatility.

Time contraction
The underlying rationale of ‘time contraction’ is a reverse discretization. In other
words, assuming that at the continuous-time limit, the underlying price process
can be represented by a stochastic differential equation of the Ito type, it is then
reasonable to assume that there is some binomial process that approximates the
underlying process. Of course, there may be more than one way to do so (thus
leading, potentially, to multiple prices) and therefore, this approach has to be
applied carefully to secure that the limit makes economic sense as well. In this
approach, a multinomial process is replaced by a binomial tree, consisting of as
many stages (discretized time) as are needed to replicate the underlying model.
For example, the trinomial process considered earlier can be reduced to a two-
stage tree as shown in Figure 9.3, where (p1, p2, p3) are assumed to be risk-neutral
probabilities, appropriately selected by replication. Note that we have necessarily:

p1 p2 = ppα

p1 p̄2 + p̄1 p3 = 1 − pα

p̄1 p̄3 = qp̄α

Since there are only two independent equations, we have in fact a system of three
variables in two equations that can be solved in a large number of ways (for
example as a function of p̄3). This means also that there is no unique price. In
this case,

p2 = [ppα/(p p̄α/ p̄3)]
p1 = 1 − (p p̄α/ p̄3)

x

Hx

Lx

x
ppα

qpα

1 pα x

Hx

Lx

x

A

B

1p
2p

3p−

Figure 9.3
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However, if we assume rational expectations, then:

A = 1

1 + R f
[p2(1 + H )x + p̄2x] and B = 1

1 + R f
[p3x + p̄3(1 + L)x]

and

1 =
(

1

1 + R f

)2

[p1 p2(1 + H ) + p1 p̄2 + p3 p̄1 + p̄1 p̄3(1 + L)]

which provides a third equation in (p1, p2, p3). Of course, for pα = 1 we have
nonstochastic volatility and, therefore, we can calculate the approximate risk-
neutral probabilities as a function of 0 < pα < 1. For simplicity, set p1 = p2 =
p3, then we have a quadratic equation:

0 =
[

p2 − 2
L

(H + L)
p −

(
1 + R f

)2 − 1 − L

(H + L)

]

whose solution is given by:

p = L

(H + L)
±

√(
L

H + L

)2

+ (1 + R f )2 − 1 − L

(H + L)

If we use the following parameters as an example, 1 + H = 1.4, 1 + L = 0.8,

R f = 0.04, the only feasible solution is:

p =
√

1 + (1 + 0.04)2 − 0.8

(0.2)
− 1 or p = 0.55177

Inserting in our equations:

A/x = 0.9615 [(0.55177)(1.4) + 0.44823] = 1.1737

B/x = 0.9615 [(0.55177) + 0.44823(0.8)] = 0.8753

In this particular case, the option price is given by:

C = 1

(1 + r )2
[p∗2(H − K )x] = 0.9245[0.3(0.55177)2x] = 0.084439x

We consider next the problem with mild volatility (see Figure 9.4) and
set: p′ = p∗2/pα = 0.3044/pα . If pα = 0.6, p′ = 0.50733. If we assume no
stochastic volatility but α =1 with probability 1 (that is a process more volatile
than the previous one), then the value of an option is calculated by p′ = p∗2/pα =
0.3044/pα . In addition, since pα = 1 we have p′ = 0.3044. As a result, the option
price is:

C = 1

1 + R
[p′(H − K )x] = 0.9245 [0.3044(1.4 − 1.1)x] = 0.08442x

compared with an option price with mild volatility given by C = 0.084439x .
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Thus, the difference due to the stochastic volatility growth is equal to 0.08442x
− 0.084439x = 0.00003x . In other words the value of an option increases both
with volatility and with stochastic volatility.

We can generalize this approach further. For example, if the volatility can
assume a number of potential values, say, α̃ = (0, 1, 2, 3, 4, 5), then it is possible
to reduce the ten-nomial process to a ten-stage binomial process as shown below.
Mathematically, this is given by:

xt+1 = xt + α̃εt and εt =
{+1 1/2

−1 1/2 ; α̃ =





0 w.p. p0

· · · · · · · · ·
5 w.p. p5

An analysis similar to the previous one provides the mechanism to calculate
the approximate binomial risk-neutral probability. Of course, in this model, the
single stage ten-nomial process is transformed into a nine-stage binomial process
(see Figure 9.5). The number of ways to do so might be very large, however.
Additional information and assumptions might then be needed to reduce the
number of possibilities and thereby constrain the set of prices the financial asset
can assume.

Ten-- nomial Nine-- stage binomial

Figure 9.5
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Problem
Consider the following stochastic volatility process:

xt+1 = xt + α̃εt ; εt =
{+1 1/2

−1 1/2 ; α̃ =
{

2 q
3 1 − q

Construct the equivalent binomial process and find the risk-neutral probabilities
coherent with such a process.

xα
t+1 = xα

t + zt ; zt =






+3 w.p. (0.5)(1 − q)
+2 w.p. (0.5)q
−2 w.p. (0.5)q
−3 w.p. (0.5)(1 − q)

This approach can be extended to continuous-time models. For example, assume
a mean reversion interest-rate model:

dS = µ(α − S) dt + V dW or S(t) = α + [S(0) − α ± V ε(t)] e−µt

where ε(t) is a standard random walk and V is a stochastic volatility given by:

dV = θ (β − V ) dt + κ dW or V (t) = β + [V (0) − β ± κη(t)] e−θ t

We assume that V ≥ 0 for simplicity. Note that the interest-rate process combines
two sources of risk given by (η(t), ε(t)) and therefore:

S(t) = S(0) e−µt + α(1 − e−µt )

± [
V (0) e−(θ+µ)t + β(e−µt − e−(θ+µ)t )

]
ε(t) ± κ e−(θ+µ)tη(t)ε(t)

The mean rate is therefore:

Ŝ(t) = S(0) e−µt + α(1 − e−µt ) + κ e−(θ+µ)t E [η(t)ε(t)]

Since [η(t), ε(t)] are standard random walks their covariation E[η(t)ε(t)] is equal
to 1/4, thus:

Ŝ(t) = α + e−µt [S(0) − α + κ e−θ t/4]

Since the resulting process is given explicitly by a quadrinomial process:

S(t) = S(0) e−µt + α(1 − e−µt ) ±
+ e−(µ+θ )t [V (0) + β(eθ t − 1) + κ] w.p. 1/4

+ e−(µ+θ )t [V (0) + β(eθ t − 1) − κ] w.p. 1/4

− e−(µ+θ )t [V (0) + β(eθ t − 1) − κ] w.p. 1/4

− e−(µ+θ )t [V (0) + β(eθ t − 1) + κ] w.p. 1/4

The interest-rate variance can be calculated easily since:

Var(S(t)) = e−2(θ+µ)t [V (0) + β(eθ t − 1) − (κ) /4]2 + κ2 e−2(µ+θ )t
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This process can be replaced by an approximate risk-neutral pricing process by
time contraction, by mean–variance hedging or by applying the principle of least
divergence as we shall see below.

(2) Mean variance replication hedging
This approach consists in the construction of a hedging portfolio in an incomplete
(stochastic volatility) market by equating ‘as much as possible’ the cash flows
resulting from the hedging portfolio and the option’s contract. We seek to do so,
while respecting the basic rules of rational expectations and risk-neutral pricing.
In particular, say that we consider a two-stage model (Figure 9.6; see also Chapter
6). Thus, assuming that a portfolio and an option have the same cash flow, (i.e.
W̃ (1) ≡ C̃(1)), their current price are necessarily equal, implying that: W (0) =
C(0). Since, by risk-neutral pricing,

C(0) = 1

1 + R f
EC̃(1); W (0) = 1

1 + R f
EW̃ (1) and C(0) = W (0)

or equivalently:

EW̃ (1) = ẼC(1) and further, EW̃ 2(1) = ẼC2(1)

These equations provide only four equations while the number of parameters
might be large. However, since a hedging portfolio can involve a far greater
number of parameters, it might be necessary to select an objective to minimize.
A number of possibilities are available.

A simple quadratic optimization problem consisting in the minimization of the
squared difference of probabilities associated to the binomial tree might be used.
Alternatively, the minimization of a hedging portfolio and the option ex-post
values of some option contract leads to the following:

Min Φ
p1,...,pn

= E(W̃ (1) − C̃(1))2
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subject to: W (0) = C(0) or

1

1 + R f
[EW̃ (1)]= 1

1 + R f
[EC̃(1)] and EW̃ 2(1) = EC̃2(1)

Of course the minimization objective can be simplified further to:

Min Φ
p1,..., pn

= EC̃2(1) − EW̃ (1)C̃(1) or Min Φ
p1,...,pn

=
n∑

i=1

pi (C
2
1i − W1i C1i )

where W1i , C1i are the hedging portfolio and option outcomes associated with
each of the events i that occurs with probability pi , i = 1, 2, . . . , n. For example,
consider the four-states model given above and assume a portfolio consisting of
stocks and bonds aS + B. Let K be the strike price with Si − K > 0, i = 1, 2 and
Si − K < 0, i = 3, 4 then the cash flows at time ‘1’ for the portfolio and the op-
tion are respectively aSi + (1 + R f )B, i = 1, 2, 3, 4 and (S1 − K , S2 − K , 0, 0)
as shown in Figure 9.7. The following and explicit nonlinear optimization problem
results:

Min Φ
p1,...,p4

=
2∑

i=1

pi (Si − K )[(1 − a)Si − K − (1 + R f )B)]

Subject to:

a
4∑

i=1

pi (Si − S) + R f B =
2∑

i=1

pi (Si − K ) and

S = 1

1 + R f

4∑

i=1

pi Si ,

4∑

i=1

pi = 1; pi ≥ 0

Explicitly, say that we have the following parameters:

S1 = 110, S2 = 100, S3 = 90, S4 = 80, S = 90, K = 95, R f = 0.12

 

Hedging
portfolio

Option
cash flow

aS+(1+r)B

C(0)

1p
2p

3p

4p

1 (1 )aS r B

4 (1 )aS r B

0

0

2S K

1S K−

−

Figure 9.7
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Then, our problem is reduced to a nonlinear optimization problem:

Min Φ
p1,...,p4

= 3p1 (110a − 15 − 1.12B)) + p2 (100a − 5 − 1.12B))

Subject to:

4ap1 + 2ap2 − 2ap4 + 0.024B = 3p1 + p2

1.09126p1 + 0.99206p2 + 0.8928p3 + 0.79365p4 = 1

p1 + p2 + p3 + p4 = 1; pi ≥ 0

The problem can of course be solved easily by standard nonlinear optimization
software.

Example
Let Sj , j = 1, 2, . . . , n be the n states a stock can assume at the time an op-
tion can be exercised. We set, S0 < S1 < S2 < · · · < Sn and define the buy-
ing and selling prices of the stock by: Sa, Sb respectively. By the same token,
we define the corresponding observed call option prices Ca, Cb. Let p be the
probability of a price increase. Of course, if the ex-post price is, Sn , this will
correspond to the stock increasing each time period with probability given by:
Pn = (n

n
)

pn(1 − p)n−n = pn . By the same token, the probability of the stock
having a price Sj corresponding to the stock increasing j times and decreasing
n − j times is given by the binomial probability:

Pj =
(

n
j

)
p j (1 − p)n− j

As a result, we have, under risk-neutral pricing:

S = 1

1 + R f

n∑

j=0

Pj S j = 1

1 + R f

n∑

j=0

Sj

(
n
j

)
p j (1 − p)n− j ; Sa ≤ S ≤ Sb

and the call option price is:

C =
n∑

j=0

C j = 1

(1 + R f )n

n∑

j=0

(
n
j

)
p j (1 − p)n− j Max(Sj − K , 0)

subject to an appropriate constraint on the call options values, Ca ≤ C ≤ Cb.
Note that S and C , as well as p, are the only unknown values so far. While the
buy and sell values for stock and option, the strike time n and its price K , as well as
the risk-free discount rate and future prices Sj , are given. Our problem at present
is to select an objective to optimize and calculate the risk-neutral probabilities.
We can do so by minimizing the quadratic distance between a portfolio of a unit
of stock and a bond B. At time n, the portfolio is equal aSj + (1 + r )n B if the
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price is, Sj . Of course, initially, the portfolio equals:

S = 1

(1 + R f )n

(
a

n∑

j=0

Pj S j + (1 + R f )n B

)

As a result, the least squares replicating portfolio is given by:

Φ =
n∑

j=1

Pj (aSj + (1 + R f )n B − Max(Sj − K , 0))2

leading to the following optimization problem:

Min
1≥p≥0,C,S

� =
n∑

j=1

(
n
j

)
p j (1 − p)n− j [aSj + (1 + R f )n B − Max(Sj − K , 0)]2

Subject to:

S = 1

(1 + R f )n

n∑

j=0

(
n
j

)
p j (1 − p)n− j S j ; Sa ≤ S ≤ Sb

C = 1

(1 + r )n

n∑

j=0

(
n
j

)
p j (1 − p)n− j Max(Sj − K , 0); Ca ≤ C ≤ Cb

aS + B = C

This is again a tractable nonlinear optimization problem.

(3) Divergence and entropy
Divergence is defined in terms of directional discrimination information
(Kullback, 1959) which can be measured in discrete states by two probability
distributions say, (pi , qi ), i = 1, 2, . . . , m, as follows.

I (p, q) =
m∑

i=1

pi log
pi

qi
; I (q, p) =

m∑

i=1

qi log
qi

pi

while the divergence is:

J (p, q) = I (p, q) + I (q, p) =
m∑

i=1

pi log
pi

qi
+

m∑

i=1

qi log
qi

pi

and finally,

J (p, q) =
m∑

i=1

(pi − qi ) log
pi

qi

This expression measures the ‘distance’ between these two probability distribu-
tions. When they are the same their value is null and therefore, given a distribution
‘p’, a distribution ‘q’ can be selected by the minimization of the divergence, subject
to a number of conditions imposed on both distributions ‘p’ and ‘q’ (such as expec-
tations, second moments, risk-neutral pricing etc.). For example, one distribution
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may be an empirical distribution while the other may be theoretical, providing
the parameters needed for the application of approximate risk-neutral pricing.

This approach can be generalized further to a bivariate state, involving time as
well as states. In this case, we have for each time period:

I (p, q) =
T∑

t=1

n∑

i=1

pit log

(
pit
qit

)
; J (p, q) =

T∑

t=1

n∑

i=1

(pit − qit ) log

(
pit

qit

)

where the following constraints must be satisfied:
n∑

i=1

pit = 1;
n∑

i=1

qit = 1; pit ≥ 0, qit ≥ 0

Moments conditions as well as other constraints may be imposed as well, pro-
viding a ‘least divergence’ risk-neutral pricing approximation to the empirical
(incomplete) distribution.

Example
Consider the following random volatility process

xα
t+1 = xα

t + zt ; zt =






+3 w.p. (0.5)(1 − q)
+1 w.p. (0.5)q
−1 w.p. (0.5)q
−3 w.p. (0.5)(1 − q)

A three-stage standard binomial process leads to:

xα
t+1 = xα

t + zt ; zt =






+3 w.p. (0.5)(1 − q) ↔ π3

+1 w.p. (0.5)q ↔ 3π2(1 − π )

−1 w.p. (0.5)q ↔ 3π (1 − π )2

−3 w.p. (0.5)(1 − q) ↔ (1 − π )3

As a result, we can calculate the probability π by minimizing the divergence J
which is given by an appropriate choice of π :

J = [π3 − (0.5)(1 − q)] log

(
2π3

1 − q

)
+ [3π2(1 − π ) − (0.5)q]

× log

(
6π2(1 − π )

q

)
+ [3π (1 − π )2 − (0.5)q] log

(
6π (1 − π )2

q

)

+ [(1 − π )3 − (0.5)(1 − q)] log

(
2(1 − π )3

1 − q

)

Of course other constraints may be imposed as well. Namely, if the current price
is $1, we have by risk-neutral pricing the constraint:

1 =
(

1

1 + R f

)2

[3π3 + π2(1 − π ) − π (1 − π )2 − 3(1 − π )3]; 0 ≤ π ≤ 1
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As a result, the least divergence parameter π is found by solving the optimization
problem above.

9.7 EQUILIBRIUM, SDF AND THE EULER EQUATIONS∗

We have seen, throughout Chapters 5, 6 and 7, the importance of the rational
expectations hypothesis as a concept of equilibrium for determining asset prices.
In Chapter 3, we have also used the maximization of the expected utility of
consumption to determine a rationality leading to a pricing mechanism we have
called the SDF (stochastic discount factor). In other words, while in rational
expectations we have an asset price determined by:

Current price = 1

1 + R f
E∗ {Future Prices}

where E∗ denotes expectation with respect to a ‘subjective’ probability (in J.
Muth, 1961 words) which we called the risk-neutral probability and R f is the
risk-free rate. In the SDF framework, we had:

Current price = E
{
Kernel ∗ Future Prices

}

In this section, we extend the two-period framework used in Chapter 3 to multiple
periods. To do so, we shall use Euler’s equation, providing the condition for an
equilibrium based on a rationality of expected utility of consumption. Let an
investor maximizing the expected utility of consumption:

Vt = Max
T −1∑

j=0

ρ j u(ct+ j ) + ρT G(WT )

where u(ct+ j ) is the utility of consumption at time t + j , T is the final time and
G(WT ) is the terminal wealth state at time T . At time t , the change rate in the
wealth is:

Wt − Wt−1 = �Wt = qt ct − Rt and therefore ct+ j = �Wt+ j + Rt+ j

qt+ j

We insert this last expression in the utility to be maximized:

Vt = Max
T −1∑

j=0

ρ j u

(
�Wt+ j + Rt+ j

qt+ j

)
+ ρT G(WT )

Application of Euler’s equation, a necessary condition for value maximization,
yields:

∂Vt

∂Wt+ j
− �

(
∂Vt

∂�Wt+ j

)
= 0
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Since

∂Vt

∂Wt+ j
= 0, �

(
∂Vt

∂�Wt+ j

)
= 0

and therefore we have the following ‘equilibrium’:

∂Vt

∂�Wt+ j
= ρ j

qt+ j

∂u(ct+ j )

∂�Wt+ j
= constant or

∂u(ct+ j−1)

∂�Wt+ j−1
= E

{
ρ

qt+ j−1

qt+ j

∂u(ct+ j )

∂�Wt+ j

}

In other words, the marginal utility of wealth increments (savings) equals the dis-
counted inflation-adjusted marginal utilities of consumption. If wealth is invested
in a portfolio of assets such that:

�Wt = (Nt − Nt−1)pt = pt�Nt and
∂Vt

∂�Wt+ j
= pt

∂u(ct+ j )

∂�Nt+ j

and therefore,

∂u(ct+ j−1)

∂�Nt+ j−1
pt−1 = E

{
ρ

qt+ j−1

qt+ j

∂u(ct+ j )

∂�Nt+ j
pt

}

and

pt−1 = E

{
ρ

qt+ j−1

qt+ j

u′(ct+ j )

u′(ct+ j−1)
pt

}
; u′(ct+ j ) = ∂u(ct+ j )

∂�Nt+ j

since at time t−1, the future price at time t is random, we have:

pt−1 = E {Mt pt} ; Mt = ρ
qt+ j−1

qt+ j

u′(ct+ j )

u′(ct+ j−1)

where Mt is the kernel, or the stochastic discount factor, expressing the ‘con-
sumption impatience’. This equation can also be written as follows:

1 + Rt = pt

pt−1
; 1 = E

{
Mt

pt

pt−1

}
→ 1 = E {Mt (1 + Rt ) |�t }

which is the standard form of the SDF equation.

Example: The risk-free rate
If pt is a bond worth $1 at time t , then for a risk-free discount rate:

1

1 + R f
= E {Mt} (1) and therefore E {Mt} = 1

1 + R f

This leads to:

Mt

E(Mt )
= ρ(1 + R f )

qt+ j−1

qt+ j

u′(ct+ j )

u′(ct+ j−1)
and finally to pt−1 = E∗

t

(
pt

1 + R f

)

where E∗
t is a modified (subjective) probability distribution.
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Example: Risk premium and the CAPM beta
For a particular risky asset, the CAPM provides a linear discount mechanism
which is:

Mt+1 = at + bt RM,t+1

In other words, for a given stock, whose rate of return is 1 + Rt+1 = pt+1/pt , we
have:

1 = E {Mt+1(1 + Rt+1)} → E(1 + Rt+1) = 1

E(Mt+1)
− cov (Mt+1, 1 + Rt+1)

E(Mt+1)

and therefore, upon introducing the linear SDF, we have:

E(1 + Rt+1) = 1

E(Mt+1)
− cov (Mt+1, 1 + Rt+1)

E(Mt+1)

After we insert the linear model for the kernel we have:

E(1 + Rt+1) = (1 + R f,t ) [1 − cov (Mt+1, 1 + Rt+1)] and

E(1 + Rt+1) = (1 + R f,t+1)[1 − cov(a + bRM,t+1, 1 + Rt+1)]

which is reduced to:

E(Rt+1 − R f,t+1) = cov(RM,t+1 − R f,t+1, Rt+1 − R f,t+1)

var(RM,t+1 − R f,t+1)
Et (RM,t+1 − R f,t+1)

or to

E(Rt+1 − R f,t+1) = βEt (RM,t+1 − R f,t+1)

However, the hypothesis that the kernel is linear may be limiting. Recent studies
have suggested that we use a quadratic measurement of risk with a kernel given
by:

Mt+1 = at + bt RM,t+1 + ct R2
M,t+1

In this case, the skewness of the distribution also enters into the determination of
the value of the stock.

9.8 SELECTED TOPICS∗

When a process has more sources of risk than assets, we are, as stated earlier, in an
incomplete market situation. In such cases it is possible to proceed in two ways.
Either find additional assets to use (for example, another option with different
maturity and strike price) or approximate the stochastic volatility process by
another risk-reduction process. There are two problems we shall consider in detail,
including (stochastic) jumps and stochastic volatility continuous type models.

Problems are of three types: first, how to construct a process describing reli-
ably the evolution of the variance; second, what are the sources of uncertainty
of volatility; and, third, how to represent the stochastic relationship between the
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underlying process and its volatility. These equations are difficult to justify ana-
lytically and therefore we shall be satisfied with any model that practically can
be used and can replicate historical statistical data. There are, however, a num-
ber of continuous-time models for stocks, returns, interest rates and other prices
and their volatility that are often used. We shall consider such a model in the
appendix to this chapter in detail to highlight some of the technical problems we
must resolve in order to deal with such problems.

9.8.1 The Hull and White model and stochastic volatility

Hull and White (1987) have suggested a stochastic volatility model in which
volatility is a geometric Brownian motion. This is written as follows:

dS/S = α dt + √
V dw, S(0) = S0; dV/V = µ dt + ξ dz, V (0) = v0;

E(dw dz) = ρdt

where V is the volatility while dw and dz are two Wiener processes, with cor-
relation ρ. A call option would in this case be a function of both S and V , or
C(t, S, V ). Since there are two sources of risk, the hedging (replicating) portfolio
must reflect this multiplicity of risks. Hull and White assume that the volatility risk
is perfectly diversifiable, consequently the volatility risk premium is null. Using a
Taylor series development of the option’s price allows the calculation of the value
of a call option as a function of small perturbations in volatility. The resulting
solution turns out to be (see the Appendix for a mathematical development):

1

dt
E

(
dC

C

)
= R f +

[
(α − R f )

S

C

∂C

∂S
+ λV

C

∂C

∂V

]

= 1

dt
E

{
∂C

C ∂t
dt + ∂C

C∂ S
dS + ∂C

C∂ V
dV + 1

2

∂2C

C∂ S2
[dS]2 + 1

2

∂2C

C∂ V 2
[dV ]2

+ ∂2C

C ∂ S∂V
[dS dV ]

}

After some additional manipulations, we obtain a partial differential equation in
two variables:

−R f − ∂C

C∂ t
= ∂C

C∂ S
R f S + ∂C

C∂ V
(µV − λV ) + 1

2

∂2C

C∂ S2
S2V

+1

2

∂2C

C∂ V 2
ξ 2V 2 + ∂2C

C ∂S ∂V
ρξ SV 3/2C(S, V, T ) = Max (S(T ) − K , 0)

where K is the strike price, λV = (µ − R f )VβV and while βV is the beta of the
volatility. The analytical treatment of such problems is clearly difficult. In 1976,
Cox introduced a model represented generally by:

dS = µ(S, t) dt + V (S, t) dW
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Additionally a volatility state that V (S, t) = σ Sδ with δ a real number between
0 and 1. Application of Ito’s Lemma, as seen in Chapter 4, leads to:

dV = ∂V

∂S

[
µ(S, t) + 1

2

∂2V

∂S2
V 2(S, t)

]
dt + V (S, t) dW

and in this special case, we have:

V (S) = σ Sδ,
∂V

∂S
= δσ Sδ−1,

∂2V

∂S2
= δ(δ − 1)σ Sδ−2

which we insert in the equation above to obtain a stochastic volatility model:

dV/V = δS−1

[
µ(S, t) + 1

2
δ(δ − 1)S−2V (S, t)

]
dt + dW

A broad number of other models can be constructed. In particular, for interest
rate models we saw in Chapter 8, mean reversion models. For example, Ornstein–
Uhlenbeck models of stochastic volatility are used with both additive and geo-
metric models for the volatility equation. The additive model is given by:

dS

S
= µ dt +

√
V dWt and dV = α(θ − V ) dt + ξ dW ′

t

while the geometric model is:

dS

S
= µ dt +

√
V dWt and

dV

V
= α(θ − V ) dt + ξ dW ′

In both cases the process is mean-reverting where θ corresponds to a volatility,
a deviation from which induces a volatility movement. It can thus be interpreted
as the long-run volatility. α is the mean reversion driving force while ξ is the
stochastic effect on volatility. The study of these models is in general difficult,
however.

9.8.2 Options and jump processes (Merton, 1976)

We shall consider next another ‘incomplete’ model with two sources of risk where
one of the sources is a jump. We treat this model in detail to highlight as well
the treatment of models with jumps. Merton considered such a problem for the
following price process:

dS

S
= α dt + σ dw + K dQ

where dQ is an adapted Poisson process with parameter q �t . In other words,
Q(t + �t) − Q(t) has a Poisson distribution function with mean q �t or for
infinitesimal time intervals:

dQ =
{

1 w.p. q dt
0 w.p. (1 − q) dt
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Let F = F(S, t) be the option price. When a jump occurs, the new option price
is F[S(1 + K )]. As a result,

dF = [F(S(1 + K )) − F] dQ

When no jump occurs, we have a process evolving according to the diffusion
process:

dF = ∂ F

∂t
dt + ∂ F

∂S
dS + 1

2

∂2 F

∂S2
(dS)2

Letting τ = T − t be the remaining time to the exercise date, we have:

dF =
[
−∂ F

∂τ
+ αS

∂ F

∂p
+ 1

2
S2σ 2 ∂2 F

∂S2

]
dt + Sσ

∂ F

∂S
dw

Combining these two equations, we obtain:

dF = a dt + b dw + c dQ

a =
[
−∂ F

∂τ
+ αS

∂ F

∂S
+ 1

2
S2σ 2 ∂2 F

∂S2

]
; b = Sσ

∂ F

∂S
; c = F[S(1 + K )] − F

with

E(dF) = [a + qc] dt since E(dQ) = q dt

To eliminate the stochastic elements (and thereby the risks implied in the price
process) in this equation, we construct a portfolio consisting of the option and a
stock. To eliminate the ‘Wiener risk’, i.e. the effect of ‘dw’, we let the portfolio
Z consist of a future contract whose price is S for which a proportion v of stock
options is sold (which will be calculated such that this risk disappears). In this
case, the value of the portfolio is:

dZ = Sα dt + Sσ dw + SK dQ − [va dt + vb dw + vc dQ]

If we set v = Sσ/b and insert in the equation above (as done by Black–Scholes),
then we will eliminate the ‘Wiener risk’ since:

dZ = S(α − σa/b) dt + (Sσ − vb) dw + S(K − σc/b) dQ

or

dZ = S(α − σa/b) dt + S(K − σc/b) dQ

In this case, if there is no jump, the evolution of the portfolio follows the differ-
ential equation:

dZ = S(α − σa/b) dt

However, if there is a jump, then the portfolio evolution is:

dZ = S(α − σa/b) dt + S(K − σc/b) dQ
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Since the jump probability equals, q dt,we obviously have:

E(dZ )

dt
= S(α − σa/b) + Sq(K − σc/b)

There remains a risk in the portfolio due to the jump. To eliminate it we can
construct another portfolio using an option F ′ (with exercise price E ′) and a future
contract such that the terms in dQ are eliminated as well. Then, constructing a
combination of the first (Z ) portfolio and the second portfolio (Z ′), both sources
of uncertainty will be eliminated. Applying an arbitrage argument (stating that
there cannot be a return to a riskless portfolio which is greater than the riskless
rate of return) we obtain the proper proportions of the riskless portfolio.

Alternatively, finance theory (and in particular, application of the CAPM (cap-
ital asset pricing model) state that any risky portfolio has a rate of return in a
small time interval dt which is equal the riskless rate plus a premium for the risk
assumed. Thus, using the CAPM we can write:

E
dZ

Z dt
= R f + λ

S(K − σc/b)

Z

where λ is assumed to be a constant and expresses the ‘market price’ for the
risk associated with a jump. This equation can be analysed further, leading to
the following partial differential equation which remains to be solved (once the
boundary conditions are specified):

−∂ F

∂τ
+ (λ − q)

{
SK

∂ F

∂S
− (F[S(1 + K ) − F)

}
+ 1

2

∂2 F

∂S2
S2σ 2 − R f F = 0

with boundary condition:

F(T ) = Max [0, S(T ) − E]

Of course, for an American option, it is necessary to specify the right to exercise
the option prior to its final exercise date, or

F(t) = Max[F∗(t), S(t) − E]

where F∗(t) is the value of the option which is not exercised at time t and given
by the solution of the equation above. The solution of this equation is of course
much more difficult than the Black–Scholes partial differential equation. Specific
cases have been solved analytically, while numerical techniques can be applied
to obtain numerical solutions.

9.9 THE RANGE PROCESS AND VOLATILITY

The range process of a time series is measured by the difference between the
largest and the lowest values the time series assumes within a given time interval.
It provides another indication for a process volatility with some noteworthy differ-
ences between the range and the process standard deviation (or variance). Explic-
itly, when a series becomes more volatile, the series standard deviation estimate
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varies more slowly than that of the range. Thus, a growth surge in volatility might
be detected more quickly using the range. By the same token, when the volatility
declines, the range process will be stabilized. These properties have been used,
for example, in the R/S (range to standard deviation statistic) applied in financial
analysis to detect volatility shifts. Both the variance and the range processes are
therefore two sources of information which are important. The Bloomberg, for
example, provides such a statistic for financial time series, also named the Hurst
exponent (Hurst, 1951) or the R/S index. This index is essentially a parameter
that seeks to quantify the statistical bias arising from self-similarity power laws
in time series. In other words, it expresses the degree of power nonlinearity in
the variance growth of the series. It is defined through rescaling the range into a
dimensionless factor.

Calculations for the range and the R/S statistic are made as follows. Samples
are of fixed length N are constructed, and thus the sample range is given by:

Rt,N = Max{yt,N } − Min{yt,N }
while the sample standard deviation is calculated by:

St,N =

√√√√√
N∑

i=1
(yt,i − �

yt,N )2

N − 1

where
�

yt,N is the sample average. A regression, (R/S) = (Const∗N )H provides
an estimate of H, the Hurst exponent, or using a logarithmic transformation:

In

(
RN

SN

)
= a + bH ; b = log(αN );

With the notation: H = Hurst exponent, R = sample’s range, S = sample’s stan-
dard deviation and finally α = a constant. For random (Normal) processes, the
Hurst index turns out to equal 0.5. While for any values larger than 0.5 obtained
in a regression, it may indicate ‘long-term dependence’. Use of the Hurst index
should be made carefully and critically, however. The origins of the Hurst ex-
ponent are due to Hurst who began working on the Nile River Dam project and
studied the random behaviour of the dam and the influx of water from rainfall
over the thousand years data have been recorded. The observation was made that
if the series were random, the range would increase with the square root of time –
A result confirmed by many time series as well as theoretically for normal pro-
cesses. Hurst noted explicitly that most natural phenomena follow a biased ran-
dom walk and thus characterized it by the parameter H expressing as well a
series’ dependence called by Mandelbrot the ‘Joseph effect’ (Joseph interpreted
Pharaolc’s dream as seven years of plenty followed by seven years of famine).
Explicitly, a correlation C between disjoint increments of the series is given by
C = 22H−1 − 1. Thus, if H = 0.5, the disjoint intervals are uncorrelated. For
H > 0.5, the series are correlated, exhibiting a memory effect as stated above
(which tends to amplify patterns in time series). For H < 0.5, these are called
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‘anti-persistent’ time series. Such analyses require large samples N , however,
which might not be always available. For this reason, such analyses are used
when series are long, such as sunspots, water levels of rivers, intra-day trading
stock market ticker data etc.

An attempt to represent these series, expressing a persistent behaviour (or
alternatively a nonlinear variance growth) was reached by Mandelbrot who in-
troduced a fractional Brownian motion, denoted by BH (t) (see also Greene and
Fielitz (1977, 1980) for an application in finance). A particular relationship for
fractional Brownian motion which is pointed out by Mandelbrot and Van Ness
(1968) is based on the self-similarity of the power law for such processes which
means that the increment for a time interval s are in distribution proportional to
s H , or:

BH (t + s) − BH (t) →
i.d.

s H [BH (t + 1) − BH (t)]

where i.d. means in distribution. Furthermore, the increments variance is:

E [BH (t + s) − BH (t)]2 = s2H E [BH (t + 1) − BH (t)]2

which means that the variance for any time interval s is equal to s2H times the
variance for the unit interval. Of course, it is now obvious that for H = 0.5, the
variance is linear (as is the case for random walks and for Brownian motion)
and it is nonlinear otherwise. In this sense, assuming a relationship between
the Hurst exponent (which is also a power law for the series) and the notion
of long-run dependence of series (modelled by fractional Brownian motion), an
estimate of the one is indicative of the other. From the finance point of view, such
observations are extremely important. First and foremost, long-run dependence
violates the basic assumptions made regarding price processes that are valued
under the assumption of complete markets. As such, they can be conceived as
statistical tests for ‘fundamental’ assumptions regarding the underlying process.
Second, the Hurst index can be used as a ‘herd effect’ index applied to stocks or
other time series, meaning that series volatility that have a tendency to grow, will
grow faster over time if the index is greater than 0.5 and vice versa if the index
is smaller than 0.5. For these reasons, the R/S index has also been associated to
‘chaos’, revealing series that are increasingly unpredictable.
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APPENDIX: DEVELOPMENT FOR THE HULL AND
WHITE MODEL (1987)∗

Consider the stochastic volatility model in which volatility is a geometric
Brownian motion. This is written as follows:

dS/S = µ dt + √
V dw, S(0) = S0

dV/V = α dt + β
√

V dz, V (0) = V0

where (w, z) are two Brownian motions with correlation ρ. A call option price
C(t, S, V ) would in this case be a function of time, S and V . Since there are two
sources of risk, the hedging (replicating) portfolio must reflect this multiplicity
of risks. Use Ito’s Lemma and obtain:

dC = ∂C

∂t
dt + ∂C

∂S
dS + ∂C

∂V
dV + 1

2

∂2C

∂S2
[dS]2 + 1

2

∂2C

∂V 2
[dV ]2

+ ∂2C

∂S ∂V
[dS dV ]
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It is a simple exercise to show that we have:

dC =





∂C

∂t
+ ∂C

∂S
αS + ∂C

∂V
µV

+ 1

2

∂2C

∂S2
[σ S]2 + 1

2

∂2C

∂V 2
[ξV ]2

+ ∂2C

∂S ∂V
(µV dt + ρξσ SV )





dt + ∂C

∂S
[σ S dW ] + ∂C

∂V
[ξV dZ ]

The first term in the brackets is a deterministic component while the remaining
ones are stochastic terms that we seek to reduce by hedging. For example, if
we construct a replicating portfolio consisting a riskless asset and a risky one,
we have a portfolio whose value is X = nS + (X − nS) where the investment in
a bond is B = (X − nS). Further, we equate the replicating portfolio X and its
differential dX with the option value and its differential (C, dC), leading to:

dX = n dS + dB = dC

Since for the riskless bond dB = R f B dt , we have also dC − n dS = R f B dt
which leads to:

0 = dC − n dS − R f B dt

=
[
−R f B +

(
∂C

∂S
− n

)
αS + ∂C

∂V
µV dt + ∂C

∂t
+ 1

2

∂2C

∂S2
[Sσ ]2

+ 1

2

∂2C

∂V 2
[Sξ ]2 + ∂2C

∂S ∂V
[ρSV σξ ]

]
dt +

(
∂C

∂S
− n

)
σ S dW + ∂C

∂V
ξV dZ

For a hedging portfolio we require:
(

∂C

∂S
− n

)
σ S = 0 → n = ∂C

∂S
as well as

∂C

∂V
ξV �= 0

which is clearly a nonreplicating portfolio. Of course, if the volatility is constant
then, ∂C/∂V = 0. In this case we have a replicating portfolio, however. For this
reason it is essential to seek another asset. There are a number of possibilities to
consider but for our current purpose we shall select another option. The replication
portfolio is then:

X = n1S + n2C2 + (X − n1S − n2C2), B = (X − n1S − n2C2)

where n1, n2 are the number of stock shares and an option of different maturity.
In this case, proceeding as before and replicating the option cash process by the
portfolio, we have dC1 = dX which implies:

dC1 − n1 dS − n2 dC2 = R f B dt = R f (C1 − n1S − n2C2) dt
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and therefore,

(dC1 − R f C1 dt) − n1(dS − R f S dt) − n2(dC2 − R f C2 dt) = 0

This provides the equations needed to determine a hedging portfolio. Set,

d�1 = (dC1 − R f C1 dt) → �1 = e−R f t C1

d�2 = (dp − R f S dt) → �2 = e−R f t S

d�3 = (dC2 − R f C2 dt) → �2 = e−R f t C2

and

d�1 = n1 d�2 + n2 d�3 or d

(
C1

eR f t

)
= n1 d

(
S

eR f t

)
+ n2 d

(
C2

eR f t

)

Further, if we write:

dC1

C1
= µ1 dt + σ1 dW1 and set λ1 = (µ1 − R f )

σ1
or

dC1

C1
− R f dt

= σ1 (λ1 dt + dW1) = σ1 dW ∗
1

With (λ1 dt + dW1) = dW ∗
1 , the risk-neutral measure. Applying a CAPM risk

valuation, we have:

1

dt
E

(
dC1

C1
− R f

)
= σ1λ1 = [(Rp − R f )βcp + (RV − R f )βcV ]

where (Rp) is the stock mean return,

βcp = p

C1

∂C1

∂p
βp

is the stock beta, (RV ) is the volatility drift, while

βcV = V

C1

∂C1

∂V
βV

is the beta due to volatility. We therefore obtain the following equations:

1

dt
E

(
dC1

C1

)
= R f +

[(
α − R f

) S

C1

∂C1

∂S
βp + (µ − S) βV

V

C1

∂C1

∂V

]

Rp = α; RV = µ, λV = (µ − R f )VβV

where λV is the risk premium associated to the volatility. Thus,

1

dt
E

(
dC1

C1

)
= R f +

[
(α − R f )

S

C1

∂C1

∂S
+ λV

C1

∂C1

∂V

]

which we equate to the option to value. Since

1

dt
E

(
dC

C

)
= R f +

[
(α − R f )

S

C

∂C

∂S
+ λV

C

∂C

∂V

]
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we obtain at last:

1

dt
E

(
dC

C

)
= 1

dt
E

{
∂C

C∂t
dt + ∂C

C∂S
dS + ∂C

C∂V
dV + 1

2

∂2C

C∂S2
[dS]2

+ 1

2

∂2C

C∂V 2
[dV ]2 + ∂2C

C ∂S ∂V
[dS dV ]

}

We equate these last two expressions and replace all terms for (dS, dV ) leading to
a partial differential equation in (t, S, V ) we might be able to solve numerically.
This equation is given in the text.



CHAPTER 10

Value at Risk and Risk
Management

10.1 INTRODUCTION

The definition of risk and its ‘translation’ into a viable set of indices is of practical
importance for risk management. Risk is generally defined in terms of the returns
variance. This is not the only approach, however. The range, semi-variance (also
called the downside risk), duration (measuring, rather, an exposure to risk as we
saw in Chapter 8) and the value at risk (VaR or the quantile risk) are some addi-
tional examples. Stone (1973) presented a class of risk measures which include
most of the empirical and theoretical class of risk measures. It is specified by the
following:

Rt (W0, k, A; f ) =



A∫

−∞
|W − W0|k ft (W ) dW




1/k

Note that Rt (Ŵ , 2, ∞; f ) denotes the standard deviation. The parameter A can be
used, however, to define semi-variance and other potential measures. This class
of risk measures is closely related to Fishburn’s (1977) measure, widely used in
economics and finance, or

Rα,t ( f ) =
t∫

−∞
(t − W )α f (W ) dW

It includes the variance and the semi-variance as special cases and α and t are two
parameters used to specify the attitude to risk. Practical measurements of risk are
extremely important for financial risk management. Artzner et al. (1997, 1999)
and Cvitanic and Karatzas (1999), for example, have sought to provide a system-
atic and coherent definition of risk measurement, consistent with applications to
financial products, and related to issues of:
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� diversification (through portfolio design),
� the use of derivatives for risk management,
� real options valuation,
� risk transfer and sharing (in insurance for example).

Artzner et al. (1997, 1999) have proposed a definition in terms of the required
reserve for the wealth state W of an insurance firm (and thus appropriate for
a regulator), denoted by R(W ). The required properties from such a ‘reserve
function’ are as follows:

(1) Monotonicity, meaning that the riskier the wealth, the larger the required
reserve.

(2) Invariance by drift, meaning that if wealth increases by a fixed quantity, then
the required reserve remains the same.

(3) Homogeneity, meaning that reserves are proportional to wealth, or in math-
ematical terms Rt (aW ) = a Rt (W ).

(4) Sub-additivity, and therefore Rt (W + W ∗) ≤ Rt (W ) + Rt (W ∗).

In particular, properties (3) and (4) imply convexity of the reserve function while
(4) implies the economic usefulness of merging portfolio holdings (i.e. diversifi-
cation). These axioms can be problematic, however (Shiu, 1999). For example,
homogeneity is not always reasonable. An insurance company may charge X
dollars to insure a person for a million dollars. It will not charge 1000X to insure
the same person for a billion dollars. Another way to put it is that an insurance
company would rather insure one-tenth of each of ten ships rather than insure all
of one ship.

Although VaR or ‘value at risk’, is a widely applied measure of risk, it does
not satisfy all the properties specified by Artzner et al. (1997). It is essentially
a quantile measure of risk expressing the expected loss resulting from potential
adverse market movements with a specified probability over a period of time.
The advantage of VaR is that it provides a single number which encapsulates the
portfolio risk and which can be applied easily by non-technically minded financial
risk managers. Its origin can be traced to the ‘4:15 report’ of Dennis Weatherstone,
chairman of JP Morgan who demanded that a one-page report be delivered to him
every day summarizing the company’s market exposure and providing an estimate
of the potential loss over the next trading day. By the same token, CAR, or capital
adequacy ratio (Jorion, 1997) is also used to compensate for market risk exposure.
In this case, financial institutions set aside a certain amount of capital so that the
probability that the institution will not survive adverse market conditions remains
very small.

Although the concept of VaR has its origin in the investment banking sector, the
recent generalization of its use by financial institutions is largely due to regula-
tory authorities. In April 1995, the Basle Committee announced that commercial
banks could use the results given by their internal model to compute the level
of regulatory capital corresponding to their market risk. The Basle Committee
officially recognized VaR as sound risk-management practice as it adopted the
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Figure 10.1 The VaR.

formula for the level of capital C given by:

Ct+1 = Max

[
VaRt , (M + m)

1

60

t−1∑

j=t−60

VaR j

]

where M is a factor whose value is arbitrarily set to 3 to provide near-absolute
insurance for bankruptcy, m is an additional factor whose value is between 0 and
1 and depends on the quality of the prediction of the internal model developed by
the institution. Finally, VaR j is the VaR calculated in the j th day. Recently, Basle
capital 2 has suggested a uniform specification (.99, 10), meaning a safety factor
of 99 % over 10 days.

A graphical representation of the VaR can be shown by the probability dis-
tribution of Figure 10.1, expressing the potential (and probabilistic) variations
in assets holdings over a specified period of time. Practically, it is not simple
to assess such a distribution, since many adverse and unpredictable events can
be rare and, therefore, mostly ignored. In addition, risks may arise from several
independent sources that may be difficult to specify in practice and the interac-
tion effects of which may be even more difficult to predict. Extensive research is
pursued that seeks to provide better probability estimates of the risks firms are
subject to.

10.2 VaR DEFINITIONS AND APPLICATIONS

VaR defines the loss in market value of say, a portfolio, over the time horizon T
that is exceeded with probability 1 − PVaR. In other words, it is the probability
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that returns (losses), say ξ , are smaller than −VaR over a period of time (horizon)
T , or:

PVaR = P(ξ < −VaR) =
−VaR∫

−∞
PT (ξ ) dξ

where PT (.) is the probability distribution of returns over the time period (0, T ).
When the returns are normal, VaR is equivalent to using the variance as a risk
measure. When risk is sensitive to rare events and extreme losses, we can fit ex-
treme distributions (such as the Weibull and Frechet distributions) or build models
based on simulation of VaR. When risks are recurrent, VaR can be estimated by
using historical time series while for new situations, scenarios simulation or the
construction of theoretical models are needed.

The application of VaR in practice is not without pitfalls, however. In the
financial crises of 1998, a bias had made it possible for banks to lend more
than they ought to, and still seem to meet VaR regulations. If market volatility
increases, capital has to be put up to meet CAR requirements or shrink the volume
of business to remain within regulatory requirements. As a result, reduction led to
a balance sheet leverage that led to a vicious twist in credit squeeze. In addition,
it can be shown, using theoretical arguments, that in nonlinear models (such
long-run memory and leptokurtic distributions), the exclusive use of the variance–
covariance of return processes (assuming the Normal distribution) can lead to VaR
understating risk. This may be evident since protection is sought from unexpected
events, while the use of the Normal distribution presumes that risk sources are
stable. This has led to the use of scenario and simulation techniques in calculating
the VaR. But here again, there are some problems. It is not always possible to
compare the VaR calculated using simulation and historical data. The two can
differ drastically and therefore, they can, in some cases, be hardly comparable.
Nonstationarities of the underlying return processes are also a source of risk since
they imply that return distributions can change over time. Thus, using stationary
parameters in calculating the VaR can be misleading again. Finally, one should be
aware that VaR is only one aspect of financial risk management and therefore over-
focusing on it, may lead to other aspects of risk management being neglected.
Nonetheless, VaR practice and diffusion and the convenient properties it has,
justifies that we devote particular attention to it. For example, the following VaR
properties are useful in financial risk management:

� Risks can be aggregated over various instruments and assets.
� VaR integrates diversification effects of portfolios, integrating a portfolio risk

properties. This allows the design of VaR-efficient portfolios as we shall see
later on.

� VaR provides a common language for risk management, applicable to portfolio
management, trading, investment and internal risk management.

� VaR is a simple tool for the selection of strategic risk preferences by top
management that can be decomposed in basic components and applied at
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Table 10.1 VaR methods and parameters in a number of banks.

Bank Technique applied Confidence interval Holding period

Abbey National Variance/covariance 95 % 1 day
Bank Paribas Monte Carlo simulations 99 % 1 day
BNP Variance/covariance 99 % 1 day
Deutsche Bank Paris Variance/covariance 99 % 1 day
Société Générale Historical simulation 99 % 10 days
Basle Committee Variance/covariance, 99 % 10 days or 1

historical simulation, (days∗√
10)

Monte Carlo

various levels of a portfolio, a firm or organization. Thus, risk constraints at
all levels of a hierarchical organization can be used coherently.

� Finally, VaR can be used as a mechanism to control the over-eagerness of some
traders who may assume unwarranted risks as this was the case with Barings
(see also Chapter 7).

Example: VaR in banking practice
Generally, the VaR used by banks converges to the Basle Committee specifications
as shown in Table 10.1. Most banks are only beginning to apply VaR methodolo-
gies, however. At the Société Générale, for example, market risk measurement
consists in measuring the potential loss due to an accident that may occur once in
10 years (with a confidence interval of 99.96 %). Correlations are ignored, lead-
ing thereby to an underestimation of this risk. This too, led to the introduction
of the VaR approach including correlations, with a probability of 99 %. The first
technique was maintained, however, in order to perform stress tests required by
regulators. In most banks the time period covered was one day, while the Basle
Committee requires 10 days. This means that VaR measures must be aggregated.
If risks are not correlated over time, then aggregation is simple, summarized by
their sum (and thus leading to a linear growth of variance). In this case, to move
from a one day to a 10-day VaR we calculate:

VaR10 days = VaR1 day ∗
√

10

When there is an inter-temporal correlation, or long-run memory, the calcula-
tion of the VaR is far more difficult (since the variance is essentially extremely
large and the measurement of VaR not realistic). Regulatory institutions, operat-
ing at international, EU and national levels have pressured banks to standardize
their measurements of risks and the application of controls, however. In particular,
the CRB operating by a regulation law of 21 July 1995 defines four market risks
that require VaR specification:

(1) Interest-rate risk: relating to obligations, titles, negotiable debts and related
instruments.
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(2) Price risk of titles and related instruments.
(3) Regulated credit risk
(4) Exchange risk.

Financial institutions have to determine market positions commensurate with
Basle (VaR) regulation for these risks.

Numerical examples
(1) Say that a firm buys in a position in DM that produces a loss if the dollar
appreciates (and a profit if it depreciates). We seek to determine the VaR cor-
responding to the maximum loss that can be sustained in 24 hours with a 5 %
probability. Assume that the returns distributions are stable over time. Based on
data covering the period of 2000 for the DM/USD exchange rate, a histogram
can be constructed and used to calculate the probability of an appreciation larger
than 5 %. The critical value for such dollar appreciation turns out to be 1.44 %;
which is applied to a market value of $1 million, and thereby leading to a VaR of
$14 400.

(2) A US investor assumes a long position of DM 140 millions. Volatility in
DM/USD FX is: 0.932 while the exchange rate is 1.40 DM/USD. As a result, the
VaR for the US investor is calculated by:

VaRUSD = 140 millions DM * 0.932 %/1.40DM/USD = 932 000 USD

(3) We define next two positions, each with it own VaR calculation, VaR1, VaR2

respectively. The VaR of both positions is thus

VaR =
√

VaR2
1 + VaR2

1 + 2ρ12VaR1VaR2

where ρ1,2 is the correlation of the positions. The US investor assumes then a long
position of DM 140 million in a German bond for 10 years (thereby maintaining
a long position in DM). The bond volatility is calculated to be: 0.999 % while
the DM/USD volatility is: 0.932 % with correlation −0.27. The interest-rate and
exchange-rate risks are thus:

Interest-rate risk: 140 million DM * 0.999 % / 1.40 = 999 000 USD

Exchange-rate risk: 140 million DM * 0.932 %/1.40 = 932 000 USD

As a result, the VaR in both positions is:

VaRUSD =
√

(999 000)2 + (932 000)2 + 2 * (−0.27) * 999 000 * 932 000

= 1.17 million USD

Non-diversifiable risks that have perfect correlation have a risk which is simply
their sum. A correlation 1 would thus lead to a risk of 999 000 USD + 932 000
USD = 1.93 million USD. When risk is diversifiable the risk can be reduced with
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the difference benefiting the investor. In our case, this is equal to: ($1.93 million
−$1.17 million = $760 000).

10.3 VaR STATISTICS

VaR statistics can be calculated in a number of ways. These include the analytic
variance–covariance approach, the Monte Carlo simulation and other approaches
based on extreme distributions and statistical models of various sorts. These
approaches are outlined next.

10.3.1 The historical VaR approach

The historical VaR generates scenarios directly from historical data. For each
day, returns and associated factors are assessed and characterized probabilisti-
cally. This approach generates a number of errors, however. First, markets may
be nonstationary and therefore the scenarios difficult to characterize. This has the
effect of overestimating the leptokurtic effect (due to heteroscedasticity) while ap-
plication of the VaR using simulation tends to underestimate these effects because
it uses theoretical distributions (such as the normal, the lognormal etc.)

10.3.2 The analytic variance–covariance approach

This approach assumes the normality of returns given by a mean and a standard
deviation. Thus, if X has a standard Normal distribution, N (0, 1), then P(X >

1.65) = 5 %. If we consider again the preceding example, the standard deviation
relative to the DM/USD exchange can be easily calculated. For 1995, it has a value
of 0.7495 %. Assuming a zero mean we can calculate for a risk of 5 % the value
1.645 as seen above. As a result, we obtain a critical value of 0.7495 * 1.645 =
1.233 %; and therefore a VaR of 12 330 USD.

In trading rooms, VaRs are the outcomes of multiple interacting risk factors
(exchange-rate risk, interest-rate risk, stock price risks etc. that may be correlated
as well). Their joint effects are, thus, assessed by the variance–covariance matrix.
For example, a portfolio consisting of a long position in DM and a short in yen
with a bivariate normal distribution for risk factors has a VaR that can be calculated
with great ease. Let σ1 and σ2 be the standard deviations of two risk factors and
let ρ1,2 be their correlation, the resultant standard deviation of the position is thus:

σp = 0.5
(
σ 2

1 + σ 2
2 + 2 * ρ1,2σ1σ2

)1/2

This is generalized to more than two factors as well. Problems arise regarding
the definition of multivariate risk distributions, however. Mostly, only marginal
distributions are given while the joint multivariate distribution is not easily ob-
servable – theoretically and statistically. Recent studies have supported the use
of Copula distributions. These distributions are based on the development of
a multivariate distribution of risks based on the specification of their marginal
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distributions. Such an approach is attracting currently much interest due to the
interaction effects of multiple risk sources where only marginal distributions are
directly observable. There are other techniques for deriving such distributions,
however. For example, the principle of maximum entropy (which we shall elabo-
rate below) also provides a mechanism for generating distributions based on the
partial information regarding these distributions.

10.3.3 VaR and extreme statistics

The usefulness of extreme statistics arises when the normal probability distribu-
tion is no longer applicable, underestimating the real risk to be dealt with, or when
investors may be sensitive to extreme losses. These distributions are defined over
the Max or the Min of a sample of random returns and have ‘fatter’ tails than
say the Normal distribution. For example, say that a portfolio has a loss density
function FR(x) while we seek the distribution of the largest loss of n periods:

Yn = Max{R1, R2, . . . , Rn}
Assuming all losses independent (which is usually a strong assumption), let R( j)

be the j th order statistic, with R(1) < R(2) < R(3) < · · · < R(n) over n periods. Let
Fj (R), j = 1, 2, . . . , n denote the density function of R( j). Then, the distribution
function of the maximum Yn = R(n) is given by:

Yn = R(n) = Max{R1, R2, . . . , Rn}
If we set a target maximum loss VaR with risk specification PV a R , then we ought
to construct a portfolio whose returns distribution yields:

PVaR = P(Yn < −VaR) =
−VaR∫

−∞
dFn(ξ )

In probability terms:

Fn(R) = P{R(n) < R} = P{all Ri < R} = [F(R)]n

Similarly for the minimum statistic: Y1 = R(1) = Min [R1, R2, . . . , Rn], we have,

F1(R) = P{R(1) < R} = 1 − Pr{R(1) > R} = 1 − Pr{ all Ri > R}
= 1 − [1 − F(R)]n

and generally, for the j th statistic,

F( j)(R) =
n∑

j=i

(
n
i

)
[F(R)]i [1 − F(R)]n−i

By deriving with respect to R, we have the distribution:

f j (R) = n!

( j − 1)!(n − j)!
f (R) [F(R)] j−1 [1 − F(R)]n− j
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If we concentrate our attention on the largest statistic, then in a sample of size
n, the cumulative distribution of the Max statistic is: FYn (x) = [FR(x)]n . At the
limit, when n is large, this distribution converges to Gumbel, Weibull or a Frechet
distributions, depending on the parameters of the distribution. This fact is an
essential motivation for their use in VaR analyses. These distributions are given
by:

Gumbel: FY (y) = exp(−e−y), y ∈ I R

Weibull: FY (y) =
{

exp
[−(−y)−k

]
for y < 0(k < 0)

0 for y ≥ 0

Frechet: FY (y) =
{

0 for y ≤ 0
exp (−y−k) for y > 0 (k > 0)

The VaR is then calculated simply since these distributions have analytical cu-
mulative probability distributions as specified above and as the example will
demonstrate.

Example: Weibull and Burr VaR
Assume a Weibull distribution for the Max loss, given by:

f (x/β) = aβxa−1 e−βxa
, x ≥ 0, ζ, a > 0; F(x) = 1 − e−βxa

where the mean and the variance are:

E(x) = βa

(
1

a
+ 1

)
, var(x) = β2a

[


(
2

a
+ 1

)
− 2

(
1

a
+ 1

)]

Say that the parameter β has a Gamma probability distribution given by: g(β) =
δβν−1 e−δβ , a mixture (Burr) distribution results, given by:

f (x) = ανxα−1

(xα + δ)δ+1 , F(x ≥ �) =
[

1 + �α

δ

]−ν

Thus, if the probability of a loss over the � = VaR is PVaR, we have:

PVaR = F(x ≥ VaR) =
[

1 + VaRα

δ

]−ν

and therefore,

VaR = [δ{[PVaR]−1/ν − 1}]1/α

The essential problem with the use of the extreme VaR approach, however, is
that for cumulative risks or stochastic risk processes, these distributions are not
applicable since the individual risk events are statistically dependent. In this sense,
extreme distributions when they are applied to general time-varying stochastic
portfolios have limited usefulness.

Example: The option VaR by Delta–Gamma
Consider an option value and assume that its underlying asset has a Normal
distribution. For simplicity, say that the option value is a function of an asset
price and time to maturity. A Taylor series approximation for the option price is
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then:

Vt+h − Vt ≈ δ(Pt+h − Pt ) + 1
2(Pt+h − Pt )2 + θh

δ = ∂Vt

∂ Pt
;  = ∂2Vt

∂ P2
t

, θ = ∂Vt

∂τ
, τ = T − t

The option’s rate of return is therefore:

RV = Vt+h − Vt

Vt
, Rp = Pt+h − Pt

Pt
, or

RV ≈ δRpη + 1

2
R2

pηP2 + θh/Vt ; η = Pt/Vt

Explicitly, we have then:

RV = η δRP + 0.5ηPt R2
P + n

(
θ

Vt

)

which can be used to establish the first four moments of the rates of return RV of
the option:

Option ROR Underlying

RV RP

Mean: 0.5̃σ 2
P + θ̃n 0

Variance: δ̃2σ 2
P + 0.5̃2σ 4

P σ 2
P

Skewness: 3δ̃2̃σ 4
P + ̃3σ 6

P 0

Kurtosis: 12δ̃2̃2σ 6
P + 3̃4σ 8

P + 3σ 4
P 3σ 4

P

In practice, after we calculate the Greek coefficients delta, gamma, theta and the
variance of the underlying furnished by Risk Metrics, the four moments allow an
estimation of the distribution. Such an approach can be generalized further to a
portfolio of derivatives and stocks, albeit calculations might be difficult.

10.3.4 Copulae and portfolio VaR Measurement

In practice, a portfolio consisting of many assets may involve ‘many sources of
risks’, which are in general difficult to assess singly and collectively. Empirical re-
search is then carried out to specify the risk properties of the underlying portfolio.
These topics are motivating extensive research efforts spanning both traditional
statistical approaches and other techniques. Assume that the wealth level of a
portfolio is defined as a nonlinear and differentiable function of a number of
assets written as follows:

Wt = F(P1t , P2t , P3t , . . . , Pnt , B)

with P1t , P2t , P3t , . . . , Pnt , the current prices of these assets, while B is a riskless
asset. The function F is assumed for the moment to be differentiable. Then, in a
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small interval of time, a first approximation yields:

�Wt = ∂ F

∂ P1t
�P1t + ∂ F

∂ P2t
�P2t + · · · + ∂ F

∂ Pnt
�Pnt + ∂ F

∂ B
�B

If we set Nit = ∂ F/∂ Pit to be the number of shares bought at t , we have a portfolio
whose process is:

�Wt = N1t �P1t + N2t �P2t + · · · + Nnt �Pnt + C �B

where C is the investment in a riskless asset. Assume for simplification that the
rate of return for each risky asset is αi t �t = E (�Pit/Pit ) while volatility is
σ 2

i t �t = var (�Pit/Pit ). A normal approximation, �Wt ∼ N(µt �t, �t �t) of
the portfolio with mean µt and variance–covariance matrix �t is:

µt = C �B +
n∑

i=1

Nit αit Pit; �t = 1

2

n∑

i=1

∂2 F

∂ P2
it

σ 2
it+

n∑

i= j

n∑

i=1

∂2 F

∂ Pit ∂ Pjt
[ρijσitσjt]

and, the VaR can be measured simply, as we saw earlier. This might not always be
possible, however. If the marginal distributions only are given (namely the mean
and the variances of each return distribution) it would be difficult to specify the
appropriate distribution of the multiple risk returns to adopt.

Copulae are multivariate distributions constructed by assuming that their
marginal distributions are known. For example (see Embrecht et al., 2001), given
two sources of risks (X1, X2), each with their own VaR appropriately calculated,
what is the VaR of the sum of the two, potentially interacting sources of risks
(X1 + X2)? Intuitively, the worst case VaR for a portfolio (X1 + X2) occurs when
the linear correlation is maximal. However, it is wrong in general. The problem
at hand is thus how to construct bounds for the VaR of the joint position and
determine how such bounds change when some of the assets may be statistically
dependent and when information is revealed, as the process unfolds over time.
The Copula provides such an approach which we briefly refer to. For example,
this approach can be summarized simply by a theorem of Sklar (see Embrechts
et al., 2001), stating that a joint distribution F has marginals (F1, F2) only if there
is a Copula such that:

F(x1, x2) = C [F1(x1), F2(x2)]

Inversely, given the marginals (F1, F2), the joint distribution can be constructed
by choosing an appropriate Copula C . This procedure is not simple to apply,
but recent studies have contributed to the theoretical foundations of this evolving
area of study. For example, if the marginal distributions are continuous, then
there is a unique Copula. In addition, Copulae structures can contribute to the
estimation of multiple risks VaR. Embrecht, Hoing and Juri (2001) and Embrecht,
Kluppelberg and Mikosch (1997) have studied these problems in great detail and
the motivated reader ought to consult these references first. Current research is
ongoing in specifying such functions and their properties.
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10.3.5 Multivariate risk functions and the principle of maximum entropy

When some characteristics, data or other information regarding the risk distribu-
tion are available, it is possible to define its underlying distribution by selecting
that distribution which assumes the ‘least’, that is the distribution with the greatest
variability, given the available information. One approach that allows the defini-
tion of such distributions is defined by the ‘maximum entropy principle’.

Entropy (or its negative, the negentropy) can be simply defined as a measure
for ‘departure from randomness’. Explicitly, the larger the entropy the more the
distribution departs from randomness and vice versa, the larger the negentropy,
the greater a distribution’s randomness. The origins of entropy arose in statis-
tical physics. Boltzmann observed that entropy relates to ‘missing information’
inasmuch as it pertains to the number of alternatives which remain possible to
a physical system after all the macrospically observable information concerning
it has been recorded. In this sense, information can be interpreted as that which
changes a system’s state of randomness (or, equivalently, as that quantity which
reduces entropy). For example, for a word, which has k letters, assuming zeros
and ones, and one two, define a sequence of k letters, (a0, a1, a2, . . . , ak),

ai =
{

1
0

for all i �= j, a j �= ai = 2 and one j . The total number of configurations (or
strings of k + 1 letters) that can be created is N where, N = 2k(k + 1). The
logarithm to the base 2 of this number of configurations is the information I , or
I = log2N and, in our case, I = k + log2(k + 1). The larger this number I , the
larger the number of possible configurations and therefore the larger the ‘random-
ness’ of the word. As a further example, assume an alphabet of G symbols and
consider messages consisting of N symbols. Say that the frequency of occurrence
of a letter is fi , i.e., in N symbols the letter G occurs on the average Ni = fi N
times. There may then be W different possible messages, where:

W = N !
N∏

i=1
Ni !

The uncertainty of an N symbols message is simply the ability to discern which
message is about to be received. Thus, if,

W = eHN and H = Lim
N→∞

1

N
log(W ) =

∑
pi log (1/pi )

which is also known as Shannon’s entropy. If the number of configurations (i.e.
W ) is reduced, then the ‘information’ increases. To see how the mathematical and
statistical properties of entropy may be used, we outline a number of problems.

(1) Discrimination and divergence
Consider, for example, two probability distributions given by [F, G], one the-
oretical and the other empirical. We want to construct a ‘measure’ that makes
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it possible to discriminate between these distributions. An attempt may be
reached by using the following function we call the ‘discrimination information’
(Kullback, 1959):

I (F, G) =
∫

F(x) log
F(x)

G(x)
dx

In this case, I (F, G) is a measure of ‘distance’ between the distributions F and G.
The larger the measure, the more we can discriminate between these distributions.
For example, if G(.) is a uniform distribution, then divergence is Shannon’s
measure of information. In this case, it also provides a measure of departure
from the random distribution. Selecting a distribution which has a maximum
entropy (given a set of assumptions which are made explicit) is thus equivalent
to the ‘principle of insufficient reason’ proposed by Laplace (see Chapter 3).
In this sense, selecting a distribution with the largest entropy will imply a most
conservative (riskwise) distribution. By the same token, we have:

I (G, F) =
∫

G(x) log
G(x)

F(x)
dx

and the divergence between these two distributions is defined by:

J (F, G) = I (F, G) + I (G, F) =
∫

[F(x) − G(x)] log
F(x)

G(x)
dx

which provides a ‘unidirectional and symmetric measure’ of distribution ‘dis-
tance’, since J (F, G) = J (G, F). For a discrete time distribution (p, q), we have
similarly:

I (p, q) =
n∑

i=1

pi log
pi

qi
; I (q, p) =

n∑

i=1

qi log
qi

pi

J (p, q) =
n∑

i=1

pi log
pi

qi
+

n∑

i=1

qi log
qi

pi
=

n∑

i=1

(pi − qi ) log
pi

qi

For example, say that qi , i = 1, 2, 3, . . . , n is an empirical distribution and say
that pi , i = 1, 2, 3, . . . , n is a theoretical distribution given by the distribution:

pi =
(

n
i

)
pi (1 − p)n−i

then:

J (p, q) =
n∑

i=1

[(
n
i

)
pi (1 − p)n−i − qi

]
log

(
n
i

)
pi (1 − p)n−i

qi

which may be minimized with respect to parameter p. This will be, therefore, a
binomial distribution with a parameter which is ‘least distant’ from the empirical
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distribution. For a bivariate state distribution, we have similarly:

I (p, q) =
m∑

j=1

n∑

i=1

pij log

(
pij

qij

)
; J (p, q) =

m∑

j=1

n∑

i=1

(pij − qij) log

(
pij

qij

)

while, for continuous distributions, we have also:

I (F, G) =
∫∫

F(x, y) log
F(x, y)

G(x, y)
dx dy

as well as:

J (F, G) =
∫∫

[F(x, y) − G(x, y)] log
F(x, y)

G(x, y)
dx dy

This distribution may then be used to provide ‘divergence-distance’ measures
between empirically observed and theoretical distributions.

The maximization of divergence or entropy can be applied to constructing a
multivariate risk model. For example, assume that a nonnegative random vari-
able {θ} has a known mean given by θ̂ , the maximum entropy distribution for a
continuous-state distribution is given by solution of the following optimization
problem:

Max H = −
∞∫

0

f (θ ) log [ f (θ )] dθ

subject to:
∞∫

0

f (θ ) dθ = 1,θ̂ =
∞∫

0

θ f (θ ) dθ

The solution of this problem, based on the calculus of variations, yields an expo-
nential distribution. In other words,

f (θ ) = 1

θ̂
e−θ/θ̂ , θ ≥ 0

When the variance of a distribution is specified as well, it can be shown that the
resulting distribution is the Normal distribution with specified mean and specified
variance. The resulting optimization problem is:

Max H =
∞∫

−∞
f (θ ) log

1

[ f (θ )]
dθ

subject to:
∞∫

−∞
f (θ ) dθ = 1, θ̂ =

∞∫

−∞
θ f (θ ) dθ, σ 2 =

∞∫

−∞
(θ − θ̂ )2 f (θ ) dθ
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which yields (as stated above) the normal probability distribution with mean and
variance

(
θ̂ , σ 2

)
. If an empirical distribution is available, then, of course, we can

use the divergence to minimize the distance between these distributions by the
appropriate selection of the theoretical parameters. This approach can be applied
equally when the probability distribution is discrete, bounded, multivariate distri-
butions with specified marginal distributions etc. In particular, it is interesting to
point out that the maximum entropy of a multivariate distribution with specified
mean and known variance–covariance matrix turns out also to be a multivari-
ate normal, implying that the Normal is the most random distribution that has a
specified mean and a specified variance. Evidently, if we also specify leptokurtic
parameters the distribution will not be Normal.

Example: A maximum entropy price process:
Consider a bivariate probability distribution (or a price stochastic process)
h(x, t), x ∈ [0, ∞) , t ∈ [a, b]. The maximum entropy criterion can be written
as an optimization problem, maximizing:

Max H =
∞∫

0

b∫

a

h(x, t) log
1

[h(x, t)]
dt dx

Subject to partial information regarding the distribution h(x, t), x ∈ [0, ∞) , t ∈
[a, b]. Say that at the final time b, the price of a stock is for sure Xb while
initially it is given by Xa . Further, let the average price over the relevant time
interval be known and given by X̄ (a,b), this may be translated into the following
constraints:

h(Xa, a) = 1, h(Xb, b) = 1 and
1

b − a

b∫

a

∞∫

0

xh(x, t) dx dt = X̄ (a,b)

to be accounted for in the entropy optimization problem. Of course, we can include
additional constraints when more information is available. Thus, the maximum
entropy approach can be used as an ‘alternative rationality’ to constructing proba-
bility risk models (and thereby modelling the uncertainty we face and computing
its VaR measure) when the burden of explicit hypothesis formulation or the jus-
tification of the model at hand is too heavy.

Problem: The maximum entropy distribution with specified marginals
Define the maximum entropy of the joint distribution by specifying the marginal
distributions as constraints. Or

Max H = −
∞∫

0

b∫

a

F(x, y) log [F(x, y)] dy dx
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subject to:

F1(x) =
b∫

a

F(x, y) dy; F2(y) =
∞∫

0

F(x, y) dx

and apply the multivariate calculus of variations to determine the corresponding
distribution.

10.3.6 Monte Carlo simulation and VaR

Monte Carlo simulation techniques are both widely practised and easy to apply.
However, applications of simulation should be made critically and carefully. In
simulation, one generates a large number of market scenarios that follow the same
underlying distribution. For each scenario the value of the position is calculated
and recorded. The simulated values form a probability distribution for the value
of a portfolio which is used in deriving the VaR figures. It is clear that by using
Monte Carlo techniques one can overcome approaches based solely on a Normal
underlying distribution. While such distributions are easy to implement, there
is an emerging need for better models, more precise, replicating closely market
moves. But where can one find these models? Underlying distributions are essen-
tially derived from historical data and the stochastic model used to interpret data.
The same historical data can lead to very different values-at-risk, under differ-
ent statistical models, however. This leads to the question: what model and what
distribution to select? Monte Carlo simulation does not resolve these problems
but provides a broader set of models and distributions we can select from. In this
sense, in simulation the GIGO (garbage in, garbage out) principle must also be
carefully apprehended. The construction of a good risk model is by no means
a simple task, but one that requires careful thinking, theoretical knowledge and
preferably an extensive and reliable body of statistical information.

10.4 VaR EFFICIENCY

10.4.1 VaR and portfolio risk efficiency with normal returns

VaR, either as an objective or as a risk constraint, has become another tool for
the design of portfolios. Gourieroux et al. (2000), Basak and Shapiro (2001) have
attracted attention to this potential usefulness of the VaR. To see how VaR-efficient
portfolios can be formulated we proceed as follows: let Wt (.) be the value of a
portfolio at time t and let, at a time t + h later, wealth be Wt+h(.). The probability
of the value at risk in the time interval (t, t + h) is then given by:

Pr [Wt+h − Wt < −VarW (h)] = PVaR

Thus, if the return is RW (h) = Wt+h − Wt we can write instead:

Pr [RW (h) < −VarW (h)] = PVaR



VAR EFFICIENCY 325

Models will thus vary according to the return model used in value at risk estima-
tion. For our purposes, let N be the number of financial assets, P(i, t) be the price
of asset i at time t and B(t) be the budget at time t . We also set a1, a2, a3, . . . , aN

be the number of shares held of each asset at time t . As a result, the wealth state
at time t is:

Wt (a) =
n∑

i=1

ai pi,t = aT pt

while the return in a time interval is:

Wt+1(a) − Wt (a) = aT (pt+1 − pt )

The loss probability α = PVaR implies a VaR calculated in terms of the portfolio
holdings and the risk constraint, or VaRt (a, α) is defined by:

Pt [Wt+1(a) − Wt (a) < −VaRt (a, α)] = α

where Pt is the conditional distribution of future asset prices given the informa-
tion available at time t . Set the price change yt+1 = pt+1 − pt . Then we have
equivalently,

Pt [−aT yt+1 > VaRt (a, α)] = α

In other words, the portfolio VaR is determined in terms of information regarding
past prices, the portfolio composition and the specified loss probability α. When
the price changes are normally distributed:

yt+1 ∼ N (µt , �t ) then VaRt (a, α) = −aT µt + (
aT �t a

)1/2
Z1−α

where Z1−α is the 1 − α quantile of the standard normal distribution. We might
consider then a number of portfolio design approaches.

Problem 1
Maximize expected returns subject to a VaR constraint.

Problem 2
Minimize a VaR risk subject to returns constraints.
The first problem is stated as follows:

Max
a

E
(
aT yt+1

)
subject to VaRt (a, α) ≤ VaR0

where VaR0 is a VaR constraint specified by management. The solution of this
problem will turn out to be a portfolio allocation which is necessarily a function
of the risk parameters {α, VaR0}. By the same token, we can state the second
problem as follows:

Min
a

VaRt (a, α) subject to E
(
aT yt+1

) ≥ R̄

where R̄ is the required mean return. A solution to these problems by analytical
or numerical means is straightforward.
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10.4.2 VaR and regret

The Savage (1954) regret criterion has inspired a number of approaches called
‘regret–disappointments models’ (Loomes and Sugden, 1982, 1987). According
to Bell (1982), disappointment is a psychological reaction to an outcome that
does not meet a decision maker’s expectation. In particular, Bell assumed that the
measurement of disappointment is assumed to be proportional to the difference
between expectation and the outcome below the expectation. Elation, may occur
when the outcome obtained is better than its expectation. Usually (for risk-averse
decision makers), the ‘cost of reaching the wrong decision’ (disappointment) may
be, proportionately, greater than the payoff of having made the right decision
(elation). In other words, managers abhor losses, valuing them more than they
value gains for having made the right decision. The inverse may also be true. A
trader whose income is derived from trade-ins only may be tempted to assume
risks which may be larger than the investment firm may be willing to assume.
For example, a stock performance below that expected by analysts can have
disproportionate effects on stock values while an uncontrollable trader may lead
to disaster. To see how to proceed, consider the utility of an investment given by
u(x) and let CE be its certainty equivalent. That is to say, as we saw in Chapter 3:

u(CE) = Eu(x) and CE = u−1 [Eu(x)]

Say that ‘disappointment’ occurs when the outcome is below CE, resulting in an
expected utility that is depreciated due to disappointment. As a result, an adjusted
expected utility, written by V (b) with a factor b can be specified by:

V (b) = Eu(x) − bE [u(C E) − u(x) |C E ≥ x ]

Explicitly, it equals the expected utility less the expected utility loss when the
ex-post event is below the certainty equivalent,

V (b) = Eu(x) − b [Eu(x) − u(x) |C E ≥ x ]

Since Eu(x) = u(C E), we also have:

V (b) = Eu(x) − b [u(C E) − u(x) |C E ≥ x ]

= u(C E) (1 − bF(C E)) + bEu (x |x ≤ C E )

This procedure allows us to resolve the problem of a reference point endoge-
nously. For example, consider a two-event process:

x = (x1, x2) with prob (α,1 − α) with x1 > x2

which corresponds to a binomial model. Then, the expected utility is:

Eu(x) = u(C E) = αu(x1) + (1 − α)u(x2)

while

V (b) = [αu(x1) + (1 − α)u(x2)] [1 − b(1 − α)] + bu(x2)(1 − α)

and therefore:

V (b) = α [1 − b(1 − α)] u(x1) + (1 − α) (1 + bα) u(x2)
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which we can write as follows:

V (b) = αβu(x1) + (1 − α) (β + b) u(x2); β = [1 − b(1 − α)]

Since b > 0, it provides a greater weight to the lower outcome. Further,

� = V (b) − Eu(x) = (1 − β) [u(x1) − αu(x2)]

By applying the same argument to the VaR by assuming a linear truncated utility,
we have:

V (b, VaR) = E(x) + bE [−VaR + x |−VaR > x ]

As a result, the expected value is:

V (b, VaR) = E(x) + b

−VaR∫

−∞
(x − VaR) dF(x)

For example, say that an option price is C(0) while the strike price over one period
is K and assume two states x1, x2, x1 ≤ K ≤ x2. Thus, the expected value of the
option price is:

C(0) = 1

1 + r

{
α

1 + b(1 − α)
u(0) + (1 + b)(1 − α)

1 + b(1 − α)
u(x2 − K )

}

If the option price can be observed together with the utility of u(0), then the
equivalent parameter b is found to be equal to:

0 < b = αu(0) + (1 − α)u(x2 − K ) − C(0)(1 + r )

(1 − α) [C(0)(1 + r ) − u(x2 − K )]

Note that αu(0) + (1 − α)u(x2 − K ) < C(0)(1 + r ), meaning that we require for
a positive disappointment parameter (since we have necessarily, C(0)(1 + r ) <

u(x2 − K )) that the option price be larger than the expected value of the utility
of the option lottery. In other words, the option price also includes the investor’s
desire for the potential to reduce deception by allowing him to regret and reverse
a decision badly taken.
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