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Chapter 1

Introduction

This book is written for those physicists who want to work on Wall

Street but have not bothered to read anything about Finance. This is

a crash course that the author, a physicist himself, needed when he

landed a financial data analyst job and became fascinated with the

huge data sets at his disposal. More broadly, this book addresses the

reader with some background in science or engineering (college-level

math helps) who is willing to learn the basic concepts and quantitative

methods used in modern finance.

The book loosely consists of two parts: the ‘‘applied’’ part and the

‘‘academic’’ one. Two major fields, Econometrics and Mathematical

Finance, constitute the applied part of the book. Econometrics can be

broadly defined as the methods of model-based statistical inference in

financial economics [1]. This book follows the traditional definition

of Econometrics that focuses primarily on the statistical analysis of

economic and financial time series [2]. The other field is Mathematical

Finance [3, 4]. This term implies that finance has given a rise to

several new mathematical theories. The leading directions in

Mathematical Finance include portfolio theory, option-pricing

theory, and risk measurement.

The ‘‘academic’’ part of this book demonstrates that financial data

can be an area of exciting theoretical research, which might be of

interest to physicists regardless of their career motivation. This part

includes the Econophysics topics and the agent-based modeling of

1
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financial markets.1 Physicists use the term Econophysics to emphasize

the concepts of theoretical physics (e.g., scaling, fractals, and chaos)

that are applied to the analysis of economic and financial data. This

field was formed in the early 1990s, and it has been growing rapidly

ever since. Several books on Econophysics have been published to date

[5–11] as well as numerous articles in the scientific periodical journals

such as Physica A and Quantitative Finance.2 The agent-based model-

ing of financial markets was introduced by mathematically inclined

economists (see [12] for a review). Not surprisingly, physicists, being

accustomed to the modeling of ‘‘anything,’’ have contributed into this

field, too [7, 10].

Although physicists are the primary audience for this book, two

other reader groups may also benefit from it. The first group includes

computer science and mathematics majors who are willing to work (or

have recently started a career) in the finance industry. In addition, this

book may be of interest to majors in economics and finance who are

curious about Econophysics and agent-based modeling of financial

markets. This book can be used for self-education or in an elective

course on Quantitative Finance for science and engineering majors.

The book is organized as follows. Chapter 2 describes the basics of

financial markets. Its topics include market price formation, returns

and dividends, and market efficiency. The next five chapters outline

the theoretical framework of Quantitative Finance: elements of math-

ematical statistics (Chapter 3), stochastic processes (Chapter 4), time

series analysis (Chapter 5), fractals (Chapter 6), and nonlinear dy-

namical systems (Chapter 7). Although all of these subjects have been

exhaustively covered in many excellent sources, we offer this material

for self-contained presentation.

In Chapter 3, the basic notions of mathematical statistics are

introduced and several popular probability distributions are listed.

In particular, the stable distributions that are used in analysis of

financial time series are discussed.

Chapter 4 begins with an introduction to the Wiener process, which

is the basis for description of the stochastic financial processes. Three

methodological approaches are outlined: one is rooted in the generic

Markov process, the second one is based on the Langevin equation,

and the last one stems from the discrete random walk. Then the basics

of stochastic calculus are described. They include the Ito’s lemma and

2 Introduction
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the stochastic integral in both the Ito and the Stratonovich forms.

Finally, the notion of martingale is introduced.

Chapter 5 begins with the univariate autoregressive and moving

average models, the classical tools of the time series analysis. Then the

approaches to accounting for trends and seasonality effects are dis-

cussed. Furthermore, processes with non-stationary variance (condi-

tional heteroskedasticity) are described. Finally, the specifics of the

multivariate time series are outlined.

In Chapter 6, the basic definitions of the fractal theory are dis-

cussed. The concept of multifractals, which has been receiving a lot of

attention in recent financial time series research, is also introduced.

Chapter 7 describes the elements of nonlinear dynamics that are

important for agent-based modeling of financial markets. To illustrate

the major concepts in this field, two classical models are discussed: the

discrete logistic map and the continuous Lorenz model. The main

pathways to chaos and the chaos measures are also outlined.

Those readers who do not need to refresh their knowledge of the

mathematical concepts may skip Chapters 3 through 7.3

The other five chapters are devoted to financial applications. In

Chapter 8, the scaling properties of the financial time series are

discussed. The main subject here is the power laws manifesting in

the distributions of returns. Alternative approaches in describing the

scaling properties of the financial time series including the multifrac-

tal models are also outlined.

The next three chapters, Chapters 9 through 11, relate specifically

to Mathematical Finance. Chapter 9 is devoted to the option pricing.

It starts with the general properties of stock options, and then the

option pricing theory is discussed using two approaches: the method

of the binomial trees and the classical Black-Scholes theory.

Chapter 10 is devoted to the portfolio theory. Its basics include the

capital asset pricing model and the arbitrage pricing theory. Finally,

several arbitrage trading strategies are listed. Risk measurement is the

subject of Chapter 11. It starts with the concept of value at risk, which

is widely used in risk management. Then the notion of coherent risk

measure is introduced and one such popular measure, the expected

tail losses, is described.

Finally, Chapter 12 is devoted to agent-based modeling of financial

markets. Two elaborate models that illustrate two different

Introduction 3
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approaches to defining the price dynamics are described. The first one

is based on the supply-demand equilibrium, and the other approach

employs an empirical relation between price change and excess

demand. Discussion of the model derived in terms of observable

variables concludes this chapter.

The bibliography provides the reader with references for further

reading rather than with a comprehensive chronological review. The

reference list is generally confined with recent monographs and

reviews. However, some original work that either has particularly

influenced the author or seems to expand the field in promising

ways is also included.

In every chapter, exercises with varying complexity are provided.

Some of these exercises simply help the readers to get their hands on

the financial market data available on the Internet and to manipulate

the data using Microsoft Excel software.4 Other exercises provide a

means of testing the understanding of the book’s theoretical material.

More challenging exercises, which may require consulting with ad-

vanced textbooks or implementation of complicated algorithms, are

denoted with an asterisk. The exercises denoted with two asterisks

offer discussions of recent research reports. The latter exercises may

be used for seminar presentations or for course work.

A few words about notations. Scalar values are denoted with the

regular font (e.g., X) while vectors and matrices are denoted with

boldface letters (e.g., X). The matrix transposes are denoted with

primes (e.g., X0) and the matrix determinants are denoted with vertical

bars (e.g., jXj). The following notations are used interchangeably:

X(tk) � X(t) and X(tk�1) � X(t� 1). E[X] is used to denote the ex-

pectation of the variable X.

The views expressed in this book may not reflect the views of my

former and current employers. While conducting the Econophysics

research and writing this book, I enjoyed support from Blake LeBaron,

Thomas Lux, Sorin Solomon, and Eugene Stanley. I am also indebted

to anonymous reviewers for attentive analysis of the book’s drafts.

Needless to say, I am solely responsible for all possible errors present in

this edition. I will greatly appreciate all comments about this book;

please send them to a_b_schmidt@hotmail.com.

Alec Schmidt

Cedar Knolls, NJ, June 2004

4 Introduction
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Chapter 2

Financial Markets

This chapter begins with a description of market price formation. The

notion of return that is widely used for analysis of the investment

efficiency is introduced in Section 2.2. Then the dividend effects on

return and the present-value pricing model are described. The next big

topic is market efficiency (Section 2.3). First, the notion of arbitrage is

defined. Then the Efficient Market Hypothesis, both the theory and

its critique, are discussed. The pathways for further reading in Section

2.4 conclude the chapter.

2.1 MARKET PRICE FORMATION

Millions of different financial assets (stocks, bonds, currencies,

options, and others) are traded around the world. Some financial

markets are organized in exchanges or bourses (e.g., New York

Stock Exchange (NYSE)). In other, so-called over-the-counter

(OTC) markets, participants operate directly via telecommunication

systems. Market data are collected and distributed by markets them-

selves and by financial data services such as Bloomberg and Reuters.

Modern electronic networks facilitate access to huge volumes of

market data in real time.

Market prices are formed with the trader orders (quotes) submitted

on the bid (buy) and ask (sell) sides of the market. Usually, there is a

5
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spread between the best (highest) bid and the best (lowest) ask prices,

which provides profits for the market makers. The prices seen on the

tickers of TV networks and on the Internet are usually the transaction

prices that correspond to the best prices. The very presence of trans-

actions implies that some traders submit market orders; they buy at

current best ask prices and sell at current best bid prices. The trans-

action prices represent the mere tip of an iceberg beneath which prices

of the limit orders reside. Indeed, traders may submit the sell orders at

prices higher than the best bid and the buy orders at prices lower than

the best ask. The limit orders reflect the trader expectations of future

price movement. There are also stop orders designated to limit pos-

sible losses. For an asset holder, the stop order implies selling assets if

the price falls to a predetermined value.

Holding assets, particularly holding derivatives (see Section 9.1), is

called long position. The opposite of long buying is short selling, which

means selling assets that the trader does not own after borrowing

them from the broker. Short selling makes sense if the price is

expected to fall. When the price does drop, the short seller buys the

same number of assets that were borrowed and returns them to the

broker. Short sellers may also use stop orders to limit their losses in

case the price grows rather than falls. Namely, they may submit the

stop order for triggering a buy when the price reaches a predeter-

mined value.

Limit orders and stop orders form the market microstructure: the

volume-price distributions on the bid and ask sides of the market. The

concept market liquidity is used to describe price sensitivity to market

orders. For instance, low liquidity means that the number of securities

available at the best price is smaller than a typical market order. In this

case, a new market order is executed within a range of available prices

rather than at a single best price. As a result, the best price changes its

value. Securities with very low liquidity may have no transactions and

few (if any) quotes for some time (in particular, the small-cap stocks off

regular trading hours). Market microstructure information usually is

not publicly available. However, the market microstructure may be

partly revealed in the price reaction to big block trades.

Any event that affects the market microstructure (such as submis-

sion, execution, or withdrawal of an order) is called a tick. Ticks are

recorded along with the time they are submitted (so-called tick-by-tick

6 Financial Markets
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data). Generally, tick-by-tick data are not regularly spaced in time,

which leads to additional challenges for high-frequency data analysis

[1, 2]. Current research of financial data is overwhelmingly conducted

on the homogeneous grids that are defined with filtering and aver-

aging tick-by-tick data.

Another problem that complicates analysis of long financial time

series is seasonal patterns. Business hours, holidays, and even daylight

saving time shifts affect market activity. Introducing the dummy

variables into time series models is a general method to account for

seasonal effects (see Section 5.2). In another approach, ‘‘operational

time’’ is employed to describe the non-homogeneity of business activ-

ity [2]. Non-trading hours, including weekends and holidays, may be

cut off from operational time grids.

2.2 RETURNS AND DIVIDENDS

2.2.1 SIMPLE AND COMPOUNDED RETURNS

While price P is the major financial variable, its logarithm,

p ¼ log (P) is often used in quantitative analysis. The primary reason

for using log prices is that simulation of a random price innovation

can move price into the negative region, which does not make sense.

In the mean time, negative logarithm of price is perfectly acceptable.

Another important financial variable is the single-period return (or

simple return) R(t) that defines the return between two subsequent

moments t and t�1. If no dividends are paid,

R(t) ¼ P(t)=P(t� 1)� 1 (2:2:1)

Return is used as a measure of investment efficiency.1 Its advantage is

that some statistical properties, such as stationarity, may be more

applicable to returns rather than to prices [3]. The simple return of a

portfolio, Rp(t), equals the weighed sum of returns of the portfolio

assets

Rp(t) ¼
XN
i¼1

wipRip(t),
XN
i¼1

wip ¼ 1, (2:2:2)

where Rip and wip are return and weight of the i-th portfolio asset,

respectively; i ¼ 1, . . . , N.

Financial Markets 7
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The multi-period returns, or the compounded returns, define the

returns between the moments t and t� kþ 1. The compounded

return equals

R(t, k) ¼ [R(t)þ 1] [R(t� 1)þ 1] . . . [R(t� kþ 1)þ 1]þ 1

¼ P(t)=P(t� k)þ 1 (2:2:3)

The return averaged over k periods equals

Ř(t, k) ¼
Yk�1

i¼0

(R(t� i)þ 1)

" #1=k

�1 (2:2:4)

If the simple returns are small, the right-hand side of (2.2.4) can be

reduced to the first term of its Taylor expansion:

Ř(t, k) � 1

k

Xk�1

i¼1

R(t, i) (2:2:5)

The continuously compounded return (or log return) is defined as:

r(t) ¼ log [R(t)þ 1] ¼ p(t)� p(t� 1) (2:2:6)

Calculation of the compounded log returns is reduced to simple

summation:

r(t, k) ¼ r(t)þ r(t� 1)þ . . .þ r(t� kþ 1) (2:2:7)

However, the weighing rule (2.2.2) is not applicable to the log returns

since log of sum is not equal to sum of logs.

2.2.2 DIVIDEND EFFECTS

If dividends D(tþ 1) are paid within the period [t, tþ 1], the simple

return (see 2.2.1) is modified to

R(tþ 1) ¼ [P(tþ 1)þD(tþ 1) ]=P(t)� 1 (2:2:8)

The compounded returns and the log returns are calculated in the

same way as in the case with no dividends.

Dividends play a critical role in the discounted-cash-flow (or pre-

sent-value) pricing model. Before describing this model, let us intro-

duce the notion of present value. Consider the amount of cash K

invested in a risk-free asset with the interest rate r. If interest is paid

8 Financial Markets
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every time interval (say every month), the future value of this cash

after n periods is equal to

FV ¼ K(1þ r)n (2:2:9)

Suppose we are interested in finding out what amount of money will

yield given future value after n intervals. This amount (present value)

equals

PV ¼ FV=(1þ r)n (2:2:10)

Calculating the present value via the future value is called discounting.

The notions of the present value and the future value determine the

payoff of so-called zero-coupon bonds. These bonds sold at their

present value promise a single payment of their future value at ma-

turity date.

The discounted-cash-flow model determines the stock price via its

future cash flow. For the simple model with the constant return

E[R(t) ] ¼ R, one can rewrite (2.2.8) as

P(t) ¼ E[{P(tþ 1)þD(tþ 1)}=(1þR)] (2:2:11)

If this recursion is repeated K times, one obtains

P(t) ¼ E
XK
i¼1

D(tþ i)=(1þR)i

" #
þ E[P(tþK)=(1þR)K] (2:2:12)

In the limit K!1, the second term in the right-hand side of (2.2.12)

can be neglected if

lim
K!1

E[P(tþK)=(1þR)K] ¼ 0 (2:2:13)

Then the discounted-cash-flow model yields

PD(t) ¼ E
X1
i¼1

D(tþ i)=(1þR)i

" #
(2:2:14)

Further simplification of the discounted-cash-flow model is based on

the assumption that the dividends grow linearly with rate G

E[D(tþ i) ] ¼ (1þG)iD(t) (2:2:15)

Then (2.2.14) reduces to

Financial Markets 9
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PD(t) ¼ 1þG

R�G
D(t) (2:2:16)

Obviously, equation (2.2.16) makes sense only for R > G. The value

of R that may attract investors is called the required rate of return.

This value can be treated as the sum of the risk-free rate and the asset

risk premium. While the assumption of linear dividend growth is

unrealistic, equation (2.2.16) shows the high sensitivity of price to

change in the discount rate R when R is close to G (see Exercise 2). A

detailed analysis of the discounted-cash-flow model is given in [3].

If the condition (2.2.13) does not hold, the solution to (2.2.12) can

be presented in the form

P(t) ¼ PD(t)þ B(t), B(t) ¼ E[B(tþ 1)=(1þR) ] (2:2:17)

The term PD(t) has the sense of the fundamental value while the

function B(t) is often called the rational bubble. This term implies

that B(t) may lead to unbounded growth—the ‘‘bubble.’’ Yet, this

bubble is ‘‘rational’’ since it is based on rational expectations of future

returns. In the popular Blanchard-Watson model

B(tþ 1)¼
1þR

p B(t)þ e(tþ 1) with probability p, 0< p < 1

e(tþ 1) with probability 1�p
(2:2:18)

(

where e(t) is an independent and identically distributed process (IID)2

with E[e(t) ] ¼ 0. The specific of this model is that it describes period-

ically collapsing bubbles (see [4] for the recent research).

So far, the discrete presentation of financial data was discussed.

Clearly, market events have a discrete nature and price variations

cannot be smaller than certain values. Yet, the continuum presenta-

tion of financial processes is often employed [5]. This means that the

time interval between two consecutive market events compared to the

time range of interest is so small that it can be considered an infini-

tesimal difference. Often, the price discreteness can also be neglected

since the markets allow for quoting prices with very small differen-

tials. The future value and the present value within the continuous

presentation equal, respectively

FV ¼ Kexp (rt), PV ¼ FV exp (�rt) (2:2:19)

In the following chapters, both the discrete and the continuous pre-

sentations will be used.

10 Financial Markets
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2.3 MARKET EFFICIENCY

2.3.1 ARBITRAGE

Asset prices generally obey the Law of One Price, which says that

prices of equivalent assets in competitive markets must be the same

[6]. This implies that if a security replicates a package of other

securities, the price of this security and the price of the package it

replicates must be equal. It is expected also that the asset price must

be the same worldwide, provided that it is expressed in the same

currency and that the transportation and transaction costs can be

neglected. Violation of the Law of One Price leads to arbitrage, which

means buying an asset and immediate selling it (usually in another

market) with profit and without risk. One widely publicized example

of arbitrage is the notable differences in prices of prescription drugs in

the USA, Europe, and Canada. Another typical example is the so-

called triangle foreign exchange arbitrage. Consider a situation in

which a trader can exchange one American dollar (USD) for one

Euro (EUR) or for 120 Yen (JPY). In addition, a trader can exchange

one EUR for 119 JPY. Hence, in terms of the exchange rates, 1 USD/

JPY > 1 EUR/JPY * 1 USD/EUR.3 Obviously, the trader who

operates, say 100000 USD, can make a profit by buying 12000000

JPY, then selling them for 12000000/119 � 100840 EUR, and then

buying back 100840 USD. If the transaction costs are neglected, this

operation will bring profit of about 840 USD.

The arbitrage with prescription drugs persists due to unresolved

legal problems. However, generally the arbitrage opportunities do not

exist for long. The triangle arbitrage may appear from time to time.

Foreign exchange traders make a living, in part, by finding such

opportunities. They rush to exchange USD for JPY. It is important

to remember that, as it was noted in Section 2.1, there is only a finite

number of assets at the ‘‘best’’ price. In our example, it is a finite

number of Yens available at the exchange rate USD/JPY ¼ 120. As

soon as they all are taken, the exchange rate USD/JPY falls to the

equilibrium value 1 USD/JPY ¼ 1 EUR/JPY * 1 USD/EUR, and the

arbitrage vanishes. In general, when arbitrageurs take profits, they act

in a way that eliminates arbitrage opportunities.

Financial Markets 11
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2.3.2 EFFICIENT MARKET HYPOTHESIS (EMH)

Efficient market is closely related to (the absence of) arbitrage. It

might be defined as simply an ideal market without arbitrage, but there

is much more to it than that. Let us first ask what actually causes price

to change. The share price of a company may change due to its new

earnings report, due to new prognosis of the company performance, or

due to a new outlook for the industry trend. Macroeconomic and

political events, or simply gossip about a company’s management,

can also affect the stock price. All these events imply that new infor-

mation becomes available to markets. The Efficient Market Theory

states that financial markets are efficient because they instantly reflect

all new relevant information in asset prices. Efficient Market Hypoth-

esis (EMH) proposes the way to evaluate market efficiency. For

example, an investor in an efficient market should not expect earnings

above the market return while using technical analysis or fundamental

analysis.4

Three forms of EMH are discerned in modern economic literature.

In the ‘‘weak’’ form of EMH, current prices reflect all information on

past prices. Then the technical analysis seems to be helpless. In the

‘‘strong’’ form, prices instantly reflect not only public but also private

(insider) information. This implies that the fundamental analysis

(which is what the investment analysts do) is not useful either. The

compromise between the strong and weak forms yields the ‘‘semi-

strong’’ form of EMH according to which prices reflect all publicly

available information and the investment analysts play important role

in defining fair prices.

Two notions are important for EMH. The first notion is the

random walk, which will be formally defined in Section 5.1. In short,

market prices follow the random walk if their variations are random

and independent. Another notion is rational investors who immedi-

ately incorporate new information into fair prices. The evolution of

the EMH paradigm, starting with Bachelier’s pioneering work on

random price behavior back in 1900 to the formal definition of

EMH by Fama in 1965 to the rigorous statistical analysis by Lo

and MacKinlay in the late 1980s, is well publicized [9–13]. If prices

follow the random walk, this is the sufficient condition for EMH.

However, as we shall discuss further, the pragmatic notion of market
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efficiency does not necessarily require prices to follow the random

walk.

Criticism of EMH has been conducted along two avenues. First, the

thorough theoretical analysis has resulted in rejection of the random

walk hypothesis for the weekly U.S. market returns during 1962–1986

[12]. Interestingly, similar analysis for the period of 1986–1996 shows

that the returns conform more closely to the random walk. As the

authors of this research, Lo and MacKinlay, suggest, one possible

reason for this trend is that several investment firms had implemented

statistical arbitrage trading strategies5 based on the market inefficien-

cies that were revealed in early research. Execution of these strategies

could possibly eliminate some of the arbitrage opportunities.

Another reason for questioning EMH is that the notions of ‘‘fair

price’’ and ‘‘rational investors’’ do not stand criticism in the light of

the financial market booms and crashes. The ‘‘irrational exuberance’’

in 1999–2000 can hardly be attributed to rational behavior [10]. In

fact, empirical research in the new field ‘‘behavioral finance’’ demon-

strates that investor behavior often differs from rationality [14, 15].

Overconfidence, indecisiveness, overreaction, and a willingness to

gamble are among the psychological traits that do not fit rational

behavior. A widely popularized example of irrational human behav-

ior was described by Kahneman and Tversky [16]. While conducting

experiments with volunteers, they asked participants to make choices

in two different situations. First, participants with $1000 were given a

choice between: (a) gambling with a 50% chance of gaining $1000 and

a 50% chance of gaining nothing, or (b) a sure gain of $500. In the

second situation, participants with $2000 were given a choice be-

tween: (a) a 50% chance of losing $1000 and a 50% of losing nothing,

and (b) a sure loss of $500. Thus, the option (b) in both situations

guaranteed a gain of $1500. Yet, the majority of participants chose

option (b) in the first situation and option (a) in the second one.

Hence, participants preferred sure yet smaller gains but were willing

to gamble in order to avoid sure loss.

Perhaps Keynes’ explanation that ‘‘animal spirits’’ govern investor

behavior is an exaggeration. Yet investors cannot be reduced to

completely rational machines either. Moreover, actions of different

investors, while seemingly rational, may significantly vary. In part,

this may be caused by different perceptions of market events and
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trends (heterogeneous beliefs). In addition, investors may have differ-

ent resources for acquiring and processing new information. As a

result, the notion of so-called bounded rationality has become popular

in modern economic literature (see also Section 12.2).

Still the advocates of EMH do not give up. Malkiel offers the

followingargument in the section ‘‘Whatdowemeanby sayingmarkets

are efficient’’ of his book ‘‘A Random Walk down Wall Street’’ [9]:

‘‘No one person or institution has yet to provide a long-term,

consistent record of finding risk-adjusted individual stock

trading opportunities, particularly if they pay taxes and

incur transactions costs.’’

Thus, polemics on EMH changes the discussion from whether

prices follow the random walk to the practical ability to consistently

‘‘beat the market.’’

Whatever experts say, the search of ideas yielding excess returns

never ends. In terms of the quantification level, three main directions

in the investment strategies may be discerned. First, there are qualita-

tive receipts such as ‘‘Dogs of the Dow’’ (buying 10 stocks of the Dow

Jones Industrial Average with highest dividend yield), ‘‘January

Effect’’ (stock returns are particularly high during the first two Janu-

ary weeks), and others. These ideas are arguably not a reliable profit

source [9].

Then there are relatively simplepatternsof technical analysis, suchas

‘‘channel,’’ ‘‘head and shoulders,’’ and so on (see, e.g., [7]). There has

been ongoing academic discussion on whether technical analysis is able

to yield persistent excess returns (see, e.g., [17–19] and references

therein). Finally, there are trading strategies based on sophisticated

statistical arbitrage.While several trading firms that employ these strat-

egies have proven to be profitable in some periods, little is knownabout

persistent efficiency of their proprietary strategies. Recent trends indi-

cate that some statistical arbitrage opportunities may be fading [20].

Nevertheless, one may expect that modern, extremely volatile markets

will always provide new occasions for aggressive arbitrageurs.

2.4 PATHWAYS FOR FURTHER READING

In this chapter, a few abstract statistical notions such as IID and

random walk were mentioned. In the next five chapters, we take a short
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tour of the mathematical concepts that are needed for acquaintance

with quantitative finance. Those readers who feel confident in their

mathematical background may jump ahead to Chapter 8.

Regarding further reading for this chapter, general introduction to

finance can be found in [6]. The history of development and valid-

ation of EMH is described in several popular books [9–11].6 On the

MBA level, much of the material pertinent to this chapter is given

in [3].

EXERCISES

1. Familiarize yourself with the financial market data available on

the Internet (e.g., http://www.finance.yahoo.com). Download the

weekly closing prices of the exchange-traded fund SPDR that

replicates the S&P 500 index (ticker SPY) for 1996–2003. Cal-

culate simple weekly returns for this data sample (we shall use

these data for other exercises).

2. Calculate the present value of SPY for 2004 if the asset risk

premium is equal to (a) 3% and (b) 4%. The SPY dividends in

2003 were $1.63. Assume the dividend growth rate of 5% (see

Exercise 5.3 for a more accurate estimate). Assume the risk-free

rate of 3%. What risk premium was priced in SPY in the end of

2004 according to the discounted-cash-flow theory?

3. Simulate the rational bubble using the Blanchard-Watson

model (2.2.18). Define e(t) ¼ PU(t)� 0:5 where PU is standard

uniform distribution (explain why the relation e(t) ¼ PU(t)

cannot be used). Use p ¼ 0:75 and R ¼ 0:1 as the initial values

for studying the model sensitivity to the input parameters.

4. Is there an arbitrage opportunity for the following set of the

exchange rates: GBP/USD ¼ 1.7705, EUR/USD ¼ 1.1914,

EUR/GBP ¼ 0.6694?
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Chapter 3

Probability Distributions

This chapter begins with the basic notions of mathematical statistics

that form the framework for analysis of financial data (see, e.g.,

[1–3]). In Section 3.2, a number of distributions widely used in statis-

tical data analysis are listed. The stable distributions that have become

popular in Econophysics research are discussed in Section 3.3.

3.1 BASIC DEFINITIONS

Consider the random variable (or variate) X. The probability dens-

ity function P(x) defines the probability to find X between a and b

Pr(a � X � b) ¼
ðb
a

P(x)dx (3:1:1)

The probability density must be a non-negative function and must

satisfy the normalization condition

ðXmax

Xmin

P(x)dx ¼ 1 (3:1:2)

where the interval [Xmin, Xmax] is the range of all possible values of X.

In fact, the infinite limits [�1, 1] can always be used since P(x) may

17
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be set to zero outside the interval [Xmin, Xmax]. As a rule, the infinite

integration limits are further omitted.

Another way of describing random variable is to use the cumulative

distribution function

Pr(X � b) ¼
ðb
�1

P(x)dx (3:1:3)

Obviously, probability satisfies the condition

Pr(X > b) ¼ 1� Pr(X � b) (3:1:4)

Two characteristics are used to describe probable values of random

variable X: mean (or expectation) and median. Mean of X is the

average of all possible values of X that are weighed with the prob-

ability density P(x)

m � E[X] ¼
ð

xP(x)dx (3:1:5)

Median of X is the value, M, for which

Pr(X > M) ¼ Pr(X < M) ¼ 0:5 (3:1:6)

Median is the preferable characteristic of the most probable value for

strongly skewed data samples. Consider a sample of lottery tickets

that has one ‘‘lucky’’ ticket winning one million dollars and 999

‘‘losers.’’ The mean win in this sample is $1000, which does not

realistically describe the lottery outcome. The median zero value is a

much more relevant characteristic in this case.

The expectation of a random variable calculated using some avail-

able information It (that may change with time t) is called conditional

expectation. The conditional probability density is denoted by P(xjIt).

Conditional expectation equals

E[XtjIt] ¼
ð

xP(xjIt)dx (3:1:7)

Variance, Var, and the standard deviation, s, are the conventional

estimates of the deviations from the mean values of X

Var[X] � s2 ¼
ð

(x�m)2P(x)dx (3:1:8)
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In financial literature, the standard deviation of price is used to

characterize the price volatility.

The higher-order moments of the probability distributions are

defined as

mn � E[Xn] ¼
ð

xnP(x)dx (3:1:9)

According to this definition, mean is the first moment (m � m1), and

variance can be expressed via the first two moments, s2 ¼ m2 �m2.

Two other important parameters, skewness S and kurtosis K, are

related to the third and fourth moments, respectively,

S ¼ E[(x�m)3]=s3, K ¼ E[(x�m)4]=s4 (3:1:10)

Both parameters, S and K, are dimensionless. Zero skewness implies

that the distribution is symmetrical around its mean value. The posi-

tive and negative values of skewness indicate long positive tails and

long negative tails, respectively. Kurtosis characterizes the distribu-

tion peakedness. Kurtosis of the normal distribution equals three.

The excess kurtosis, Ke ¼ K� 3, is often used as a measure of devi-

ation from the normal distribution. In particular, positive excess

kurtosis (or leptokurtosis) indicates more frequent medium and large

deviations from the mean value than is typical for the normal distri-

bution. Leptokurtosis leads to a flatter central part and to so-called

fat tails in the distribution. Negative excess kurtosis indicates frequent

small deviations from the mean value. In this case, the distribution

sharpens around its mean value while the distribution tails decay

faster than the tails of the normal distribution.

The joint distribution of two random variables X and Y is the

generalization of the cumulative distribution (see 3.1.3)

Pr(X � b, Y � c) ¼
ðb
�1

ðc
�1

h(x, y)dxdy (3:1:11)

In (3.1.11), h(x, y) is the joint density that satisfies the normalization

condition ð1
�1

ð1
�1

h(x, y)dxdy ¼ 1 (3:1:12)
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Two random variables are independent if their joint density function

is simply the product of the univariate density functions: h(x, y) ¼
f (x)g(y). Covariance between two variates provides a measure of their

simultaneous change. Consider two variates, X and Y, that have the

means mX and mY, respectively. Their covariance equals

Cov(x, y) � sXY ¼ E[(x�mX)(y�mY)] ¼ E[xy]�mXmY (3:1:13)

Obviously, covariance reduces to variance if X ¼ Y: sXX ¼ sX
2.

Positive covariance between two variates implies that these variates

tend to change simultaneously in the same direction rather than in

opposite directions. Conversely, negative covariance between two

variates implies that when one variate grows, the second one tends

to fall and vice versa. Another popular measure of simultaneous

change is the correlation coefficient

Corr(x, y) ¼ Cov(x:y)=(sX sY) (3:1:14)

The values of the correlation coefficient are within the range [� 1, 1].

In the general case with N variates X1, . . . , XN (where N > 2),

correlations among variates are described with the covariance matrix.

Its elements equal

Cov(xi, xj) � sij ¼ E[(xi �mi)(xj �mj)] (3:1:15)

3.2 IMPORTANT DISTRIBUTIONS

There are several important probability distributions used in quan-

titative finance. The uniform distribution has a constant value within

the given interval [a, b] and equals zero outside this interval

PU ¼
0, x < a and x > b

1=(b� a), a � x � b

�
(3:2:1)

The uniform distribution has the following mean and higher-order

moments

mU ¼ 0, s2
U ¼ (b� a)2=12, SU ¼ 0, KeU ¼ �6=5 (3:2:2)

The case with a ¼ 0 and b ¼ 1 is called the standard uniform distribu-

tion. Many computer languages and software packages have a library

function for calculating the standard uniform distribution.
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The binomial distribution is a discrete distribution of obtaining n

successes out of N trials where the result of each trial is true with

probability p and is false with probability q ¼ 1� p (so-called Ber-

noulli trials)

PB(n; N, p) ¼ CNn pnqN�n ¼ CNnp
n(1� p)N�n, CNn ¼

N!

n!(N� n)!
(3:2:3)

The factor CNn is called the binomial coefficient. Mean and higher-

order moments for the binomial distribution are equal, respectively,

mB ¼ Np, s2
B ¼ Np(1� p), SB ¼ (q� p)=sB, KeB ¼ (1� 6pq)=sB

2

(3:2:4)

In the case of large N and large (N� n), the binomial distribution

approaches the form

PB(n) ¼ 1ffiffiffiffiffiffi
2p
p

sB

exp [�(x�mB)2=2s2
B], N!1, (N� n)!1 (3:2:5)

that coincides with the normal (or Gaussian) distribution (see 3.2.9). In

the case with p� 1, the binomial distribution approaches the Poisson

distribution.

The Poisson distribution describes the probability of n successes in

N trials assuming that the fraction of successes n is proportional to

the number of trials: n ¼ pN

PP(n, N) ¼ N!

n!(N� n)!

n
N

� �n

1� n
N

� �N�n

(3:2:6)

As the number of trials N becomes very large (N!1), equation

(3.2.6) approaches the limit

PP(n) ¼ nne�n=n! (3:2:7)

Mean, variance, skewness, and excess kurtosis of the Poisson distri-

bution are equal, respectively,

mP ¼ s2
P ¼ n, SP ¼ n�1=2, KeP ¼ n�1 (3:2:8)

The normal (Gaussian) distribution has the form

PN(x) ¼ 1ffiffiffiffiffiffi
2p
p

s
exp [�(x�m)2=2s2] (3:2:9)
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It is often denoted N(m, s). Skewness and excess kurtosis of the

normal distribution equals zero. The transform z ¼ (x�m)=s con-

verts the normal distribution into the standard normal distribution

PSN(z) ¼ 1ffiffiffiffiffiffi
2p
p exp [�z2=2] (3:2:10)

Note that the probability for the standard normal variate to assume

the value in the interval [0, z] can be used as the definition of the error

function erf(x)

1ffiffiffiffiffiffi
2p
p

ðz
0

exp (�x2=2)dx ¼ 0:5 erf(z=
ffiffiffi
2
p

) (3:2:11)

Then the cumulative distribution function for the standard normal

distribution equals

PrSN(z) ¼ 0:5[1þ erf(z=
ffiffiffi
2
p

)] (3:2:12)

According to the central limit theorem, the probability density distri-

bution for a sum of N independent random variables with finite

variances and finite means approaches the normal distribution as N

grows to infinity. Due to exponential decay of the normal distribu-

tion, large deviations from its mean rarely appear. The normal distri-

bution plays an extremely important role in all kinds of applications.

The Box-Miller method is often used for modeling the normal distri-

bution with given uniform distribution [4]. Namely, if two numbers

x1 and x2 are drawn from the standard uniform distribution, then

y1 and y2 are the standard normal variates

y1 ¼ [�2 ln x1)]
1=2 cos (2px2), y2 ¼ [�2 ln x1)]

1=2 sin (2px2) (3:2:13)

Mean and variance of the multivariate normal distribution with N

variates can be easily calculated via the univariate means mi and

covariances sij

mN ¼
XN
i¼1

mi, s2
N ¼

XN
i, j¼1

sij (3:2:14)

The lognormal distribution is a distribution in which the logarithm of a

variate has the normal form
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PLN(x) ¼ 1

xs
ffiffiffiffiffiffi
2p
p exp [�( ln x� m)2=2s2] (3:2:15)

Mean, variance, skewness, and excess kurtosis of the lognormal dis-

tribution can be expressed in terms of the parameters s and m

mLN ¼ exp (mþ 0:5s2),

s2
LN ¼ [ exp (s2)� 1] exp (2mþ s2),

SLN ¼ [ exp (s2)� 1]1=2[ exp (s2)þ 2],

KeLN ¼ exp (4s2)þ 2 exp (3s2)þ 3 exp (2s2)� 6 (3:2:16)

The Cauchy distribution (Lorentzian) is an example of the stable distri-

bution (see the next section). It has the form

PC(x) ¼ b

p[b2 þ (x�m)2]
(3:2:17)

The specific of the Cauchy distribution is that all its moments are

infinite. The case with b ¼ 1 and m ¼ 0 is named the standard Cauchy

distribution

PC(x) ¼ 1

p[1þ x2]
(3:2:18)

Figure 3.1 depicts the distribution of the weekly returns of the ex-

change-traded fund SPDR that replicates the S&P 500 index (ticker

SPY) for 1996–2003 in comparison with standard normal distribution

and the standard Cauchy distributions (see Exercise 3).

The extreme value distributions can be introduced with the Fisher-

Tippett theorem. According to this theorem, if the cumulative distri-

bution function F(x) ¼ Pr(X � x) for a random variable X exists,

then the cumulative distribution of the maximum values of

X,Hj(x) ¼ Pr(Xmax � x) has the following asymptotic form

Hj(x) ¼ exp [�(1þ j(x� mmax)=smax)
�1=j], j 6¼ 0,

exp [� exp (�(x� mmax)=smax)], j ¼ 0

(
(3:2:19)

where 1þ j(x� mmax)=smax > 0 in the case with j 6¼ 0: In (3.2.19),

mmax and smax are the location and scale parameters, respectively;

j is the shape parameter and 1=j is named the tail index. The
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Fisher-Tippett theorem does not define the values of the parameters

mmax and smax. However, special methods have been developed for

their estimation [5].

It is said that the cumulative distribution function F(x) is in the

domain of attraction of Hj(x). The tail behavior of the distribution

F(x) defines the shape parameter. The Gumbel distribution corres-

ponds to the case with j ¼ 0. Distributions with thin tails, such as

normal, lognormal, and exponential distributions, have the Gumbel

domain of attraction. The case with j > 0 is named the Frechet

distribution. Domain of the Frechet attraction corresponds to distri-

butions with fat tails, such as the Cauchy distribution and the Pareto

distribution (see the next Section). Finally, the case with j < 0 defines

the Weibull distribution. This type of distributions (e.g., the uniform

distribution) has a finite tail.
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Figure 3.1 The standardized distribution of the weekly returns of the S&P

500 SPDR (SPY) for 1996–2003 in comparison with the standard normal

and the standard Cauchy distributions.
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3.3 STABLE DISTRIBUTIONS AND SCALE
INVARIANCE

The principal property of stable distribution is that the sum of

variates has the same distribution shape as that of addends (see,

e.g., [6] for details). Both the Cauchy distribution and the normal

distribution are stable. This means, in particular, that the sum of

two normal distributions with the same mean and variance is also the

normal distribution (see Exercise 2). The general definition for

the stable distributions was given by Levy. Therefore, the stable

distributions are also called the Levy distributions.

Consider the Fourier transform F(q) of the probability distribution

function f(x)

F(q) ¼
ð

f(x)eiqxdx (3:3:1)

The function F(q) is also called the characteristic function of the

stochastic process. It can be shown that the logarithm of the charac-

teristic function for the Levy distribution has the following form

lnFL(q) ¼
imq� gjqja[1� ibd tan (pa=2)], if a 6¼ 1

imq� gjqj[1þ 2ibd ln (jqj)=p)], if a ¼ 1

(
(3:3:2)

In (3.3.2), d ¼ q=jqj and the distribution parameters must satisfy the

following conditions

0 < a � 2, � 1 � b � 1, g > 0 (3:3:3)

The parameter m corresponds to the mean of the stable distribution

and can be any real number. The parameter a characterizes the

distribution peakedness. If a ¼ 2, the distribution is normal. The

parameter b characterizes skewness of the distribution. Note that

skewness of the normal distribution equals zero and the parameter

b does not affect the characteristic function with a ¼ 2. For the

normal distribution

lnFN(q) ¼ imq� gq2 (3:3:4)

The non-negative parameter g is the scale factor that characterizes the

spread of the distribution. In the case of the normal distribution,

g ¼ s2=2 (where s2 is variance). The Cauchy distribution is defined
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with the parameters a ¼ 1 and b ¼ 0. Its characteristic function

equals

lnFC(q) ¼ imq� gjqj (3:3:5)

The important feature of the stable distributions with a < 2 is that

they exhibit the power-law decay at large absolute values of the

argument x

fL(jxj) � jxj�(1þa)
(3:3:6)

The distributions with the power-law asymptotes are also named the

Pareto distributions. Many processes exhibit power-law asymptotic

behavior. Hence, there has been persistent interest to the stable distri-

butions.

The power-law distributions describe the scale-free processes. Scale

invariance of a distribution means that it has a similar shape on

different scales of independent variables. Namely, function f(x) is

scale-invariant to transformation x! ax if there is such parameter

L that

f(x) ¼ Lf(ax) (3:3:7)

The solution to equation (3.3.7) is simply the power law

f(x) ¼ xn (3:3:8)

where n ¼ �ln (L)= ln (a). The power-law function f(x) (3.3.8) is scale-

free since the ratio f(ax)=f(x) ¼ L does not depend on x. Note that the

parameter a is closely related to the fractal dimension of the function

f(x). The fractal theory will be discussed in Chapter 6.

Unfortunately, the moments of stable processes E[xn] with power-

law asymptotes (i.e., when a < 2) diverge for n � a. As a result, the

mean of a stable process is infinite when a � 1. In addition, variance

of a stable process is infinite when a < 2. Therefore, the normal

distribution is the only stable distribution with finite mean and finite

variance.

The stable distributions have very helpful features for data analysis

such as flexible description of peakedness and skewness. However, as it

was mentioned previously, the usage of the stable distributions in

financial applications is often restricted because of their infinite vari-

ance at a < 2. The compromise that retains flexibility of the Levy
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distribution yet yields finite variance is named truncated Levy flight.

This distribution is defined as [2]

fTL(x) ¼ 0, jxj > ‘
CfL(x), �‘ � x � ‘

�
(3:3:9)

In (3.3.9), fL(x) is the Levy distribution ‘ is the cutoff length, and C is

the normalization constant. Sometimes the exponential cut-off is used

at large distances [3]

fTL(x) � exp (� ljxj), l > 0, jxj > ‘ (3:3:10)

Since fTL(x) has finite variance, it converges to the normal distribu-

tion according to the central limit theorem.

3.4 REFERENCES FOR FURTHER READING

The Feller’s textbook is the classical reference to the probability

theory [1]. The concept of scaling in financial data has been advocated

by Mandelbrot since the 1960s (see the collection of his work in [7]).

This problem is widely discussed in the current Econophysics litera-

ture [2, 3, 8].

3.5 EXERCISES

1. Calculate the correlation coefficients between the prices of

Microsoft (MSFT), Intel (INTC), and Wal-Mart (WMT). Use

monthly closing prices for the period 1994–2003. What do you

think of the opposite signs for some of these coefficients?

2. Familiarize yourself with Microsoft Excel’s statistical tools. As-

suming that Z is the standard normal distribution: (a) calculate

Pr(1 � Z � 3) using the NORMSDIST function; (b) calculate x

such that Pr(Z � x) ¼ 0:95 using the NORMSINV function; (c)

calculate x such that Pr(Z � x) ¼ 0:15; (d) generate 100 random

numbers from the standard normal distribution using Tools/

Data Analysis/Random Number Generation. Calculate the

sample mean and standard variance. How do they differ from

the theoretical values of m ¼ 0 and s ¼ 1, respectively? (e) Do

the same for the standard uniform distribution as in (d).
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(f) Generate 100 normally distributed random numbers x using

the function x¼NORMSINV(z) where z is taken from a sample

of the standard uniform distribution. Explain why it is possible.

Calculate the sample mean and the standard deviation. How do

they differ from the theoretical values of m and s, respectively?

3. Calculate mean, standard deviation, excess kurtosis, and skew

for the SPY data sample from Exercise 2.1. Draw the distribu-

tion function of this data set in comparison with the standard

normal distribution and the standard Cauchy distribution.

Compare results with Figure 3.1.

Hint: (1) Normalize returns by subtracting their mean and divid-

ing the results by the standard deviation. (2) Calculate the histo-

gram using the Histogram tool of the Data Analysis menu. (3)

Divide the histogram frequencies with the product of their sum and

the bin size (explain why it is necessary).

4. Let X1 and X2 be two independent copies of the normal distri-

bution X � N(m, s2). Since X is stable, aX1 þ bX2 � CXþD.

Calculate C and D via given m, s, a, and b.
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Chapter 4

Stochastic Processes

Financial variables, such as prices and returns, are random time-

dependent variables. The notion of stochastic process is used to de-

scribe their behavior. Specifically, the Wiener process (or the Brownian

motion) plays the central role in mathematical finance. Section 4.1

begins with the generic path: Markov process ! Chapmen-Kolmo-

gorov equation ! Fokker-Planck equation ! Wiener process. This

methodology is supplemented with two other approaches in Section

4.2. Namely, the Brownian motion is derived using the Langevin’s

equation and the discrete random walk. Then the basics of stochastic

calculus are described. In particular, the stochastic differential equa-

tion is defined using the Ito’s lemma (Section 4.3), and the stochastic

integral is given in both the Ito and the Stratonovich forms

(Section 4.4). Finally, the notion of martingale, which is widely popu-

lar in mathematical finance, is introduced in Section 4.5.

4.1 MARKOV PROCESSES

Consider a process X(t) for which the values x1, x2, . . . are meas-

ured at times t1, t2, . . . Here, one-dimensional variable x is used

for notational simplicity, though extension to multidimensional

systems is trivial. It is assumed that the joint probability density

f(x1, t1; x2, t2; . . . ) exists and defines the system completely. The con-

ditional probability density function is defined as
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f(x1, t1; x2, t2; . . . xk, tkjxkþ1, tkþ1; xkþ2, tkþ2; . . . ) ¼
f(x1, t1; x2, t2; . . . xkþ1, tkþ1; . . . )=f(xkþ1, tkþ1; xkþ2, tkþ2; . . . ) (4:1:1)

In (4.1.1) and further in this section, t1 > t2 > . . . tk > tkþ1 > . . .
unless stated otherwise. In the simplest stochastic process, the present

has no dependence on the past. The probability density function for

such a process equals

f(x1, t1; x2, t2; . . . ) ¼ f(x1, t1)f(x2, t2) . . . �
Y

i

f(xi, ti) (4:1:2)

The Markov process represents the next level of complexity, which

embraces an extremely wide class of phenomena. In this process, the

future depends on the present but not on the past. Hence, its condi-

tional probability density function equals

f(x1, t1; x2, t2; . . . xk, tkjxkþ1, tkþ1; xkþ2, tkþ2; . . . ) ¼
f(x1, t1; x2, t2; . . . xk, tkjxkþ1, tkþ1) (4:1:3)

This means that evolution of the system is determined with the initial

condition (i.e., with the value xkþ1 at time tkþ1). It follows for the

Markov process that

f(x1, t1; x2, t2; x3, t3) ¼ f(x1, t1jx2, t2)f(x2, t2jx3, t3) (4:1:4)

Using the definition of the conditional probability density, one can

introduce the general equation

f(x1, t1jx3, t3) ¼
ð

f(x1, t1; x2, t2jx3, t3)dx2

¼
ð

f(x1, t1jx2, t2; x3, t3)f(x2, t2jx3, t3)dx2 (4:1:5)

For the Markov process,

f(x1, t1jx2, t2; x3, t3) ¼ f(x1, t1jx2, t2), (4:1:6)

Then the substitution of equation (4.1.6) into equation (4.1.5) leads to

the Chapmen-Kolmogorov equation

f(x1, t1jx3, t3) ¼
ð

f(x1, t1jx2, t2)f(x2, t2jx3, t3)dx2 (4:1:7)

This equation can be used as the starting point for deriving the

Fokker-Planck equation (see, e.g., [1] for details). First, equation

(4.1.7) is transformed into the differential equation
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@

@t
f(x, tjx0, t0) ¼�

@

@x
[A(x, t)f(x, tjx0, t0)]þ

1

2

@2

@x2
[D(x, t)f(x, tjx0, t0)]þð

[R(xjz, t)f(z, tjx0, t0)�R(zjx, t)f(x, tjx0, t0)]dz (4:1:8)

In (4.1.8), the drift coefficient A(x, t) and the diffusion coefficient

D(x, t) are equal

A(x, t) ¼ lim
Dt!0

1

Dt

ð
(z� x)f(z, tþ Dtjx, t)dz (4:1:9)

D(x, t) ¼ lim
Dt!0

1

Dt

ð
(z� x)2f(z, tþ Dtjx, t)dz (4:1:10)

The integral in the right-hand side of the Chapmen-Kolmogorov

equation (4.1.8) is determined with the function

R(xjz, t) ¼ lim
Dt!0

1

Dt
f(x, tþ Dtjz, t) (4:1:11)

It describes possible discontinuous jumps of the random variable. Neg-

lecting this term in equation (4.1.8) yields the Fokker-Planck equation

@

@t
f(x, tjx0, t0) ¼ �

@

@x
[A(x, t)f(x, tjx0, t0)]

þ 1

2

@2

@x2
[D(x, t)f(x, tjx0, t0)]

(4:1:12)

This equation with A(x, t) ¼ 0 and D ¼ const is reduced to the

diffusion equation that describes the Brownian motion

@

@t
f(x, tjx0, t0) ¼

D

2

@2

@x2
f(x, tjx0, t0) (4:1:13)

Equation (4.1.13) has the analytic solution in the Gaussian form

f(x, tjx0, t0) ¼ [2pD(t� t0)]
�1=2 exp [�(x� x0)

2=2D(t� t0)] (4:1:14)

Mean and variance for the distribution (4.1.14) equal

E[x(t)] ¼ x0, Var[x(t)] ¼ E[(x(t)� x0)
2] ¼ s2 ¼ D(t� t0) (4:1:15)

The diffusion equation (4.1.13) with D ¼ 1 describes the standard

Wiener process for which

E[(x(t)� x0)
2] ¼ t� t0 (4:1:16)
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The notions of the generic Wiener process and the Brownian motion

are sometimes used interchangeably, though there are some fine

differences in their definitions [2, 3]. I shall denote the Wiener process

with W(t) and reserve this term for the standard version (4.1.16), as it

is often done in the literature.

The Brownian motion is the classical topic of statistical physics.

Different approaches for introducing this process are described in the

next section.

4.2 BROWNIAN MOTION

In mathematical statistics, the notion of the Brownian motion is

used for describing the generic stochastic process. Yet, this term

referred originally to Brown’s observation of random motion of

pollen in water. Random particle motion in fluid can be described

using different theoretical approaches. Einstein’s original theory of

the Brownian motion implicitly employs both the Chapman-Kolmo-

gorov equation and the Fokker-Planck equation [1]. However, choos-

ing either one of these theories as the starting point can lead to the

diffusion equation. Langevin offered another simple method for de-

riving the Fokker-Planck equation. He considered one-dimensional

motion of a spherical particle of mass m and radius R that is subjected

to two forces. The first force is the viscous drag force described by the

Stokes formula, F ¼ �6pZRv, where Z is viscosity and v ¼ dr

dt
is the

particle velocity. Another force, Z, describes collisions of the water

molecules with the particle and therefore has a random nature. The

Langevin equation of the particle motion is

m
dv

dt
¼ �6pZRvþ Z (4:2:1)

Let us multiply both sides of equation (4.2.1) by r. Since

r
dv

dt
¼ d

dt
(rv)� v2 and rv ¼ 1

2

d

dt
(r2), then

1

2
m

d2

dt2
(r2)�m

dr

dt

� �2

¼ �3pZR
d

dt
(r2)þ Zr (4:2:2)

Note that the mean kinetic energy of a spherical particle, E[ 1
2
mv2],

equals 3
2
kT. Since E[Zr] ¼ 0 due to the random nature of Z, averaging

of equation (4.2.2) yields
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m
d2

dt2
E[r2]þ 6pZR

d

dt
E[r2] ¼ 6kT (4:2:3)

The solution to equation (4.2.3) is

d

dt
E[r2] ¼ kT=(pZR)þ C exp (�6pZRt=m) (4:2:4)

where C is an integration constant. The second term in equation

(4.2.4) decays exponentially and can be neglected in the asymptotic

solution. Then

E[r2]� r2
0 ¼ [kT=(pZR)]t (4:2:5)

where r0 is the particle position at t ¼ 0. It follows from the compari-

son of equations (4.2.5) and (4.1.15) that D ¼ kT=(pZR).1

The Brownian motion can be also derived as the continuous limit

for the discrete random walk (see, e.g., [3]). First, let us introduce the

process e(t) that is named the white noise and satisfies the following

conditions

E[e(t)] ¼ 0; E[e2(t)] ¼ s2; E[e(t) e(s)] ¼ 0, if t 6¼ s: (4:2:6)

Hence, the white noise has zero mean and constant variance s2. The

last condition in (4.2.6) implies that there is no linear correlation

between different observations of the white noise. Such a model repre-

sents an independently and identically distributed process (IID) and is

sometimes denoted IID(0, s2). The IID process can still have non-

linear correlations (see Section 5.3). The normal distribution N(0, s2)

is the special case of the white noise. First, consider a simple discrete

process

y(k) ¼ y(k� 1)þ e(k) (4:2:7)

where the white noise innovations can take only two values2

e(k) ¼ D, with probability p, p ¼ const < 1

�D, with probability (1� p)

�
(4:2:8)

Now, let us introduce the continuous process yn(t) within the time

interval t 2 [0, T], such that

yn(t) ¼ y([t=h]) ¼ y([nt=T]), t 2 [0, T] (4:2:9)
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In (4.2.9), [x] denotes the greatest integer that does not exceed x. The

process yn(t) has the stepwise form: it is constant except the moments

t ¼ kh, k ¼ 1, . . . , n. Mean and variance of the process yn(T) equal

E[yn(T)] ¼ n(2p� 1)D ¼ T(2p� 1)D=h (4:2:10)

Var[yn(T)] ¼ nD2 ¼ TD2=h (4:2:11)

Both mean (4.2.10) and variance (4.2.11) become infinite in the

limiting case h! 0 with arbitrary D. Hence, we must impose a rela-

tion between D and h that ensures the finite values of the moments

E[yn(T)] and Var[yn(T)]. Namely, let us set

p ¼ (1þ m
ffiffiffi
h
p

=s)=2, D ¼ s
ffiffiffi
h
p

(4:2:12)

where m and s are some parameters. Then

E[yn(T)] ¼ mT, Var[yn(T)] ¼ s2T (4:2:13)

It can be shown that yn(T) converges to the normal distribution

N(mT, s2T) in the continuous limit. Hence, m and s are the drift

and diffusion parameters, respectively. Obviously, the drift parameter

differs from zero only when p 6¼ 0:5, that is when there is preference

for one direction of innovations over another. The continuous process

defined with the relations (4.2.13) is named the arithmetic Brownian

motion. It is reduced to the Wiener process when m ¼ 0 and s ¼ 1.

Note that in a more generic approach, the time intervals between

observations of y(t) themselves represent a random variable [4, 5].

While this process (so-called continuous-time random walk) better

resembles the market price variations, its description is beyond the

scope of this book.

In the general case, the arithmetic Brownian motion can be ex-

pressed in the following form

y(t) ¼ m(t)tþ s(y(t), t)W(t) (4:2:14)

The random variable in this process may have negative values. This

creates a problem for describing prices that are essentially positive.

Therefore, the geometric Brownian motion Y(t) ¼ exp [y(t)] is often

used in financial applications.

One can simulate the Wiener process with the following equation

[W(tþ Dt)�W(t)] � DW ¼ N(0, 1)
ffiffiffiffiffi
Dt
p

(4:2:15)
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While the Wiener process is a continuous process, its innovations are

random. Therefore, the limit of the expression DW=Dt does not

converge when Dt! 0. Indeed, it follows for the Wiener process that

lim
Dt!0

[DW(t)=Dt)] ¼ lim
Dt!0

[Dt�1=2] (4:2:16)

As a result, the derivative dW(t)/dt does not exist in the ordinary

sense. Thus, one needs a special calculus to describe the stochastic

processes.

4.3 STOCHASTIC DIFFERENTIAL EQUATION

The Brownian motion (4.2.14) can be presented in the differential

form3

dy(t) ¼ mdtþ sdW(t) (4:3:1)

The equation (4.3.1) is named the stochastic differential equation.

Note that the term dW(t) ¼ [W(tþ dt)�W(t)] has the following

properties

E[dW] ¼ 0, E[dW dW] ¼ dt, E[dW dt] ¼ 0 (4:3:2)

Let us calculate (dy)2 having in mind (4.3.2) and retaining the terms

O(dt):4

(dy)2 ¼ [mdtþ sdW]2 ¼ m2dt2 þ 2mdt sdWþ s2dW2 � s2dt (4:3:3)

It follows from (4.3.3) that while dy is a random variable, (dy)2 is a

deterministic one. This result allows one to derive the Ito’s lemma.

Consider a function F(y, t) that depends on both deterministic, t, and

stochastic, y(t), variables. Let us expand the differential for F(y, t)

into the Taylor series retaining linear terms and bearing in mind

equation (4.3.3)

dF(y, t) ¼ @F
@y

dyþ @F
@t

dtþ 1

2

@2F

@y2
(dy)2

¼ @F
@y

dyþ @F

@t
þ s2

2

@2F

@y2

� �
dt (4:3:4)

The Ito’s expression (4.3.4) has an additional term in comparison with

the differential for a function with deterministic independent vari-
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ables. Namely, the term
s2

2

@2F

@y2
dt has stochastic nature. If y(t) is the

Brownian motion (4.3.1), then

dF(y, t) ¼ @F
@y

[mdtþ sdW(t)]þ @F

@t
þ s2

2

@2F

@y2

� �
dt

¼ m
@F

@y
þ @F
@t
þ s2

2

@2F

@y2

� �
dtþ s

@F

@y
dW(t) (4:3:5)

Let us consider the function F ¼W2 as a simple example for

employing the Ito’s lemma. In this case, m ¼ 0, s ¼ 1, and equation

(4.3.5) is reduced to

dF ¼ dtþ 2WdW (4:3:6)

Finally, we specify the Ito’s expression for the geometric Brownian

motion F ¼ exp [y(t)]. Since in this case,
@F

@y
¼ @

2F

@y2
¼ F and

@F

@t
¼ 0,

then

dF ¼ mþ s2

2

� �
Fdtþ sFdW(t) (4:3:7)

Hence, if F is the geometricBrownianmotion, its relative change, dF/F,

behaves as the arithmetic Brownian motion.

The Ito’s lemma is a pillar of the option pricing theory. It will be

used for deriving the classical Black-Scholes equation in Section 9.4.

4.4 STOCHASTIC INTEGRAL

Now that the stochastic differential has been introduced, let us

discuss how to perform its integration. First, the Riemann-Stieltjes

integral should be defined. Consider a deterministic function f(t)

on the interval t 2 [0, T]. In order to calculate the Riemann integral

of f(t) over the interval [0, T], this interval is divided into n sub-intervals

t0 ¼ 0 < t1 < . . . < tn ¼ T and the following sum should be computed

Sn ¼
Xn

i¼1

f(ti)(ti � ti�1) (4:4:1)

where ti 2 [ti�1, ti]. The Riemann integral is the limit of Sn
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ðT
0

f(t)dt ¼ limSn, max (ti � ti�1)! 0 for all i: (4:4:2)

Note that the limit (4.4.2) exists only if the function f(t) is sufficiently

smooth. Another type of integral is the Stieltjes integral. Let us define

the differential of a function g(x)

dg ¼ g(xþ dx)� g(x) (4:4:3)

Then the Stieltjes integral for the function g(t) on the interval

t 2 [0, T] is defined as

Sn ¼
Xn

i¼1

f(ti)[g(ti)� g(ti�1)] (4:4:4)

where ti 2 [ti�1, ti]

ðT
0

f(t)dg(t) ¼ lim Sn, wheremax (ti � ti�1)! 0 for all i: (4:4:5)

If g(t) has a derivative, then dg � dg

dt
dt ¼ g0(t)dt, and the sum (4.4.4)

can be written as

Sn ¼
Xn

i¼1

f(ti)g
0(ti)(ti � ti�1) (4:4:6)

Similarity between the Riemann sum (4.4.1) and the Stieltjes sum

(4.4.6) leads to the definition of the Riemann-Stieltjes integral. The

Riemann-Stieltjes integral over the deterministic functions does not

depend on the particular choice of the point ti within the intervals

[ti�1, ti]. However, if the function f(t) is random, the sum Sn does

depend on the choice of ti. Consider, for example, the sum (4.4.4) for

the case f(t) ¼ g(t) ¼ W(t) (where W(t) is the Wiener process). It

follows from (4.1.16) that

E[Sn] ¼ E
Xn

i¼1

W(ti){W(ti)�W(ti�1)}

" #

¼
Xn

i¼1

[ min (ti, ti)�min (ti, ti�1)] ¼
Xn

i¼1

(ti � ti�1) (4:4:7)
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Let us set for all i

ti ¼ ati þ (1� a)ti�1 0 � a � 1 (4:4:8)

Substitution of (4.4.8) into (4.4.7) leads to E[Sn] ¼ aT. Hence, the

sum (4.4.7) depends on the arbitrary parameter a and therefore can

have any value. Within the Ito’s formalism, the value a ¼ 0 is chosen,

so that ti ¼ ti�1. The stochastic Ito’s integral is defined as

ðT
0

f(t)dW(t) ¼ ms�lim
n!1

Xn

i¼1

f(ti�1)[W(ti)�W(ti�1)] (4:4:9)

The notation ms-lim stands for the mean-square limit. It means that

the difference between the Ito integral in the left-hand side of (4.4.9)

and the sum in the right-hand side of (4.4.9) has variance that ap-

proaches zero as n increases to infinity. Thus, (4.4.9) is equivalent to

lim
n!1

E

ðT
0

f(t)dW(t)�
Xn

i�1

f(ti�1){W(ti)�W(ti�1)}

2
4

3
5

2

¼ 0 (4:4:10)

Let us consider the integral

I(t2, t1) ¼
ðt2
t1

W(t)dW(t) (4:4:11)

as an example of calculating the Ito’s integral. If the function W(t) is

deterministic, then the Riemann-Stieltjes integral IR�S(t2, t1) equals

IR�S(t2, t1) ¼ 0:5[W(t2)
2 �W(t1)

2] (4:4:12)

However, when W(t) is the Wiener process, the Ito’s integral II(t2, t1)

leads to a somewhat unexpected result

II(t2, t1) ¼ 0:5[W(t2)
2 �W(t1)

2 � (t2 � t1)] (4:4:13)

This follows directly from equation (4.3.6). Obviously, the result

(4.4.13) can be derived directly from the definition of the Ito’s integral

(see Exercise 1). Note that the mean of the Ito’s integral (4.4.11)

equals zero

E[II(t2, t1)] ¼ 0 (4:4:14)
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The difference between the right-hand sides of (4.4.12) and (4.4.13) is

determined by the particular choice of a ¼ 0 in (4.4.8). Stratonovich

has offered another definition of the stochastic integral by choosing

a ¼ 0:5. In contrast to equation (4.4.9), the Stratonovich’s integral is

defined as

ðT
0

f(t)dW(t) ¼ ms�lim
n!1

Xn

i¼1

f
ti�1 þ ti

2

� �
[W(ti)�W(ti�1)] (4:4:15)

For the integrand in (4.4.11), the Stratonovich’s integral IS(t2, t1)

coincides with the Riemann-Stieltjes integral

IS(t2, t1) ¼ 0:5[W(t2)
2 �W(t1)

2] (4:4:16)

Both Ito’s and Stratonovich’s formulations can be transformed into

eachother. Inparticular, theIto’s stochasticdifferential equation(4.3.1)

dyI(t) ¼ mdtþ sdW(t) (4:4:17)

is equivalent to the Stratonovich’s equation

dyS(t) ¼ m� 0:5s
@s

@y

� �
dtþ sdW(t) (4:4:18)

The applications of stochastic calculus in finance are based almost

exclusively on the Ito’s theory. Consider, for example, the integralðt2
t1

s(t)dW(t) (4:4:19)

If no correlation between the function s(t) and the innovation dW(t)

is assumed, then the Ito’s approximation is a natural choice. In this

case, the function s(t) is said to be a nonanticipating function [1, 2].

However, if the innovations dW(t) are correlated (so-called non-white

noise), then the Stratonovich’s approximation appears to be an ad-

equate theory [1, 6].

4.5 MARTINGALES

The martingale methodology plays an important role in the

modern theory of finance [2, 7, 8]. Martingale is a stochastic process

X(t) that satisfies the following condition
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E[X(tþ 1)jX(t), X(t� 1), . . . ] ¼ X(t) (4:5:1)

The equivalent definition is given by

E[X(tþ 1)�X(t)jX(t), X(t� 1), . . . ] ¼ 0 (4:5:2)

Both these definitions are easily generalized for the continuum pre-

sentation where the time interval, dt, between two sequent moments

tþ 1 and t approaches zero (dt! 0). The notion of martingale is

rooted in the gambling theory. It is closely associated with the notion

of fair game, in which none of the players has an advantage. The

condition (4.5.1) implies that the expectation of the gamer wealth at

time tþ 1 conditioned on the entire history of the game is equal to the

gamer wealth at time t. Similarly, equation (4.5.2) means that the

expectation to win at every round of the game being conditioned on

the history of the game equals zero. In other words, martingale has no

trend. A process that has positive trend is named submartingale.

A process with negative trend is called supermartingale.

The martingale hypothesis applied to the asset prices states that the

expectation of future price is simply the current price. This assumption

is closely related to the Efficient Market Hypothesis discussed in

Section 2.3. Generally, the asset prices are not martingales for they

incorporate risk premium. Indeed, there must be some reward offered

to investors for bearing the risks associated with keeping the assets. It

can be shown, however, that the prices with discounted risk premium

are martingales [3].

The important property of the Ito’s integral is that it is martingale.

Consider, for example, the integral (4.4.19) approximated with the

sum (4.4.9). Because the innovations dW(t) are unpredictable, it

follows from (4.4.14) that

E

ðtþDt

t

s(z)dW(z)

2
4

3
5 ¼ 0 (4:5:3)

Therefore,

E

ðtþDt

0

s(z)dW(z)

2
4

3
5 ¼ ð

t

0

s(z)dW(z) (4:5:4)
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and the integral (4.4.19) satisfies the martingale definition. Note that

for the Brownian motion with drift (4.2.14)

E[y(tþ dt)] ¼ E y(t)þ
ðtþdt

t

dy

2
4

3
5 ¼ y(t)þ mdt (4:5:5)

Hence, the Brownian motion with drift is not a martingale. However,

the process

z(t) ¼ y(t)� mt (4:5:6)

is a martingale since

E[z(tþ dt)] ¼ z(t) (4:5:7)

This result follows also from the Doob-Meyer decomposition theorem,

which states that a continuous submartingale X(t) at 0 � t � 1 with

finite expectation E[X(t)] <1 can be decomposed into a continuous

martingale and an increasing deterministic process.

4.6 REFERENCES FOR FURTHER READING

Theory and applications of the stochastic processes in natural

sciences are described in [1, 6]. A good introduction to the stochastic

calculus in finance is given in [2]. For a mathematically inclined

reader, the presentation of the stochastic theory with increasing

level of technical details can be found in [7, 8].

4.7 EXERCISES

1. Simulate daily price returns using the geometric Brownian

motion (4.3.7) for four years. Use equation (4.2.15) for approxi-

mating DW. Assume that S(0) ¼ 10, m ¼ 10%, s ¼ 20% (m and

s are given per annum). Assume 250 working days per annum.

2. Prove thatðt2
t1

W(s)ndW(s) ¼ 1

nþ 1
[W(t2)

nþ1 �W(t1)
nþ1]� n

2

ðt2
t1

W(s)n�1ds

Hint: Calculate d(Wnþ1) using the Ito’s lemma.

Stochastic Processes 41

Schmidt / Quantitative Finance: An Introduction For Physicists Final Proof 25.10.2004 11:21am page 41



3. Solve the Ornstein-Uhlenbeck equation that describes the mean-

reverting process in which the solution fluctuates around its

mean

dX ¼ �mXdtþ sdW, m > 0

Hint: introduce the variable Y ¼ Xexp (mt).

*4. Derive the integral (4.4.13) directly from the definition of the

Ito’s integral (4.4.9).
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Chapter 5

Time Series Analysis

Time series analysis has become an indispensable theoretical tool in

financial and economic research. Section 5.1 is devoted to the com-

monly used univariate autoregressive and moving average models.

The means for modeling trends and seasonality effects are described

in Section 5.2. The processes with non-stationary variance (condi-

tional heteroskedasticity) are discussed in Section 5.3. Finally,

the specifics of the multivariate time series are introduced in

Section 5.4.

5.1 AUTOREGRESSIVE AND MOVING AVERAGE
MODELS

5.1.1 AUTOREGRESSIVE MODEL

First, we shall consider a univariate time series y(t) for a process

that is observed at moments t ¼ 0, 1, . . . , n (see, e.g., [1, 2]). The time

series in which the observation at moment t depends linearly on

several lagged observations at moments t� 1, t� 2, . . . , t� p

y(t) ¼ a1y(t� 1)þ a2y(t� 2)þ . . .þ apy(t� p)þ e(t), t > p (5:1:1)

is called the autoregressive process of order p, or AR(p). The term e(t) in

(5.1.1) is the white noise that satisfies the conditions (4.2.6). The lag
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operatorLp ¼ y(t� p) is often used for describing time series.Note that

L0 ¼ y(t). Equation (5.1.1) in terms of the lag operator has the form

Ap(L)y(t) ¼ e(t) (5:1:2)

where

Ap(L) ¼ 1� a1L� a2L
2 � . . .� apL

p (5:1:3)

The operator Ap(L) is called the AR polynomial in lag operator of

order p. Let us consider AR(1) that starts with a random shock. Its

definition implies that

y(0) ¼ e(0), y(1) ¼ a1y(0)þ e(1),

y(2) ¼ a1y(1)þ e(2) ¼ a1
2e(0)þ a1e(1)þ e(2), . . .

Hence, by induction,

y(t) ¼
Xt

i¼0

a1
ie(t� i) (5:1:4)

Mean and variance of AR(1) equal, respectively

E[y(t)] ¼ 0, Var[y(t)] ¼ s2=(1� a1
2), (5:1:5)

Obviously, the contributions of the ‘‘old’’ noise converge with time to

zero when ja1j < 1. As a result, this process does not drift too far from

its mean. This feature is named mean reversion.

The process with a1 ¼ 1 is called the random walk

y(t) ¼ y(t� 1)þ e(t) (5:1:6)

In this case, equation (5.1.4) reduces to

y(t) ¼
Xt

i¼0

e(t� i)

The noise contributions to the random walk do not weaken with time.

Therefore, the random walk does not exhibit mean reversion. Now,

consider the process that represents the first difference

x(t) ¼ y(t)� y(t� 1) ¼ e(t) (5:1:7)

Obviously, past noise has only transitory character for the process

x(t). Therefore, x(t) is mean-reverting. Some processes must be
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differenced several times in order to exclude non-transitory noise

shocks. The processes differenced d times are named integrated of

order d and denoted as I(d). The differencing operator is used for

describing an I(d) process

Di
d ¼ (1� Li)d, j, d ¼ . . . , �2, �1, 0, 1, 2 . . . (5:1:8)

If an I(d) process can be reduced to AR(p) process while applying the

differencing operator, it is named ARI(p, d) process and has the form:

D1
dy(t)� a1D1

dy(t� 1)� . . .� apD1
dy(t� p) ¼ e(t), t � pþ d

(5:1:9)

Note that differencing a time series d times reduces the number of

independent variables by d, so that the total number of independent

variables in ARI(p, d) within the sample with n observations equals

n� p� d.

The unit root is another notion widely used for discerning perman-

ent and transitory effects of random shocks. It is based on the roots of

the characteristic polynomial for the AR(p) model. For example,

AR(1) has the characteristic polynomial

1� a1z ¼ 0 (5:1:10)

If a1 ¼ 1, then z ¼ 1 and the characteristic polynomial has the

unit root. In general, the characteristic polynomial roots can have

complex values. The solution to equation (5.1.10) is outside the unit

circle (i.e., z > 1) when a1 < 1. It can be shown that all solutions for

AR(p) are outside the unit circle when

1� a1z� a2z
2 � . . .� apz

p ¼ 0 (5:1:11)

5.1.2 MOVING AVERAGE MODELS

A model more general than AR(p) contains both lagged observa-

tions and lagged noise

y(t) ¼ a1y(t� 1)þ a2y(t� 2)þ . . .þ apy(t� p)þ e(t)

þ b1e(t� 1)þ b2e(t� 2)þ . . .þ bqe(t� q) (5:1:12)

This model is called autoregressive moving average model of order

(p,q), or simply ARMA(p,q). Sometimes modeling of empirical data
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requires AR(p) with a rather high number p. Then, ARMA(p, q) may

be more efficient in that the total number of its terms (pþ q) needed

for given accuracy is lower than the number p in AR(p). ARMA(p, q)

can be expanded into the integrated model, ARIMA(p, d, q), similar

to the expansion of AR(p) into ARI(p, d). Neglecting the autoregres-

sive terms in ARMA(p, q) yields a ‘‘pure’’ moving average model

MA(q)

y(t) ¼ e(t)þ b1e(t� 1)þ b2e(t� 2)þ . . .þ bqe(t� q) (5:1:13)

MA(q) can be presented in the form

y(t) ¼ Bq(L)e(t) (5:1:14)

where Bq(L) is the MA polynomial in lag operator

Bq(L) ¼ 1þ b1Lþ b2L
2 þ . . .þ bqL

q (5:1:15)

The moving average model does not depend explicitly on the lagged

values of y(t). Yet, it is easy to show that this model implicitly

incorporates the past. Consider, for example, the MA(1) model

y(t) ¼ e(t)þ b1e(t� 1) (5:1:16)

with e(0) ¼ 0. For this model,

y(1) ¼ e(1), y(2) ¼ e(2)þ b1e(1) ¼ e(2)þ b1y(1),

y(3) ¼ e(3)þ b1e(2) ¼ e(3)þ b1(y(2)� b1y(1)), . . .

Thus, the general result for MA(1) has the form

y(t)(1� b1Lþ b1L
2 � b1L

3 þ . . . ) ¼ e(t) (5:1:17)

Equation (5.1.17) can be viewed as the AR(1) process, which illus-

trates that the MA model does depend on past.

The MA(q) model is invertible if it can be transformed into an

AR(1) model. It can be shown that MA(q) is invertible if all solu-

tions to the equation

1þ b1zþ b2z
2 þ . . .þ bqz

q ¼ 0 (5:1:18)

are outside the unit circle. In particular, MA(1) is invertible if

jb1j < 1. If the process y(t) has a non-zero mean value m, then the

AR(1) model can be presented in the following form
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y(t)�m ¼ a1[y(t� 1)�m]þ e(t) ¼ cþ a1y(t� 1)þ e(t) (5:1:19)

In (5.1.19), intercept c equals:

c ¼ m(1� a1) (5:1:20)

The general AR(p) model with a non-zero mean has the following

form

Ap(L)y(t) ¼ cþ e(t), c ¼ m(1� a1 � . . . ap) (5:1:21)

Similarly, the intercept can be included into the general moving

average model MA(q)

y(t) ¼ cþ Bp(L)e(t), c ¼ m (5:1:22)

Note that mean of the MA model coincides with its intercept because

mean of the white noise is zero.

5.1.3 AUTOCORRELATION AND FORECASTING

Now, let us introduce the autocorrelation function (ACF) for pro-

cess y(t)

r(k) ¼ g(k)=g(0) (5:1:23)

where g(k) is the autocovariance of order k

g(k) ¼ E[y(t)�m)(y(t� k)�m)] (5:1:24)

The autocorrelation functions may have some typical patterns, which

can be used for identification of empirical time series [2]. The obvious

properties of ACF are

r(0) ¼ 1, � 1 < r(k) < 1 for k 6¼ 0 (5:1:25)

ACF is closely related to the ARMA parameters. In particular, for

AR(1)

r(1) ¼ a1 (5:1:26)

The ACF of the first order for MA(1) equals

r(1) ¼ b1=(b1
2 þ 1) (5:1:27)

The right-hand side of the expression (5.1.27) has the same value for

the inverse transform b1 ! 1=b1. For example, two processes
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x(t) ¼ e(t)þ 2e(t� 1)

y(t) ¼ e(t)þ 0:5e(t� 1)

have the same r(1). Note, however, that y(t) is an invertible process

while x(t) is not.

ARMA modeling is widely used for forecasting. Consider a fore-

cast of a variable y(tþ 1) based on a set of n variables x(t) known at

moment t. This set can be just past values of y, that is,

y(t), y(t� 1), . . . , y(t� nþ 1). Let us denote the forecast with

ŷy(tþ 1jt). The quality of forecast is usually defined with the some

loss function. The mean squared error (MSE) is the conventional loss

function in many applications

MSE(ŷy(tþ 1jt)) ¼ E[(y(tþ 1)�ŷy(tþ 1jt))2] (5:1:28)

The forecast that yields the minimum of MSE turns out to be the

expectation of y(tþ 1) conditioned on x(t)

ŷy(tþ 1jt) ¼ E[y(tþ 1)jx(t)] (5:1:29)

In the case of linear regression

y(tþ 1) ¼ b0x(t)þ e(t) (5:1:30)

MSE is reduced to the ordinary least squares (OLS) estimate for b.

For a sample with T observations,

b ¼
XT
t¼1

x(t)y(tþ 1)=
XT
t¼1

x(t)x0(t) (5:1:31)

Another important concept in the time series analysis is the maximum

likelihood estimate (MLE) [2]. Consider the general ARMA model

(5.1.12) with the white noise (4.2.6). The problem is how to estimate

the ARMA parameters on the basis of given observations of y(t). The

idea of MLE is to find such a vector r0 ¼ (a1, . . . , ap, . . . ,
b1, . . . , bq, s2) that maximizes the likelihood function for given ob-

servations (y1, y2, . . . , yT)

f1, 2, . . . , T(y1, y2, . . . , yT ; r0) (5:1:32)

The likelihood function (5.1.32) has the sense of probability of ob-

serving the data sample (y1, y2, . . . , yT). In this approach, the ARMA

model and the probability distribution for the white noise should be

48 Time Series Analysis

Schmidt / Quantitative Finance: An Introduction For Physicists Final Proof 25.10.2004 11:29am page 48

andrey
tr-soft-org



specified first. Often the normal distribution leads to reasonable

estimates even if the real distribution is different. Furthermore, the

likelihood function must be calculated for the chosen ARMA model.

Finally, the components of the vector r0 must be estimated. The latter

step may require sophisticated numerical optimization technique.

Details of implementation of MLE are discussed in [2].

5.2 TRENDS AND SEASONALITY

Finding trends is an important part of the time series analysis.

Presence of trend implies that the time series has no mean reversion.

Moreover, mean and variance of a trending process depend on the

sample. The time series with trend is named non-stationary. If a

process y(t) is stationary, its mean, variance, and autocovariance are

finite and do not depend on time. This implies that autocovariance

(5.1.24) depends only on the lag parameter k. Such a definition of

stationarity is also called covariance-stationarity or weak stationarity

because it does not impose any restrictions on the higher moments of

the process. Strict stationarity implies that higher moments also do

not depend on time. Note that any MA process is covariance-station-

ary. However, the AR(p) process is covariance-stationary only if the

roots of its polynomial are outside the unit circle.

It is important to discern deterministic trend and stochastic trend.

They have a different nature yet their graphs may look sometimes

very similar [1]. Consider first the AR(1) model with the deterministic

trend

y(t)�m� ct ¼ a1(y(t� 1)�m� c(t� 1))þ e(t) (5:2:1)

Let us introduce z(t) ¼ y(t)�m� ct. Then equation (5.2.1) has the

solution

z(t) ¼ a1
t z(0)þ

Xt

i¼1

a1
t�ie(t) (5:2:2)

where z(0) is a pre-sample starting value of z. Obviously, the random

shocks are transitory if ja1j < 1. The trend incorporated in the defin-

ition of z(t) is deterministic when ja1j < 1. However, if a1 ¼ 1, then

equation (5.2.1) has the form
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y(t) ¼ cþ y(t� 1)þ e(t) (5:2:3)

The process (5.2.3) is named the random walk with drift. In this case,

equation (5.2.2) is reduced to

z(t) ¼ z(0)þ
Xt

i¼1

e(t) (5:2:4)

The sum of non-transitory shocks in the right-hand side of equation

(5.2.4) is named stochastic trend. Consider, for example, the determin-

istic trend model with m ¼ 0 and e(t) ¼ N(0, 1)

y(t) ¼ 0:1tþ e(t) (5:2:5)

and the stochastic trend model

y(t) ¼ 0:1þ y(t� 1)þ e(t), y(0) ¼ 0 (5:2:6)

As it can be seen from Figure 5.1, both graphs look similar. In

general, however, the stochastic trend model can deviate from the

deterministic trend for a long time.

Stochastic trend implies that the process is I(1). Then the lag

polynomial (5.1.3) can be represented in the form

y(t)

0

1

2

3

4

5

6

7

0 10 20 30 40

t

B

A

Figure 5.1 Deterministic and stochastic trends: A - equation (5.2.5), B -

equation (5.2.6).
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Ap(L) ¼ (1� L)Ap�1(L) (5:2:7)

Similarly, the process I(2) has the lag polynomial

Ap(L) ¼ (1� L)2Ap�2(L) (5:2:8)

and so on. The standard procedure for testing presence of the unit

root in time series is the Dickey-Fuller method [1, 2]. This method is

implemented in major econometric software packages (see the Section

5.5).

Seasonal effects may play an important role in the properties of time

series. Sometimes, there is a need to eliminate these effects in order to

focus on the stochastic specifics of the process. Various differencing

filters can be used for achieving this goal [2]. In other cases, seasonal

effect itself may be the object of interest. The general approach for

handling seasonal effects is introducing dummy parameters D(s, t)

where s ¼ 1, 2, . . . , S; S is the number of seasons. For example,

S ¼ 12 is used for modeling the monthly effects. Then the parameter

D(s, t) equals 1 at a specific season s and equals zero at all other

seasons. The seasonal extension of an ARMA(p,q) model has the

following form

y(t) ¼ a1y(t� 1)þ a2y(t� 2)þ . . .þ apy(t� p)þ e(t)

þb1e(t� 1)þ b2e(t� 2)þ . . .þ bqe(t� q)þ
XS

s¼1

dsD(s, t) (5:2:9)

Note that forecasting with the model (5.2.9) requires estimating

(pþ qþ S) parameters.

5.3 CONDITIONAL HETEROSKEDASTICITY

So far, we considered random processes with the white noise (4.2.6)

that are characterized with constant unconditional variance. Condi-

tional variance has not been discussed so far. In general, the processes

with unspecified conditional variance are named homoskedastic.

Many random time series are not well described with the IID process.

In particular, there may be strong positive autocorrelation in squared

asset returns. This means that large returns (either positive or nega-

tive) follow large returns. In this case, it is said that the return
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volatility is clustered. The effect of volatility clustering is also called

autoregressive conditional heteroskedasticity (ARCH). It should be

noted that small autocorrelation in squared returns does not neces-

sarily mean that there is no volatility clustering. Strong outliers that

lead to high values of skewness and kurtosis may lower autocorrela-

tion. If these outliers are removed from the sample, volatility cluster-

ing may become apparent [3].

Several models in which past shocks contribute to the current

volatility have been developed. Generally, they are rooted in the

ARCH(m) model where the conditional variance is a weighed sum

of m squared lagged returns

s2(t) ¼ vþ a1e2(t� 1)þ a2e2(t� 2)þ . . .þ ame2(t�m) (5:3:1)

In (5.3.1), e(t) � N(0, s2(t)), v > 0, a1, . . . , am � 0. Unfortunately,

application of the ARCH(m) process to modeling the financial time

series often requires polynomials with high order m. A more efficient

model is the generalized ARCH (GARCH) process. The GARCH

(m, n) process combines the ARCH(m) process with the AR(n) pro-

cess for lagged variance

s2(t) ¼ vþ a1e2(t� 1)þ a2e2(t� 2)þ . . .þ ame2(t�m)

þ b1s2(t� 1)þ b2s2(t� 2)þ . . .þ bns2(t� n) (5:3:2)

The simple GARCH(1, 1) model is widely used in applications

s2(t) ¼ vþ ae2(t� 1)þ bs2(t� 1) (5:3:3)

Equation (5.3.3) can be transformed into

s2(t) ¼ vþ (aþ b)s2(t� 1)þ a[e2(t)� s2(t� 1)] (5:3:4)

The last term in equation (5.3.4) is conditioned on information avail-

able at time (t� 1) and has zero mean. This term can be treated as a

shock to volatility. Therefore, the unconditional expectation of vola-

tility for the GARCH(1, 1) model equals

E[s2(t)] ¼ v=(1� a� b) (5:3:5)

This implies that the GARCH(1, 1) process is weakly stationary when

aþ b < 1. The advantage of the stationary GARCH(1, 1) model is

that it can be easily used for forecasting. Namely, the conditional

expectation of volatility at time (tþ k) equals [4]
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E[s2(tþ k)] ¼ (aþ b)k[s2(t)� v=(1� a� b)]þ v=(1� a� b) (5:3:6)

The GARCH(1, 1) model (5.3.4) can be rewritten as

s2(t) ¼ v=(1� b)þ a(e2(t� 1)þ be2(t� 2)þ b2e2(t� 3)þ . . . ) (5:3:7)

Equation (5.3.7) shows that the GARCH(1, 1) model is equivalent to

the infinite ARCH model with exponentially weighed coefficients.

This explains why the GARCH models are more efficient than the

ARCH models.

Several GARCH models have been described in the econometric

literature [1–3]. One popular GARCH(1, 1) model with aþ b ¼ 1 is

called integrated GARCH (IGARCH). It has the autoregressive unit

root. Therefore volatility of this process follows random walk and can

be easily forecasted

E[s2(tþ k)] ¼ s2(t)þ kv (5:3:8)

IGARCH can be presented in the form

s2(t) ¼ vþ (1� l)e2(t� 1)þ ls2(t� 1) (5:3:9)

where 0 < l < 1. If v ¼ 0, IGARCH coincides with the exponentially

weighed moving average (EWMA)

s2(t) ¼ (1� l)
Xn

i¼1

li�1e2(t� i) (5:3:10)

Indeed, the n-period EWMA for a time series y(t) is defined as

z(t) ¼ [y(t� 1)þ ly(t� 2)þ l2y(t� 3)þ . . .þ
ln�1y(t� n)]=(1þ lþ . . .þ ln)

(5:3:11)

where 0 < l < 1. For large n, the denominator of (5.3.11) converges

to 1=(1� l). Then for z(t) ¼ s2(t) and y(t) ¼ e2(t), equation (5.3.11) is

equivalent to equation (5.3.7) with v ¼ 0.

The GARCH models discussed so far are symmetric in that the

shock sign does not affect the resulting volatility. In practice, how-

ever, negative price shocks influence volatility more than the positive

shocks. A noted example of the asymmetric GARCH model is the

exponential GARCH (EGARCH) (see, e.g., [3]). It has the form

log [s2(t)] ¼ vþ b log [s2(t� 1)]þ lz(t� 1)þ
g(jz(t� 1)j �

ffiffiffiffiffiffiffiffi
2=p

p
)

(5:3:12)
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where z(t) ¼ e(t)=s(t). Note that E[z(t)] ¼
ffiffiffiffiffiffiffiffi
2=p

p
. Hence, the last term

in (5.3.12) is the mean deviation of z(t). If g > 0 and l < 0, negative

shocks lead to higher volatility than positive shocks.

5.4 MULTIVARIATE TIME SERIES

Often the current value of a variable depends not only on its past

values, but also on past and/or current values of other variables.

Modeling of dynamic interdependent variables is conducted with

multivariate time series. The multivariate models yield not only new

implementation problems but also some methodological difficulties.

In particular, one should be cautious with simple regression models

y(t) ¼ ax(t)þ e(t) (5:4:1)

that may lead to spurious results. It is said that (5.4.1) is a simultan-

eous equation as both explanatory (x) and dependent (y) variables are

present at the same moment of time. A notorious example for spuri-

ous inference is the finding that the best predictor in the United

Nations database for the Standard & Poor’s 500 stock index is

production of butter in Bangladesh [5].

A statistically sound yet spurious relationship is named data

snooping. It may appear when the data being the subject of research

are used to construct the test statistics [4]. Another problem with

simultaneous equations is that noise can be correlated with the ex-

planatory variable, which leads to inaccurate OLS estimates of the

regression coefficients. Several techniques for handling this problem

are discussed in [2].

A multivariate time series y(t) ¼ (y1(t), y2(t), . . . , yn(t))
0 is a vector

of n processes that have data available for the same moments of time.

It is supposed also that all these processes are either stationary or

have the same order of integration. In practice, the multivariate

moving average models are rarely used due to some restrictions [1].

Therefore, we shall focus on the vector autoregressive model (VAR)

that is a simple extension of the univariate AR model to multivariate

time series. Consider a bivariate VAR(1) process

y1(t) ¼ a10 þ a11y1(t� 1)þ a12y2(t� 1)þ e1(t)

y2(t) ¼ a20 þ a21y1(t� 1)þ a22y2(t� 1)þ e2(t) (5:4:2)
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that can be presented in the matrix form

y(t) ¼ a0 þ Ay(t� 1)þ «(t) (5:4:3)

In (5.4.3), y(t) ¼ (y1(t), y2(t))
0, a0 ¼ (a10, a20)

0, «(t) ¼ (e1(t), e2(t))
0,

and A ¼ a11 a12

a21 a22

� �
.

The right-hand sides in example (5.4.2) depend on past values only.

However, dependencies on current values can also be included (so-

called simultaneous dynamic model [1]). Consider the modification of

the bivariate process (5.4.2)

y1(t) ¼ a11y1(t� 1)þ a12y2(t)þ e1(t)

y2(t) ¼ a21y1(t)þ a22y2(t� 1)þ e2(t) (5:4:4)

The matrix form of this process is

1 �a12

�a21 1

� �
y1(t)

y2(t)

� �
¼ a11 0

0 a22

� �
y1(t� 1)

y2(t� 1)

� �
þ e1(t)

e2(t)

� �
(5:4:5)

Multiplying both sides of (5.4.5) with the inverse of the left-hand

matrix yields

y1(t)

y2(t)

� �
¼ (1� a12a21)

�1
a11 a12a22

a11a21 a22

� �
y1(t� 1)

y2(t� 1)

� �

þ (1� a12a21)
�1

1 a12

a21 1

� �
e1(t)

e2(t)

� �
(5:4:6)

Equation (5.4.6) shows that the simultaneous dynamic models can

also be represented in the VAR form.

In the general case of n-variate time series, VAR(p) has the form [2]

y(t) ¼ a0 þ A1y(t� 1)þ . . .þ Apy(t� p)þ «(t) (5:4:7)

where y(t), a0, and «(t) are n-dimensional vectors and Ai(i ¼ 1, . . . , p)

are n x n matrices. Generally, the white noises «(t) are mutually

independent. Let us introduce

�AAp(L) ¼ In � A1L� . . .� ApL
p (5:4:8)

where In is the n-dimensional unit vector. Then equation (5.4.7) can

be presented as
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�AAp(L)y(t) ¼ a0 þ «(t) (5:4:9)

Two covariance-stationary processes x(t) and y(t) are jointly covar-

iance-stationary if their covariance Cov(x(t), y(t� s)) depends on lag

s only. The condition for the covariance-stationary VAR(p) is the

generalization of (5.1.11) for AR(p). Namely, all values of z satisfying

the equation

jIn � A1z� . . .� Apz
pj ¼ 0 (5:4:10)

must lie outside the unit circle. Equivalently, all solutions of the

equation

jInl
p � A1l

p�1 � . . .� Apj ¼ 0 (5:4:11)

must satisfy the condition jlj < 1.

The problem of whether the lagged values of process y can improve

prediction of process x (so-called Granger causality) is often posed in

forecasting. It is said that if y fails to Granger-cause x, then the

following condition holds for all s > 0

MSE(E[x(tþ s)jx(t), x(t� 1), . . . ]) ¼
MSE(E[x(tþ s)jx(t), x(t� 1), . . . , y(t), y(t� 1), . . . ]) (5:4:12)

In this case, y is called exogenous variable with respect to x. For

example, y2(t) is exogenous with respect to y1(t) in (5.4.2) if a12 ¼ 0.

General methods for testing the Granger causality are described in [2].

The last notion that is introduced in this section is cointegration.

Two processes are cointegrated if they both have unit roots (i.e., they

both are I(1) ), but some linear combination of these processes is

stationary (i.e., is I(0) ). This definition can be extended to an arbi-

trary number of processes. As an example, consider a bivariate model

y1(t) ¼ ay2(t)þ e1(t)

y2(t) ¼ y2(t� 1)þ e2(t) (5:4:13)

Both processes y1(t) and y2(t) are random walks. However the process

z(t) ¼ y1(t)� ay2(t) (5:4:14)

is stationary. Details of testing the integration hypothesis are de-

scribed in [2]. Implications of cointegration in financial data analysis

are discussed in [3].
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5.5 REFERENCES FOR FURTHER READING
AND ECONOMETRIC SOFTWARE

A good concise introduction into the time series analysis is given by

Franses [1]. The comprehensive presentation of the subject can be

found in monographs by Hamilton [2] and Green [6]. Important

specifics of time series analysis in finance, particularly for analysis

and forecasting of volatility, are discussed by Alexander in [3]. In this

chapter, only time series on homogenous grids were considered. Spe-

cifics of analysis of tick-by-tick data on non-homogenous grids are

discussed in [7]. It should be noted that the exercises with the econo-

metric software packages are very helpful for learning the subject.

Besides the generic scientific software such as SAS, Splus, and Matlab

that have modules for the time series analysis, several econometric

software packages are available: PCGive, RATS, Shazam, and TSP.

While these packages may have the trial and student versions, Easy-

Reg offered by H. J. Bierens5 has sufficient capability for an intro-

ductory course and is free of charge.

5.6 EXERCISES

1. Verify equations (5.1.25)–(5.1.27).

2. Verify if the process y(t) ¼ 1:2y(t� 1)� 0:32y(t� 2)þ e(t)
(where e(t) is IID) is covariance-stationary.

3. Estimate the linear dividend growth rate from the dividends

paid in the last years (verify these data on the AMEX website:

http://www.amex.com): 2000 – $1.51, 2001 – $1.42, 2002 – $1.50,

and 2003 – $1.63.

4. Verify equation (5.4.6) for the processes (5.4.4).
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Chapter 6

Fractals

In short, fractals are the geometric objects that are constructed by

repeating geometric patterns at a smaller and smaller scale. The

fractal theory is a beautiful theory that describes beautiful objects.

Development of the fractal theory and its financial applications has

been greatly influenced by Mandelbrot [1]. In this chapter, a short

introduction to the fractal theory relevant to financial applications is

given. In Section 6.1, the basic definitions of the fractal theory are

provided. Section 6.2 is devoted to the concept of multifractals that

has been receiving a lot of attention in the recent research of the

financial time series.

6.1 BASIC DEFINITIONS

Self-similarity is the defining property of fractals. This property

implies that the geometric patterns are isotropic, meaning shape

transformations along all coordinate axes are the same. If the geo-

metric patterns are not isotropic, say the object is contracted along

the y-axis with a scale different from that of along the x-axis, it is said

that the object is self-affine. The difference between self-similarity and

self-affinity is obvious for geometric objects. However, only self-

affinity is relevant for the graphs of financial time series [1]. Indeed,

since time and prices are measured with different units, their scaling

factors cannot be compared.
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If the geometric pattern used in fractal design is deterministic, the

resulting object is named a deterministic fractal. Consider an example

in path (a) of Figure 6.1 where a square is repeatedly divided into nine

small squares and four of them that have even numbers are deleted

(the squares are numerated along rows). If four squares are deleted at

random, one obtains a random fractal (one of such fractals is depicted

in path (b) of Figure 6.1). While the deterministic and stochastic

fractals in Figure 6.1 look quite different, they have the same fractal

dimension. Let us outline the physical sense of this notion.

Consider a jagged line, such as a coastline. It is embedded into a

plane. Thus, its dimension is lower than two. Yet, the more zigzagged

the line is, the greater part of plane it covers. One may then expect

that the dimension of a coastline is higher than one and it depends on

a measure of jaggedness. Another widely used example is a crumpled

paper ball. It is embedded in three-dimensional space. Yet, the

(a)

(b)

Figure 6.1 Deterministic (a) and stochastic (b) fractals with the same

fractal dimension D ¼ ln(5)/ln(3).
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volume of a paper ball depends on the sizes of its creases. Therefore,

its dimension is expected to be in the range of two to three. Thus, we

come to the notion of the fractal (non-integer) dimension for objects

that cannot be accurately described within the framework of Eucli-

dian geometry.

There are several technical definitions for the fractal dimension [2].

The most popular one is the box-counting dimension. It implies map-

ping the grid boxes of size h (e.g., squares and cubes for the two-

dimensional and the three-dimensional spaces, respectively) onto the

object of interest. The number of boxes that fill the object is

N(h) � h�D. The fractal dimension D is then the limit

D ¼ lim
h!0

[ ln N(h)= ln (1=h)] (6:1:1)

The box-counting dimension has another equivalent definition with

the fixed unit size of the grid box and varying object size L

D ¼ lim
L!1

[ lnN(L)= ln (L)] (6:1:2)

The fractal dimension for both deterministic and stochastic fractals in

Figure 6.1 equals D ¼ ln (5)= ln (3) � 1:465. Random fractals exhibit

self-similarity only in a statistical sense. Therefore, the scale invari-

ance is a more appropriate concept for random fractals than self-

similarity.

The iterated function systems are commonly used for generating

fractals. The two-dimensional iterated function algorithm for N fixed

points can be presented as

X(kþ 1) ¼ rX(k)þ (1� r)XF(i)

Y(kþ 1) ¼ rY(k)þ (1� r)YF(i) (6:1:3)

In (6.1.3), r is the scaling parameter; XF(i) and YF(i) are the coordin-

ates of the fixed point i; i ¼ 1, 2, . . . N. The fixed point i is selected at

every iteration at random. A famous example with N ¼ 3, the Sier-

pinski triangle, is shown in Figure 6.2.

Now, let us turn to the random processes relevant to financial time

series. If a random process X(t) is self-affine, then it satisfies the

scaling rule

X(ct) ¼ cHX(t) (6:1:4)
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The parameter H is named the Hurst exponent. Let us introduce the

fractional Brownian motion BH(t). This random process satisfies

the following conditions for all t and T [1]

E[BH(tþ T)� BH(t)] ¼ 0, (6:1:5)

E[BH(tþ T)� BH(t)]2 ¼ T2H (6:1:6)

When H ¼ 1⁄2 , the fractional Brownian motion is reduced to the

regular Brownian motion. For the Brownian motion, the correlation

between the past average E[BH(t)� BH(t� T)]=T and the future aver-

age E[BH(tþ T) �BH(t)]=T equals

C ¼ 22H�1 � 1 (6:1:7)

Obviously, this correlation does not depend on T. If 1⁄2 < H < 1, then

C > 0 and it is said that BH(t) is a persistent process. Namely, if BH(t)

grew in the past, it will most likely grow in the immediate future.

Figure 6.2 The Sierpinski triangle with r ¼ 0:5.
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Conversely, if BH(t) decreased in the past, it will most probably

continue to fall. Thus, persistent processes maintain trend. In the

opposite case (0 < H < 1⁄2, C < 0), the process is named anti-persist-

ent. It is said also that anti-persistent processes are mean reverting; for

example, if the current process innovation is positive, then the next

one will most likely be negative, and vice versa. There is a simple

relationship between the box-counting fractal dimension and the

Hurst exponent

D ¼ 2�H (6:1:8)

The fractal dimension of a time series can be estimated using the

Hurst’s rescaled range (R/S) analysis [1, 3]. Consider the data set

xi(i ¼ 1, . . . N) with mean mN and the standard deviation sN. To

define the rescaled range, the partial sums Sk must be calculated

Sk ¼
Xk

i¼1

(xi �mN), 1 � k � N (6:1:9)

The rescaled range equals

R=S ¼ [ max (Sk)�min (Sk)]=sN, 1 � k � N (6:1:10)

The value of R/S is always greater than zero since max (Sk) > 0 and

min (Sk) < 0. For given R/S, the Hurst exponent can be estimated

using the relation

R=S ¼ (aN)H (6:1:11)

where a is a constant. The R/S analysis is superior to many other

methods of determining long-range dependencies. But this approach

has a noted shortcoming, namely, high sensitivity to the short-range

memory [4].

6.2 MULTIFRACTALS

Let us turn to the generic notion of multifractals (see, e.g., [5]).

Consider the map filled with a set of boxes that are used in the box-

counting fractal dimension. What matters for the fractal concept is

whether the given box belongs to fractal. The basic idea behind the

notion of multifractals is that every box is assigned a measure m
that characterizes some probability density (e.g., intensity of color
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between the white and black limits). The so-called multiplicative

process (or cascade) defines the rule according to which measure is

fragmented when the object is partitioned into smaller components.

The fragmentation ratios that are used in this process are named

multipliers. The multifractal measure is characterized with the Hölder

exponent a

a ¼ lim
h!0

[ ln m(h)= ln (h)] (6:2:1)

where h is the box size. Let us denote the number of boxes with given

h and a via Nh(a). The distribution of the Hölder exponents in the

limit h! 0 is sometimes called the multifractal spectrum

f(a) ¼ � lim
h!0

[ lnNh(a)= ln (h)] (6:2:2)

The distribution f(a) can be treated as a generalization of the fractal

dimension for the multifractal processes.

Let us describe the simplest multifractal, namely the binomial

measure m on the interval [0, 1] (see [5] for details). In the binomial

cascade, two positive multipliers, m0 and m1, are chosen so that

m0 þm1 ¼ 1. At the step k ¼ 0, the uniform probability measure

for mass distribution, m0 ¼ 1, is used. At the next step (k ¼ 1), the

measure m1 uniformly spreads mass in proportion m0=m1 on the

intervals [0, 1⁄2 ] and [1⁄2 , 1], respectively. Thus, m1[0, 1⁄2 ] ¼ m0 and

m1[
1⁄2 , 1] ¼ m1. In the next steps, every interval is again divided into

two subintervals and the mass of the interval is distributed between

subintervals in proportion m0=m1. For example, at k ¼ 2: m2[0, 1⁄4]

¼ m0m0, m2[
1⁄4,

1⁄2]¼ m2[
1⁄2,

3⁄4] ¼ m0m1, m2[
3⁄4, 1]¼m1m1 and so on.

At the kth iteration, mass is partitioned into 2k intervals of length 2�k.

Let us introduce the notion of the binary expansion 0:b1b2 . . . bk for

the point x ¼ b12
�1 þ b22

�2 þ bk2
�k where 0 � x � 1 and

0 < bk < 1. Then the measure for every dyadic interval I0b1b2 : : : bk of

length 2�k equals

m0b1b2 : : : bk ¼
Yk
i¼1

mbi
¼ m0

nm1
k�n (6:2:3)

where n is the number of digits 0 in the address 0 _bb1b2 . . .bk of the

interval’s left end, and (k� n) is the number of digits 1. Since the

subinterval mass is preserved at every step, the cascade is called
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conservative or microcanonical. The first five steps of the binomial

cascade with m0 ¼ 0:6 are depicted in Figure 6.3.

The multifractal spectrum of the binomial cascade equals

f(a) ¼ � amax � a
amax � amin

log2

amax � a
amax � amin

� �
� a� amin

amax � amin

log2

a� amin

amax � amin

� �
(6:2:4)

The distribution (6.2.4) is confined with the interval [amin, amax]. If

m0 � 0:5, then amin ¼ � log2 (m0) and amax ¼ � log2 (1�m0). The

binomial cascade can be generalized in two directions. First, one

can introduce a multinomial cascade by increasing the number of

subintervals to N > 2. Note that the condition

XN�1

0

mi ¼ 1 (6:2:5)

(a)
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Figure 6.3 Binomial cascade with m0 ¼ 0.6: a) k ¼ 0, b) k ¼ 1, c) k ¼ 2, d)

k ¼ 3, e) k ¼ 4, f) k ¼ 5.

Fractals 65

Schmidt / Quantitative Finance: An Introduction For Physicists Final Proof 25.10.2004 11:26am page 65



is needed for preserving the conservative character of the cascade.

Secondly, the values of mi can be randomized rather than assigned

fixed values. A cascade with randomized mi is called canonical. In this

case, the condition (6.2.5) is satisfied only on average, that is

E
XN�1

0

mi

" #
¼ 1 (6:2:6)

An example of the randomized cascade that has an explicit expres-

sion for the multifractal spectrum is the lognormal cascade [6]. In this

process, the multiplier that distributes the mass of the interval, M, is

determined with the lognormal distribution (i.e., log2 (M) is drawn

from the Gaussian distribution). If the Gaussian mean and variance

are l and s, respectively, then the conservative character of the

cascade E[M] ¼ 0.5 is preserved when

s2 ¼ 2(l� 1)= ln (2) (6:2:7)

The multifractal spectrum of the lognormal cascade that satisfies

(6.2.7) equals

f(a) ¼ 1� (a� l)2

4(l� 1)
(6:2:8)

Note that in contrast to the binomial cascade, the lognormal

cascade may yield negative values of f(a), which requires interpret-

ation of f(a) other than the fractal dimension.

Innovation of multifractal process, DX ¼ X(tþ Dt)�X(t), is de-

scribed with the scaling rule

E[ (DX)j jq] ¼ c(q)(Dt)t(q)þ1 (6:2:9)

where c(q) and t(q) (so-called scaling function) are deterministic func-

tions of q. It can be shown that the scaling function t(q) is always

concave. Obviously, t(0) ¼ �1. A self-affine process (6.1.4) can be

treated as a multifractal process with t(q) ¼ Hq� 1. In particular, for

the Wiener processes, H ¼ 1⁄2 and tw(q) ¼ q=2� 1. The scaling func-

tion of the binomial cascade can be expressed in terms of its multi-

pliers

t(q) ¼ log2(m0
q þm1

q) (6:2:10)

66 Fractals

Schmidt / Quantitative Finance: An Introduction For Physicists Final Proof 25.10.2004 11:26am page 66



The scaling function t(q) is related to the multifractal spectrum f(a)

via the Legendre transformation

t(q) ¼ min
a

[qa� f(a)] (6:2:11)

which is equivalent to

f(a) ¼ arg min
q

[qa� t(q)] (6:2:12)

Note that f(a) ¼ q(a�H)þ 1 for the self-affine processes.

In practice, the scaling function of a multifractal process X(t) can

be calculated using so-called partition function

Sq(T, Dt) ¼
XN�1

i¼ 0

X(tþ Dt)�X(t)j jq (6:2:13)

where the sample X(t) has N points within the interval [0, T] with the

mesh size Dt. It follows from (6.2.9) that

log {E[Sq(T, Dt)]} ¼ t(q) log (Dt)þ c(q) logT (6:2:14)

Thus, plotting log {E[Sq(T, Dt)]} against log (Dt) for different values

of q reveals the character of the scaling function t(q). Multifractal

models have become very popular in analysis of the financial time

series. We shall return to this topic in Section 8.2

6.3 REFERENCES FOR FURTHER READING

The Mandelbrot’s work on scaling in the financial time series is

compiled in the collection [1]. Among many excellent books on frac-

tals, we choose [2] for its comprehensive material that includes a

description of relations between chaos and fractals and an important

chapter on multifractals [5].

6.4 EXERCISES

*1. Implement an algorithm that draws the Sierpinski triangle with

r ¼ 0:5 (see Figure 6.2).

Hint: Choose the following fixed points: (0, 0), (0, 100), (100,

0). Use the following method for the randomized choice of the
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fixed point: i ¼ [10 rand()] %3 where rand() is the uniform

distribution within [0, 1] and % is modulus (explain the ration-

ale behind this method). Note that at least 10000 iterations are

required for a good-quality picture.

*2. Reproduce the first five steps of the binomial cascade with

m0 ¼ 0:6 (see Figure 6.3). How will this cascade change if

m0 ¼ 0:8?
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Chapter 7

Nonlinear Dynamical Systems

7.1 MOTIVATION

It is well known that many nonlinear dynamical systems, including

seemingly simple cases, can exhibit chaotic behavior. In short, the

presence of chaos implies that very small changes in the initial condi-

tions or parameters of a system can lead to drastic changes in its

behavior. In the chaotic regime, the system solutions stay within the

phase space region named strange attractor. These solutions never

repeat themselves; they are not periodic and they never intersect.

Thus, in the chaotic regime, the system becomes unpredictable. The

chaos theory is an exciting and complex topic. Many excellent books

are devoted to the chaos theory and its applications (see, e.g., refer-

ences in Section 7.7). Here, I only outline the main concepts that may

be relevant to quantitative finance.

The first reason to turn to chaotic dynamics is a better understand-

ing of possible causes of price randomness. Obviously, new infor-

mation coming to the market moves prices. Whether it is a

company’s performance report, a financial analyst’s comments, or a

macroeconomic event, the company’s stock and option prices may

change, thus reflecting the news. Since news usually comes unexpect-

edly, prices change in unpredictable ways.1 But is new information the

only source reason for price randomness? One may doubt this while

observing the price fluctuations at times when no relevant news is

69

Schmidt / Quantitative Finance: An Introduction For Physicists Final Proof 26.10.2004 9:00pm page 69



released. A tempting proposition is that the price dynamics can be

attributed in part to the complexity of financial markets. The possi-

bility that the deterministic processes modulate the price variations

has a very important practical implication: even though these pro-

cesses can have the chaotic regimes, their deterministic nature means

that prices may be partly forecastable. Therefore, research of chaos in

finance and economics is accompanied with discussion of limited

predictability of the processes under investigation [1].

There have been several attempts to find possible strange attractors

in the financial and economic time series (see, e.g., [1–3] and refer-

ences therein). Discerning the deterministic chaotic dynamics from a

‘‘pure’’ stochastic process is always a non-trivial task. This problem is

even more complicated for financial markets whose parameters may

have non-stationary components [4]. So far, there has been little (if

any) evidence found of low-dimensional chaos in financial and eco-

nomic time series. Still, the search of chaotic regimes remains an

interesting aspect of empirical research.

There is also another reason for paying attention to the chaotic

dynamics. One may introduce chaos inadvertently while modeling

financial or economic processes with some nonlinear system. This

problem is particularly relevant in agent-based modeling of financial

markets where variables generally are not observable (see Chapter

12). Nonlinear continuous systems exhibit possible chaos if their

dimension exceeds two. However, nonlinear discrete systems (maps)

can become chaotic even in the one-dimensional case. Note that the

autoregressive models being widely used in analysis of financial time

series (see Section 5.1) are maps in terms of the dynamical systems

theory. Thus, a simple nonlinear expansion of a univariate autore-

gressive map may lead to chaos, while the continuous analog of this

model is perfectly predictable. Hence, understanding of nonlinear

dynamical effects is important not only for examining empirical

time series but also for analyzing possible artifacts of the theoretical

modeling.

This chapter continues with a widely popular one-dimensional

discrete model, the logistic map, which illustrates the major concepts

in the chaos theory (Section 7.2). Furthermore, the framework for the

continuous systems is introduced in Section 7.3. Then the three-

dimensional Lorenz model, being the classical example of the low-
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dimensional continuous chaotic system, is described (Section 7.4).

Finally, the main pathways to chaos and the chaos measures are

outlined in Section 7.5 and Section 7.6, respectively.

7.2 DISCRETE SYSTEMS: THE LOGISTIC MAP

The logistic map is a simple discrete model that was originally used

to describe the dynamics of biological populations (see, e.g., [5] and

references therein). Let us consider a variable number of individuals

in a population, N. Its value at the k-th time interval is described with

the following equation

Nk ¼ ANk�1 � BNk�1
2 (7:2:1)

Parameter A characterizes the population growth that is determined

by such factors as food supply, climate, etc. Obviously, the popula-

tion grows only if A > 1. If there are no restrictive factors (i.e., when

B ¼ 0), the growth is exponential, which never happens in nature for

long. Finite food supply, predators, and other causes of mortality

restrict the population growth, which is reflected in factor B. The

maximum value of Nk equals Nmax ¼ A=B. It is convenient to intro-

duce the dimensionless variable Xk¼Nk=N
max. Then 0 � Xk � 1,

and equation (7.2.1) has the form

Xk ¼ AXk�1(1�Xk�1) (7:2:2)

A generic discrete equation in the form

Xk ¼ f(Xk�1) (7:2:3)

is called an (iterated) map, and the function f(Xk�1) is called the

iteration function. The map (7.2.2) is named the logistic map. The

sequence of values Xk that are generated by the iteration procedure

is called a trajectory. Trajectories depend not only on the iteration

function but also on the initial value X0. Some initial points turn out

to be the map solution at all iterations. The value X� that satisfies the

equation

X� ¼ f(X�) (7:2:4)

is named the fixed point of the map. There are two fixed points for the

logistic map (7.2.2):
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X�1 ¼ 0, and X�2 ¼ (A� 1)=A (7:2:5)

If A � 1, the logistic map trajectory approaches the fixed point X�1
from any initial value 0 � X0 � 1. The set of points that the trajec-

tories tend to approach is called the attractor. Generally, nonlinear

dynamical systems can have several attractors. The set of initial values

from which the trajectories approach a particular attractor are called

the basin of attraction. For the logistic map with A < 1, the attractor

is X�1 ¼ 0, and its basin is the interval 0 � X0 � 1.

If 1 < A < 3, the logistic map trajectories have the attractor

X�2 ¼ (A� 1)=A and its basin is also 0 � X0 � 1. In the mean time,

the point X�1 ¼ 0 is the repellent fixed point, which implies that any

trajectory that starts near X�1 tends to move away from it.

A new type of solutions to the logistic map appears at A > 3.

Consider the case with A ¼ 3:1: the trajectory does not have a single

attractor but rather oscillates between two values, X � 0:558 and

X � 0:764. In the biological context, this implies that the growing

population overexerts its survival capacity at X � 0:764. Then the

population shrinks ‘‘too much’’ (i.e., to X � 0:558), which yields

capacity for further growth, and so on. This regime is called period-

2. The parameter value at which solution changes qualitatively is

named the bifurcation point. Hence, it is said that the period-doubling

bifurcation occurs at A ¼ 3. With a further increase of A, the oscilla-

tion amplitude grows until A approaches the value of about 3.45. At

higher values of A, another period-doubling bifurcation occurs

(period-4). This implies that the population oscillates among four

states with different capacities for further growth. Period doubling

continues with rising A until its value approaches 3.57. Typical tra-

jectories for period-2 and period-8 are given in Figure 7.1. With

further growth of A, the number of periods becomes infinite, and

the system becomes chaotic. Note that the solution to the logistic map

at A > 4 is unbounded.

Specifics of the solutions for the logistic map are often illustrated

with the bifurcation diagram in which all possible values of X are

plotted against A (see Figure 7.2). Interestingly, it seems that there is

some order in this diagram even in the chaotic region at A > 3:6. This

order points to the fractal nature of the chaotic attractor, which will

be discussed later on.
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Figure 7.1 Solution to the logistic map at different values of the

parameter A.
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Figure 7.2 The bifurcation diagram of the logistic map in the parameter

region 3 � A < 4.
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Another manifestation of universality that may be present in cha-

otic processes is the Feigenbaum’s observation of the limiting rate at

which the period-doubling bifurcations occur. Namely, if An is the

value of A at which the period-2n occurs, then the ratio

dn ¼ (An �An�1)=(Anþ1 �An) (7:2:6)

has the limit

lim
n!1

dn ¼ 4:669 . . . : (7:2:7)

It turns out that the limit (7.2.7) is valid for the entire family of maps

with the parabolic iteration functions [5].

A very important feature of the chaotic regime is extreme sensitiv-

ity of trajectories to the initial conditions. This is illustrated with

Figure 7.3 for A ¼ 3:8. Namely, two trajectories with the initial

conditions X0 ¼ 0:400 and X0 ¼ 0:405 diverge completely after 10
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Figure 7.3 Solution to the logistic map for A ¼ 3.8 and two initial condi-

tions: X0 ¼ 0:400 and X0 ¼ 0:405.
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iterations. Thus, the logistic map provides an illuminating example of

complexity and universality generated by interplay of nonlinearity

and discreteness.

7.3 CONTINUOUS SYSTEMS

While the discrete time series are the convenient framework for

financial data analysis, financial processes are often described using

continuous presentation [6]. Hence, we need understanding of the

chaos specifics in continuous systems. First, let us introduce several

important notions with a simple model of a damped oscillator (see,

e.g., [7]). Its equation of motion in terms of the angle of deviation

from equilibrium, u, is

d2u

dt2
þ g

du

dt
þ v2u ¼ 0 (7:3:1)

In (7.3.1), g is the damping coefficient and v is the angular frequency.

Dynamical systems are often described with flows, sets of coupled

differential equations of the first order. These equations in the vector

notations have the following form

dX

dt
¼ F(X(t)), X ¼ (X1, X2, . . . XN)0 (7:3:2)

We shall consider so-called autonomous systems for which the func-

tion F in the right-hand side of (7.3.2) does not depend explicitly on

time. A non-autonomous system can be transformed into an autono-

mous one by treating time in the function F(X, t) as an additional

variable, XNþ1 ¼ t, and adding another equation to the flow

dXNþ1

dt
¼ 1 (7:3:3)

As a result, the dimension of the phase space increases by one. The

notion of the fixed point in continuous systems differs from that of

discrete systems (7.2.4). Namely, the fixed points for the flow (7.3.2)

are the points X� at which all derivatives in its left-hand side equal

zero. For the obvious reason, these points are also named the equilib-

rium (or stationary) points: If the system reaches one of these points,

it stays there forever.
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Equations with derivatives of order greater than one can be also

transformed into flows by introducing additional variables. For

example, equation (7.3.1) can be transformed into the system

du

dt
¼ w,

dw

dt
¼ �gw� v2u (7:3:4)

Hence, the damped oscillator may be described in the two-dimen-

sional phase space (w, u). The energy of the damped oscillator, E,

E ¼ 0:5(w2 þ v2u2) (7:3:5)

evolves with time according to the equation

dE

dt
¼ �gw2 (7:3:6)

It follows from (7.3.6) that the dumped oscillator dissipates energy

(i.e., is a dissipative system) at g > 0. Typical trajectories of the

dumped oscillator are shown in Figure 7.4. In the case g ¼ 0, the

trajectories are circles centered at the origin of the phase plane. If

g > 0, the trajectories have a form of a spiral approaching the origin

of plane.2 In general, the dissipative systems have a point attractor in

the center of coordinates that corresponds to the zero energy.

Chaos is usually associated with dissipative systems. Systems with-

out energy dissipation are named conservative or Hamiltonian
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Figure 7.4 Trajectories of the damped oscillator with v ¼ 2: (a) g ¼ 2; (b)

g ¼ 0.
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systems. Some conservative systems may have the chaotic regimes,

too (so-called non-integrable systems) [5], but this case will not be

discussed here. One can easily identify the sources of dissipation in

real physical processes, such as friction, heat radiation, and so on. In

general, flow (7.3.2) is dissipative if the condition

div(F) �
XN
i¼ 1

@F

@Xi

< 0 (7:3:7)

is valid on average within the phase space.

Besides the point attractor, systems with two or more dimensions

may have an attractor named the limit cycle. An example of such an

attractor is the solution of the Van der Pol equation. This equation

describes an oscillator with a variable damping coefficient

d2u

dt2
þ g[(u=u0)

2 � 1]
du

dt
þ v2u ¼ 0 (7:3:8)

In (7.3.8), u0 is a parameter. The damping coefficient is positive at

sufficiently high amplitudes u > u0, which leads to energy dissipation.

However, at low amplitudes (u < u0), the damping coefficient be-

comes negative. The negative term in (7.3.8) has a sense of an energy

source that prevents oscillations from complete decay. If one intro-

duces u0

ffiffiffiffiffiffiffiffi
v=g

p
as the unit of amplitude and 1=v as the unit of time,

then equation (7.3.8) acquires the form

d2u

dt2
þ (u2 � e2)

du

dt
þ u ¼ 0 (7:3:9)

where e ¼ g=v is the only dimensionless parameter that defines the

system evolution. The flow describing the Van der Pol equation has

the following form

du

dt
¼ w,

dw

dt
¼ (e2 � u2) w� u (7:3:10)

Figure 7.5 illustrates the solution to equation (7.3.1) for e ¼ 0:4.

Namely, the trajectories approach a closed curve from the initial

conditions located both outside and inside the limit cycle. It should

be noted that the flow trajectories never intersect, even though

their graphs may deceptively indicate otherwise. This property

follows from uniqueness of solutions to equation (7.3.8). Indeed, if the
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trajectories do intersect, say at point P in the phase space, this implies

that the initial condition at point P yields two different solutions.

Since the solution to the Van der Pol equation changes qualita-

tively from the point attractor to the limit cycle at e ¼ 0, this point is a

bifurcation. Those bifurcations that lead to the limit cycle are named

the Hopf bifurcations.

In three-dimensional dissipative systems, twonew types of attractors

appear. First, there are quasi-periodic attractors. These trajectories are

associated with two different frequencies and are located on the surface

of a torus. The following equations describe the toroidal trajectories

(see Figure 7.6)

x(t) ¼ (Rþ r sin (wrt)) cos (wRt)

y(t) ¼ (Rþ r sin (wrt)) sin (wRt)

z(t) ¼ r cos (wrt) (7:3:11)

In (7.3.11), R and r are the external and internal torus radii, respect-

ively; wR and wr are the frequencies of rotation around the external
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Figure 7.5 Trajectories of the Van der Pol oscillator with e ¼ 0:4. Both

trajectories starting at points M1 and M2, respectively, end up on the same

limit circle.
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and internal radii, respectively. If the ratio wR=wr is irrational, it is

said that the frequencies are incommensurate. Then the trajectories

(7.3.11) never close on themselves and eventually cover the entire

torus surface. Nevertheless, such a motion is predictable, and thus it

is not chaotic. Another type of attractor that appears in three-dimen-

sional systems is the strange attractor. It will be introduced using the

famous Lorenz model in the next section.

7.4 LORENZ MODEL

The Lorenz model describes the convective dynamics of a fluid

layer with three dimensionless variables:

dX

dt
¼ p(Y�X)

dY

dt
¼ �XZþ rX�Y

dZ

dt
¼ XY� bZ (7:4:1)
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Figure 7.6 Toroidal trajectories (7.3.11) in the X-Y plane for R¼ 10, r¼ 1,

wR ¼ 100, wr ¼ 3.
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In (7.4.1), the variable X characterizes the fluid velocity distribution,

and the variables Y and Z describe the fluid temperature distribution.

The dimensionless parameters p, r, and b characterize the thermo-

hydrodynamic and geometric properties of the fluid layer. The Lorenz

model, being independent of the space coordinates, is a result of signifi-

cant simplifications of the physical process under consideration [5, 7].

Yet, this model exhibits very complex behavior. As it is often done in

the literature, we shall discuss the solutions to the Lorenz model for

the fixed parameters p ¼ 10 and b ¼ 8=3. The parameter r (which is the

vertical temperaturedifference)will be treatedas the controlparameter.

At small r � 1, any trajectory with arbitrary initial conditions ends

at the state space origin. In other words, the non-convective state at

X ¼ Y ¼ Z ¼ 0 is a fixed point attractor and its basin is the entire

phase space. At r > 1, the system acquires three fixed points. Hence,

the point r ¼ 1 is a bifurcation. The phase space origin is now repel-

lent. Two other fixed points are attractors that correspond to the

steady convection with clockwise and counterclockwise rotation, re-

spectively (see Figure 7.7). Note that the initial conditions define
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Figure 7.7 Trajectories of the Lorenz model for p¼ 10, b¼ 8/3, r¼ 6, X(0)

¼ Z(0) ¼ 0, and different Y(0).
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which of the two attractors is the trajectory’s final destination. The

locations of the fixed points are determined by the stationary solution

dX

dt
¼ dY

dt
¼ dZ

dt
¼ 0 (7:4:2)

Namely,

Y ¼ X, Z ¼ 0:5X2, X ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(r� 1)

p
(7:4:3)

When the parameter r increases to about 13.93, the repelling

regions develop around attractors. With further growth of r, the

trajectories acquire the famous ‘‘butterfly’’ look (see Figure 7.8). In

this region, the system becomes extremely sensitive to initial condi-

tions. An example with r ¼ 28 in Figure 7.9 shows that the change of

Y(0) in 1% leads to completely different trajectories Y(t). The system

is then unpredictable, and it is said that its attractors are ‘‘strange.’’

With further growth of the parameter r, the Lorenz model reveals

new surprises. Namely, it has ‘‘windows of periodicity’’ where the

trajectories may be chaotic at first but then become periodic. One of

the largest among such windows is in the range 144 < r < 165. In this

parameter region, the oscillation period decreases when r grows. Note
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Figure 7.8 Trajectories of the Lorenz model for p¼ 10, b¼ 8/3 and r¼ 28.
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that this periodicity is not described with a single frequency, and the

maximums of its peaks vary. Finally, at very high values of

r (r > 313), the system acquires a single stable limit cycle. This fascin-

ating manifold of solutions is not an exclusive feature of the Lorenz

model. Many nonlinear dissipative systems exhibit a wide spectrum of

solutions including chaotic regimes.

7.5 PATHWAYS TO CHAOS

A number of general pathways to chaos in nonlinear dissipative

systems have been described in the literature (see, e.g., [5] and refer-

ences therein). All transitions to chaos can be divided into two major

groups: local bifurcations and global bifurcations. Local bifurcations

occur in some parameter range, but the trajectories become chaotic

when the system control parameter reaches the critical value. Three

types of local bifurcations are discerned: period-doubling, quasi-peri-

odicity, and intermittency. Period-doubling starts with a limit cycle at

some value of the system control parameter. With further change of
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Figure 7.9 Sensitivity of the Lorenz model to the initial conditions for p ¼
10, b ¼ 8/3 and r ¼ 28.
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this parameter, the trajectory period doubles and doubles until it

becomes infinite. This process was proposed by Landau as the main

turbulence mechanism. Namely, laminar flow develops oscillations at

some sufficiently high velocity. As velocity increases, another (incom-

mensurate) frequency appears in the flow, and so on. Finally, the

frequency spectrum has the form of a practically continuous band. An

alternative mechanism of turbulence (quasi-periodicity) was proposed

by Ruelle and Takens. They have shown that the quasi-periodic

trajectories confined on the torus surface can become chaotic due to

high sensitivity to the input parameters. Intermittency is a broad

category itself. Its pathway to chaos consists of a sequence of periodic

and chaotic regions. With changing the control parameter, chaotic

regions become larger and larger and eventually fill the entire

space.

In the global bifurcations, the trajectories approach simple attract-

ors within some control parameter range. With further change of the

control parameter, these trajectories become increasingly complicated

and in the end, exhibit chaotic motion. Global bifurcations are parti-

tioned into crises and chaotic transients. Crises include sudden

changes in the size of chaotic attractors, sudden appearances of the

chaotic attractors, and sudden destructions of chaotic attractors and

their basins. In chaotic transients, typical trajectories initially behave

in an apparently chaotic manner for some time, but then move to

some other region of the phase space. This movement may asymptot-

ically approach a non-chaotic attractor.

Unfortunately, there is no simple rule for determining the condi-

tions at which chaos appears in a given flow. Moreover, the same

system may become chaotic in different ways depending on its par-

ameters. Hence, attentive analysis is needed for every particular

system.

7.6 MEASURING CHAOS

As it was noticed in in Section 7.1, it is important to understand

whether randomness of an empirical time series is caused by noise or

by the chaotic nature of the underlying deterministic process. To

address this problem, let us introduce the Lyapunov exponent. The

major property of a chaotic attractor is exponential divergence of its
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nearby trajectories. Namely, if two nearby trajectories are separated

by distance d0 at t ¼ 0, the separation evolves as

d(t) ¼ d0 exp (lt) (7:6:1)

The parameter l in (7.6.1) is called the Lyapunov exponent. For the

rigorous definition, consider two points in the phase space, X0 and

X0 þ Dx0, that generate two trajectories with some flow (7.3.2). If the

function Dx(X0, t) defines evolution of the distance between these

points, then

l ¼ lim
1

t
ln
jDx(X0, t)j
jDx0j

, t!1, Dx0 ! 0 (7:6:2)

When l < 0, the system is asymptotically stable. If l ¼ 0, the system

is conservative. Finally, the case with l > 0 indicates chaos since the

system trajectories diverge exponentially.

The practical receipt for calculating the Lyapunov exponent is as

follows. Consider n observations of a time series x(t): x(tk)¼xk, k¼1,

. . . , n. First, select a point xi and another point xj close to xi. Then

calculate the distances

d0 ¼ jxi � xjj, d1 ¼ jxiþ1 � xjþ1j, . . . , dn ¼ jxiþn � xjþnj (7:6:3)

If the distance between xiþn and xjþn evolves with n accordingly with

(7.6.1), then

l(xi) ¼
1

n
ln

dn

d0

(7:6:4)

The value of the Lyapunov exponent l(xi) in (7.6.4) is expected to be

sensitive to the choice of the initial point xi. Therefore, the average

value over a large number of trials N of l(xi) is used in practice

l ¼ 1

N

XN
i¼ 1

l(xi) (7:6:5)

Due to the finite size of empirical data samples, there are limitations

on the values of n and N, which affects the accuracy of calculating the

Lyapunov exponent. More details about this problem, as well as other

chaos quantifiers, such as the Kolmogorov-Sinai entropy, can be

found in [5] and references therein.
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The generic characteristic of the strange attractor is its fractal

dimension. In fact, the non-integer (i.e., fractal) dimension of an

attractor can be used as the definition of a strange attractor. In

Chapter 6, the box-counting fractal dimension was introduced.

A computationally simpler alternative, so-called correlation dimen-

sion, is often used in nonlinear dynamics [3, 5].

Consider a sample with N trajectory points within an attractor. To

define the correlation dimension, first the relative number of points

located within the distance R from the point i must be calculated

pi(R) ¼ 1

N� 1

XN
j¼ 1, j 6¼ i

u(R� jxj � xij) (7:6:6)

In (7.6.6), the Heaviside step function u equals

u ¼ 0, x < 0

1, x � 0

�
(7:6:7)

Then the correlation sum that characterizes the probability of finding

two trajectory points within the distance R is computed

C(R) ¼ 1

N

XN
i¼1

pi(R) (7:6:8)

It is assumed that C(R) � RDc. Hence, the correlation dimension Dc

equals

Dc ¼ lim
R!0

[ lnC(R)= lnR] (7:6:9)

There is an obvious problem of finding the limit (7.6.9) for data

samples on a finite grid. Yet, plotting ln[C(R)] versus ln(R) (which

is expected to yield a linear graph) provides an estimate of the

correlation dimension.

An interesting question is whether a strange attractor is always

chaotic, in other words, if it always has a positive Lyapunov expo-

nent. It turns out there are rare situations when an attractor may be

strange but not chaotic. One such example is the logistic map at the

period-doubling points: Its Lyapunov exponent equals zero while the

fractal dimension is about 0.5. Current opinion, however, holds that

the strange deterministic attractors may appear in discrete maps

rather than in continuous systems [5].

Nonlinear Dynamical Systems 85

Schmidt / Quantitative Finance: An Introduction For Physicists Final Proof 26.10.2004 9:00pm page 85



7.7 REFERENCES FOR FURTHER READING

Two popular books, the journalistic report by Gleick [8] and the

‘‘first-hand’’ account by Ruelle [9], offer insight into the science of

chaos and the people behind it. The textbook by Hilborn [5] provides

a comprehensive description of the subject. The interrelations be-

tween the chaos theory and fractals are discussed in detail in [10].

7.8 EXERCISES

1. Consider the quadratic map Xk ¼ Xk�1
2 þ C, where C > 0.

(a) Prove that C ¼ 0:25 is a bifurcation point.

(b) Find fixed points for C ¼ 0:125. Define what point is an

attractor and what is its attraction basin for X > 0.

2. Verify the equilibrium points of the Lorenz model (7.4.3).

*3. Calculate the Lyapunov exponent of the logistic map as a

function of the parameter A.

*4. Implement the algorithm for simulating the Lorenz model.

(a) Reproduce the ‘‘butterfly’’ trajectories depicted in Figure

7.8.

(b) Verify existence of the periodicity window at r ¼ 150.

(c) Verify existence of the limit cycle at r ¼ 350.

Hint: Use a simple algorithm: Xk ¼ Xk�1 þ tF(Xk�1, Yk�1, Zk�1)

where the time step t can be assigned 0.01.
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Chapter 8

Scaling in Financial Time
Series

8.1 INTRODUCTION

Twowell-documented findingsmotivate further analysis of financial

time series. First, the probability distributions of returns often deviate

significantly from the normal distribution by having fat tails and excess

kurtosis. Secondly, returns exhibit volatility clustering. The latter effect

has led to the development of the GARCH models described in Section

5.3.1 In this chapter, we shall focus on scaling in the probability distri-

butions of returns, the concept that has attracted significant attention

from economists and physicists alike.

Alas, as the leading experts in Econophysics, H. E. Stanley and

R. Mantegna acknowledged [2]:

‘‘No model exists for the stochastic process describing the

time evolution of the logarithm of price that is accepted by

all researchers.’’

There are several reasons for the status quo.2 First, different financial

time series may have varying non-stationary components. Indeed, the

stock price reflects not only the current value of a company’s assets

but also the expectations of the company’s growth. Yet, there is no

general pattern for evolution of a business enterprise.3 Therefore,
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empirical research often concentrates on the average economic in-

dexes, such as the S&P 500. Averaging over a large number of

companies certainly smoothes noise. Yet, the composition of these

indicators is dynamic: Companies may be added to or dropped from

indexes, and the company’s contribution to the economic index usu-

ally depends on its ever-changing market capitalization.

Foreign exchange rates are another object frequently used in empir-

ical research.4 Unfortunately,manyof the findings accumulatedduring

the 1990s have become somewhat irrelevant, as several European cur-

rencies ceased to exist after the birth of theEuro in 1999. In any case, the

foreign exchange rates, being a measure of relative currency strength,

may have statistical features that differ among themselves and in com-

parison with the economic indicators of single countries.

Another problem is data granularity. Low granularity may under-

estimate the contributions of market rallies and crashes. On the other

hand, high-frequency data are extremely noisy. Hence, one may

expect that universal properties of financial time series (if any exist)

have both short-range and long-range time limitations.

The current theoretical framework might be too simplistic to ac-

curately describe the real world. Yet, important advances in under-

standing of scaling in finance have been made in recent years. In the

next section, the asymptotic power laws that may be recovered from

the financial time series are discussed. In Section 8.3, the recent

developments including the multifractal approach are outlined.

8.2 POWER LAWS IN FINANCIAL DATA

The importanceof long-rangedependencies in the financial timeseries

was shown firstbyB.Mandelbrot [6].Using theR/Sanalysis (seeSection

6.1), Mandelbrot and others have found multiple deviations of the

empirical probability distributions from the normal distribution [7].

Early research of universality in the financial time series [6] was

based on the stable distributions (see Section 3.3). This approach,

however, has fallen out of favor because the stable distributions have

infinite volatility, which is unacceptable for many financial applica-

tions [8]. The truncated Levy flights that satisfy the requirement for

finite volatility have been used as a way around this problem [2, 9, 10].

One disadvantage of the truncated Levy flights is that the truncating
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distance yields an additional fitting parameter. More importantly,

the recent research by H. Stanley and others indicates that the asymp-

totic probability distributions of several typical financial time series

resemble the power law with the index a close to three [11–13]. This

means that the probability distributions examined by Stanley’s team

are not stable at all (recall that the stable distributions satisfy the

condition 0 < a � 2). Let us provide more details about these interest-

ing findings.

In [11], returns of the S&P 500 index were studied for the period

1984–1996 with the time scales Dt varying from 1 minute to 1 month.

It was found that the probability distributions at Dt < 4 days were

consistent with the power-law asymptotic behavior with the index

a � 3. At Dt > 4 days, the distributions slowly converge to the

normal distribution. Similar results were obtained for daily returns

of the NIKKEI index and the Hang-Seng index. These results are

complemented by another work [12] where the returns of several

thousand U.S. companies were analyzed for Dt in the range from

five minutes to about four years. It was found that the returns of

individual companies at Dt < 16 days are also described with the

power-law distribution having the index a � 3. At longer Dt, the

probability distributions slowly approach the normal form. It was

also shown that the probability distributions of the S&P 500 index

and of individual companies have the same asymptotic behavior due

to the strong cross-correlations of the companies’ returns. When these

cross-correlations were destroyed with randomization of the time

series, the probability distributions converged to normal at a much

faster pace.

The theoretical model offered in [13] may provide some explan-

ation to the power-law distribution of returns with the index a � 3.

This model is based on two observations: (a) the distribution of the

trading volumes obeys the power law with an index of about 1.5; and

(b) the distribution of the number of trades is a power law with an

index of about three (in fact, it is close to 3.4). Two assumptions were

made to derive the index a of three. First, it was assumed that the

price movements were caused primarily by the activity of large mutual

funds whose size distribution is the power law with index of one (so-

called Zipf’s law [4]). In addition, it was assumed that the mutual fund

managers trade in an optimal way.
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Another model that generates the power law distributions is the

stochastic Lotka-Volterra system (see [14] and references therein).

The generic Lotka-Volterra system is used for describing different

phenomena, particularly the population dynamics with the predator-

prey interactions. For our discussion, it is important that some agent-

based models of financial markets (see Chapter 12) can be reduced to

the Lotka-Volterra system [15]. The discrete Lotka-Volterra system

has the form

wi(tþ 1) ¼ l(t)wi(t)� aW(t)� bwi(t)W(t), W(t) ¼ 1

N

XN
i¼ 1

wi(t) (8:2:1)

where wi is an individual characteristic (e.g., wealth of an investor i;

i ¼ 1, 2, . . . , N), a and b are the model parameters, and l(t) is a

random variable. The components of this system evolve spontan-

eously into the power law distribution f(w, t) � w�(1þa). In the

mean time, evolution of W(t) exhibits intermittent fluctuations that

can be parameterized using the truncated Levy distribution with the

same index a [14].

Seeking universal properties of the financial market crashes is

another interesting problem explored by Sornette and others (see

[16] for details). The main idea here is that financial crashes are

caused by collective trader behavior (dumping stocks in panic),

which resembles the critical phenomena in hierarchical systems.

Within this analogy, the asymptotic behavior of the asset price S(t)

has the log-periodic form

S(t) ¼ Aþ B(tc � t)a{1þ C cos [w ln (tc � t)� w]} (8:2:2)

where tc is the crash time; A, B, C, w, a, and w are the fitting

parameters. There has been some success in describing several market

crashes with the log-periodic asymptotes [16]. Criticism of this ap-

proach is given in [17] and references therein.

8.3 NEW DEVELOPMENTS

So, do the findings listed in the preceding section solve the problem

of scaling in finance? This remains to be seen. First, B. LeBaron has

shown how the price distributions that seem to have the power-law

form can be generated by a mix of the normal distributions with
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different time scales [18]. In this work, the daily returns are assumed

to have the form

R(t) ¼ exp [gx(t)þ m]e(t) (8:3:1)

where e(t) is an independent random normal variable with zero mean

and unit variance. The function x(t) is the sum of three processes with

different characteristic times

x(t) ¼ a1y1(t)þ a2y2(t)þ a3y3(t) (8:3:2)

The first process y1(t) is an AR(1) process

y1(tþ 1) ¼ r1y1(t)þ Z1(tþ 1) (8:3:3)

where r1 ¼ 0:999 and Z1(t) is an independent Gaussian adjusted so

that var[y1(t)] ¼ 1. While AR(1) yields exponential decay, the chosen

value of r1 gives a long-range half-life of about 2.7 years. Similarly,

y2(tþ 1) ¼ r2y2(t)þ Z2(tþ 1) (8:3:4)

where Z2(t) is an independent Gaussian adjusted so that

var[y2(t)] ¼ 1. The chosen value r2 ¼ 0:95 gives a half-life of about

2.5 weeks. The process y3(t) is an independent Gaussian with unit

variance and zero mean, which retains volatility shock for one day.

The normalization rule is applied to the coefficients ai

a1
2 þ a2

2 þ a3
2 ¼ 1: (8:3:5)

The parameters a1, a2, g, and m are chosen to adjust the empirical data.

This model was used for analysis of the Dow returns for 100 years

(from 1900 to 2000). The surprising outcome of this analysis is retrieval

of the power law with the index in the range of 2.98 to 3.33 for the data

aggregation ranges of 1 to 20 days. Then there are generic comments by

T. Lux on spurious scaling laws that may be extracted from finite

financial data samples [19]. Some reservation has also been expressed

about the graphical inference method widely used in the empirical

research. In this method, the linear regression equations are recovered

from the log - log plots. While such an approach may provide correct

asymptotes, at times it does not stand up to more rigorous statistical

hypothesis testing. A case in point is the distribution in the form

f(x) ¼ x�aL(x) (8:3:6)

where L(x) is a slowly-varying function that determines behavior of

the distribution in the short-range region. Obviously, the ‘‘universal’’
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scaling exponent a ¼ �log [f(x)]= log (x) is as accurate as L(x) is close

to a constant. This problem is relevant also to the multifractal scaling

analysis that has become another ‘‘hot’’ direction in the field.

The multifractal patterns have been found in several financial time

series (see, e.g., [20, 21] and references therein). The multifractal

framework has been further advanced by Mandelbrot and others.

They proposed compound stochastic process in which a multifractal

cascade is used for time transformations [22]. Namely, it was assumed

that the price returns R(t) are described as

R(t) ¼ BH[u(t)] (8:3:7)

where BH[] is the fractional Brownian motion with index H and u(t) is

a distribution function of multifractal measure (see Section 6.2). Both

stochastic components of the compound process are assumed inde-

pendent. The function u(t) has a sense of ‘‘trading time’’ that reflects

intensity of the trading process. Current research in this direction

shows some promising results [23–26]. In particular, it was shown

that both the binomial cascade and the lognormal cascade embedded

into the Wiener process (i.e., into BH[] with H ¼ 0:5) may yield a more

accurate description of several financial time series than the GARCH

model [23]. Nevertheless, this chapter remains ‘‘unfinished’’ as new

findings in empirical research continue to pose new challenges for

theoreticians.

8.4 REFERENCES FOR FURTHER READING

Early research of scaling in finance is described in [2, 6, 7, 9, 17].

For recent findings in this field, readers may consult [10–13, 23–26].

8.5 EXERCISES

**1. Verify how a sum of Gaussians can reproduce a distribution

with the power-law tails in the spirit of [18].

**2. Discuss the recent polemics on the power-law tails of stock

prices [27–29].

**3. Discuss the scaling properties of financial time series reported

in [30].
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Chapter 9

Option Pricing

This chapter begins with an introduction of the notion of financial

derivative in Section 9.1. The general properties of the stock options

are described in Section 9.2. Furthermore, the option pricing theory is

presented using two approaches: the method of the binomial trees

(Section 9.3) and the classical Black-Scholes theory (Section 9.4).

A paradox related to the arbitrage free portfolio paradigm on which

the Black-Scholes theory is based is described in the Appendix section.

9.1 FINANCIAL DERIVATIVES

In finance, derivatives1 are the instruments whose price depends

on the value of another (underlying) asset [1]. In particular, the

stock option is a derivative whose price depends on the underlying

stock price. Derivatives have also been used for many other assets,

including but not limited to commodities (e.g., cattle, lumber,

copper), Treasury bonds, and currencies.

An example of a simple derivative is a forward contract that obliges

its owner to buy or sell a certain amount of the underlying asset at a

specified price (so-called forward price or delivery price) on a specified

date (delivery date or maturity). The party involved in a contract as a

buyer is said to have a long position, while a seller is said to have a short

position. A forward contract is settled at maturity when the seller
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delivers the asset to the buyer and the buyer pays the cash amount at

the delivery price. At maturity, the current (spot) asset price, ST, may

differ from the delivery price, K. Then the payoff from the long

position is ST �K and the payoff from the short position is K� ST.

Future contracts are the forward contracts that are traded on

organized exchanges, such as the Chicago Board of Trade (CBOT)

and the Chicago Mercantile Exchange (CME). The exchanges deter-

mine the standardized amounts of traded assets, delivery dates, and

the transaction protocols.

In contrast to the forward and future contracts, options give an

option holder the right to trade an underlying asset rather than the

obligation to do this. In particular, the call option gives its holder the

right to buy the underlying asset at a specific price (so-called exercise

price or strike price) by a certain date (expiration date or maturity).

The put option gives its holder the right to sell the underlying asset at a

strike price by an expiration date. Two basic option types are the

European options and the American options.2 The European options

can be exercised only on the expiration date while the American

options can be exercised any time up to the expiration date. Most of

the current trading options are American. Yet, it is often easier to

analyze the European options and use the results for deriving proper-

ties of the corresponding American options.

The option pricing theory has been an object of intensive research

since the pioneering works of Black, Merton, and Scholes in the

1970s. Still, as we shall see, it poses many challenges.

9.2 GENERAL PROPERTIES OF STOCK OPTIONS

The stock option price is determined with six factors:

. Current stock price, S

. Strike price, K

. Time to maturity, T

. Stock price volatility, s

. Risk-free interest rate,3 r

. Dividends paid during the life of the option, D.

Let us discuss how each of these factors affects the option price

providing all other factors are fixed. Longer maturity time increases
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the value of an American option since its holders have more time to

exercise it with profit. Note that this is not true for a European option

that can be exercised only at maturity date. All other factors, how-

ever, affect the American and European options in similar ways.

The effects of the stock price and the strike price are opposite for

call options and put options. Namely, payoff of a call option increases

while payoff of a put option decreases with rising difference between

the stock price and the strike price.

Growing volatility increases the value of both call options and put

options: it yields better chances to exercise them with higher payoff.

In the mean time, potential losses cannot exceed the option price.

The effect of the risk-free rate is not straightforward. At a fixed

stock price, the rising risk-free rate increases the value of the call

option. Indeed, the option holder may defer paying for shares and

invest this payment into the risk-free assets until the option matures.

On the contrary, the value of the put option decreases with the risk-

free rate since the option holder defers receiving payment from selling

shares and therefore cannot invest them into the risk-free assets.

However, rising interest rates often lead to falling stock prices,

which may change the resulting effect of the risk-free rate.

Dividends effectively reduce the stock prices. Therefore, dividends

decrease value of call options and increase value of put options.

Now, let us consider the payoffs at maturity for four possible

European option positions. The long call option means that the in-

vestor buys the right to buy an underlying asset. Obviously, it makes

sense to exercise the option only if S > K. Therefore, its payoff is

PLC ¼ max [S�K, 0] (9:2:1)

The short call option means that the investor sells the right to buy an

underlying asset. This option is exercised if S > K, and its payoff is

PSC ¼ min [K� S, 0] (9:2:2)

The long put option means that the investor buys the right to sell an

underlying asset. This option is exercised when K > S, and its payoff

is

PLP ¼ max [K� S, 0] (9:2:3)

The short put option means that the investor sells the right to sell an

underlying asset. This option is exercised when K > S, and its payoff is
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PSP ¼ min [S�K, 0] (9:2:4)

Note that the option payoff by definition does not account for the

option price (also named option premium). In fact, option writers sell

options at a premium while option buyers pay this premium. There-

fore, the option seller’s profit is the option payoff plus the option

price, while the option buyer’s profit is the option payoff minus the

option price (see examples in Figure 9.1).

The European call and put options with the same strike price

satisfy the relation called put-call parity. Consider two portfolios.

Portfolio I has one European call option at price c with the strike

price K and amount of cash (or zero-coupon bond) with the present

value Kexp[�r(T� t)]. Portfolio II has one European put option at

price p and one share at price S. First, let us assume that share does

not pay dividends. Both portfolios at maturity have the same value:

max (ST, K). Hence,

cþKexp[�r(T� t)] ¼ pþ S (9:2:5)

Dividends affect the put-call parity. Namely, the dividends D being

paid during the option lifetime have the same effect as the cash future

value. Thus,

cþDþKexp [�r(T� t)] ¼ pþ S (9:2:6)

Because the American options may be exercised before maturity, the

relations between the American put and call prices can be derived

only in the form of inequalities [1].

Options are widely used for both speculation and risk hedging.

Consider two examples with the IBM stock options. At market

closing on 7-Jul-03, the IBM stock price was $83.95. The (American)

call option price at maturity on 3-Aug-03 was $2.55 for the strike

price of $85. Hence, the buyer of this option at market closing on 7-

Jul-03 assumed that the IBM stock price would exceed $(85 þ 2.55) ¼
$87.55 before or on 3-Aug-03. If the IBM share price would reach say

$90, the option buyer will exercise the call option to buy the share for

$85 and immediately sell it for $90. The resulting profit4 is

$(90�87.55)¼ $2.45. Thus, the return on exercising this option equals

2:45=2:55�100% ¼ 96%. Note that the return on buying an IBM

share in this case would only be (90� 83:95)=83:95�100% ¼ 7:2%.
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Figure 9.1 The option profits for the strike price of $25 and the option

premium of $5: (a) calls, (b) puts.
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If, however, the IBM share price stays put through 3-Aug-03, an

option buyer incurs losses of $2.45 (i.e., 100%). In the mean time, a

share buyer has no losses and may continue to hold shares, hoping

that their price will grow in future.

At market closing on 7-Jul-03, the put option for the IBM share

with the strike price of $80 at maturity on 3-Aug-03 was $1.50. Hence,

buyers of this put option bet on price falling below $(80�1.50) ¼
$78.50. If, say the IBM stock price falls to $75, the buyer of the put

option has a gain of $(78:50� 75) ¼ $3.50.

Now, consider hedging in which the investor buys simultaneously

one share for $83.95 and a put option with the strike price of $80 for

$1.50. The investor has gains only if the stock price rises above

$(83:95þ 1:50) ¼$85:45. However, if the stock price falls to say $75,

the investor’s loss is $(80� 85:45) ¼ �$5:45 rather than the loss of

$(75� 83:95) ¼ �$8:95 incurred without hedging with the put

option. Hence, in the given example, the hedging expense of $1.50

allows the investor to save $(�5:45þ 8:95) ¼$3:40.

9.3 BINOMIAL TREES

Let us consider a simple yet instructive method for option pricing

that employs a discrete model called the binomial tree. This model is

based on the assumption that the current stock price S can change at

the next moment only to either the higher value Su or the lower value

Sd (where u > 1 and d < 1). Let us start with the first step of the

binomial tree (see Figure 9.2). Let the current option price be equal to

F and denote it with Fu or Fd at the next moment when the stock price

moves up or down, respectively. Consider now a portfolio that con-

sists of D long shares and one short option. This portfolio is risk-free

if its value does not depend on whether the stock price moves up or

down, that is,

SuD� Fu ¼ SdD� Fd (9:3:1)

Then the number of shares in this portfolio equals

D ¼ (Fu � Fd)=(Su� Sd) (9:3:2)

The risk-free portfolio with the current value (SD� F) has the future

value (SuD� Fu) ¼ (SdD� Fd). If the time interval is t and the risk-
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free interest rate is r, the relation between the portfolio’s present value

and future value is

(SD� F) exp(rt) ¼ SuD� Fu (9:3:3)

Combining (9.3.2) and (9.3.3) yields

F ¼ exp(�rt)[pFu þ (1� p)Fd] (9:3:4)

where

p ¼ [ exp (rt)� d]=(u� d) (9:3:5)

The factors p and (1� p) in (9.3.4) have the sense of the probabilities

for the stock price to move up and down, respectively. Then, the

expectation of the stock price at time t is

E[S(t)] ¼ E[pSuþ (1� p)Sd] ¼ S exp (rt) (9:3:6)

This means that the stock price grows on average with the risk-free

rate. The framework within which the assets grow with the risk-free

rate is called risk-neutral valuation. It can be discussed also in terms of

the arbitrage theorem [4]. Indeed, violation of the equality (9.3.3)

Su2

Fuu

Su

Fu

Sud
S

F
Fud

Sd

Fd

Sd2

Fdd

Figure 9.2 Two-step binomial pricing tree.
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implies that the arbitrage opportunity exists for the portfolio. For

example, if the left-hand side of (9.3.3) is greater than its right-hand

side, one can immediately make a profit by selling the portfolio and

buying the risk-free asset.

Let us proceed to the second step of the binomial tree. Using

equation (9.3.4), we receive the following relations between the option

prices on the first and second steps

Fu ¼ exp (�rt)[pFuu þ (1� p)Fud] (9:3:7)

Fd ¼ exp (�rt)[pFud þ (1� p)Fdd] (9:3:8)

The combination of (9.3.4) with (9.3.7) and (9.3.8) yields the current

option price in terms of the option prices at the next step

F ¼ exp (�2rt)[p2Fuu þ 2p(1� p)Fud þ (1� p)2Fdd] (9:3:9)

This approach can be generalized for a tree with an arbitrary number

of steps. Namely, first the stock prices at every node are calculated

by going forward from the first node to the final nodes. When the

stock prices at the final nodes are known, we can determine the

option prices at the final nodes by using the relevant payoff relation

(e.g., (9.2.1) for the long call option). Then we calculate the option

prices at all other nodes by going backward from the final nodes to

the first node and using the recurrent relations similar to (9.3.7) and

(9.3.8).

The factors that determine the price change, u and d, can be

estimated from the known stock price volatility [1]. In particular, it

is generally assumed that prices follow the geometric Brownian

motion

dS ¼ mSdtþ sSdW (9:3:10)

where m and s are the drift and diffusion parameters, respectively, and

dW is the standard Wiener process (see Section 4.2). Hence, the price

changes within the time interval [0, t] are described with the lognor-

mal distribution

ln S(t) ¼ N( ln S0 þ (m� s2=2)t, s
ffiffi
t
p

) (9:3:11)

In (9.3.11), S0 ¼ S(0), N(m, s) is the normal distribution with mean

m and standard deviation s. It follows from equation (9.3.11) that the

expectation of the stock price and its variance at time t equal
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E[S(t)] ¼ S0 exp (mt) (9:3:12)

Var[S(t)] ¼ S0
2 exp (2mt)[ exp (s2t)� 1] (9:3:13)

In addition, equation (9.3.6) yields

exp (rt) ¼ puþ (1� p)d (9:3:14)

Using (9.3.13) and (9.3.14) in the equality (y) ¼ E[y2]� E[y]2, we

obtain the relation

exp (2rtþ s2t) ¼ pu2 þ (1� p)d2 (9:3:15)

The equations (9.3.14) and (9.3.15) do not suffice to define the three

parameters d, p, and u. Usually, the additional condition

u ¼ 1=d (9:3:16)

is employed. When the time interval Dt is small, the linear approxi-

mation to the system of equations (9.3.14) through (9.3.16) yields

p ¼ [ exp (rDt)� d]=(u� d), u ¼ 1=d ¼ exp [s(Dt)1=2] (9:3:17)

The binomial tree model can be generalized in several ways [1]. In

particular, dividends and variable interest rates can be included. The

trinomial tree model can also be considered. In the latter model, the

stock price may move upward or downward, or it may stay the same.

The drawback of the discrete tree models is that they allow only for

predetermined innovations of the stock price. Moreover, as it was

described above, the continuous model of the stock price dynamics

(9.3.10) is used to estimate these innovations. It seems natural then to

derive the option pricing theory completely within the continuous

framework.

9.4 BLACK-SCHOLES THEORY

The basic assumptions of the classical option pricing theory are

that the option price F(t) at time t is a continuous function of time

and its underlying asset’s price S(t)

F ¼ F(S(t), t) (9:4:1)

and that price S(t) follows the geometric Brownian motion (9.3.10) [5,

6]. Several other assumptions are made to simplify the derivation of

the final results. In particular,
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. There are no market imperfections, such as price discreteness,

transaction costs, taxes, and trading restrictions including those

on short selling.

. Unlimited risk-free borrowing is available at a constant rate, r.

. There are no arbitrage opportunities.

. There are no dividend payments during the life of the option.

Now, let us derive the classical Black-Scholes equation. Since it is

assumed that the option price F(t) is described with equation (9.4.1)

and price of the underlying asset follows equation (9.3.10), we can use

the Ito’s expression (4.3.5)

dF(S, t) ¼ mS
@F

@S
þ @F
@t
þ s2

2
S2 @

2F

@S2

� �
dtþ sS

@F

@S
dW(t) (9:4:2)

Furthermore, we build a portfolio P with eliminated random contri-

bution dW. Namely, we choose �1 (short) option and
@F

@S
shares of

the underlying asset,5

P ¼ �Fþ @F
@S

S (9:4:3)

The change of the value of this portfolio within the time interval dt

equals

dP ¼ �dFþ @F
@S

dS (9:4:4)

Since there are no arbitrage opportunities, this change must be equal to

the interest earned by the portfolio value invested in the risk-free asset

dP ¼ rP dt (9:4:5)

The combination of equations (9.4.2)–(9.4.5) yields the Black-Scholes

equation

@F

@t
þ rS

@F

@S
þ s2

2
S2 @

2F

@S2
� rF ¼ 0 (9:4:6)

Note that this equation does not depend on the stock price drift

parameter m, which is the manifestation of the risk-neutral valuation.

In other words, investors do not expect a portfolio return exceeding

the risk-free interest.
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The Black-Scholes equation is the partial differential equation with

the first-order derivative in respect to time and the second-order de-

rivative in respect to price. Hence, three boundary conditions deter-

mine the Black-Scholes solution. The condition for the time variable is

defined with the payoff at maturity. The other two conditions for the

price variable are determined with the asymptotic values for the zero

and infinite stock prices. For example, price of the put option equals

the strike price when the stock price is zero. On the other hand, the put

option price tends to be zero if the stock price approaches infinity.

The Black-Scholes equation has an analytic solution in some

simple cases. In particular, for the European call option, the Black-

Scholes solution is

c(S, t) ¼ N(d1)S(t)�KN(d2) exp[�r(T� t)] (9:4:7)

In (9.4.7), N(x) is the standard Gaussian cumulative probability

distribution

d1 ¼ [ ln (S=K)þ (rþ s2=2)(T� t)]=[s(T� t)1=2],

d2 ¼ d1 � (T� t)1=2
(9:4:8)

The Black-Scholes solution for the European put option is

p(S, t) ¼ Kexp[�r(T� t)] N(�d2)� S(t)N(�d1) (9:4:9)

The value of the American call option equals the value of the Euro-

pean call option. However, no analytical expression has been found

for the American put option. Numerical methods are widely used for

solving the Black-Scholes equation when analytic solution is not

available [1–3].

Implied volatility is an important notion related to BST. Usually,

the stock volatility used in the Block-Scholes expressions for the

option prices, such as (9.4.7), is calculated with the historical stock

price data. However, formulation of the inverse problem is also

possible. Namely, the market data for the option prices can be used

in the left-hand side of (9.4.7) to recover the parameter s. This

parameter is named the implied volatility. Note that there is no

analytic expression for implied volatility. Therefore, numerical

methods must be employed for its calculation. Several other functions

related to the option price, such as Delta, Gamma, and Theta (so-

called Greeks), are widely used in the risk management:
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D ¼ @F
@S

, G ¼ @
2F

@S2
, Q ¼ @F

@t
(9:4:10)

The Black-Scholes equation (9.4.6) can be rewritten in terms of

Greeks

Qþ rSDþ s2

2
S2G� rF ¼ 0 (9:4:11)

Similarly, Greeks can be defined for the entire portfolio. For example,

the portfolio’s Delta is
@P

@S
. Since the share’s Delta

@S

@S

� �
equals unity,

Delta of the portfolio (9.4.3) is zero. Portfolios with zero Delta are
called delta-neutral. Since Delta depends on both price and time,
maintenance of delta-neutral portfolios requires periodic rebalancing,
which is also known as dynamic hedging. For the European call and
put options, Delta equals, respectively

Dc ¼ N(d1), Dp ¼ N(d1)� 1 (9:4:12)

Gamma characterizes the Delta’s sensitivity to price variation. If

Gamma is small, rebalancing can be performed less frequently.

Adding options to the portfolio can change its Gamma. In particular,

delta-neutral portfolio with Gamma G can be made gamma-neutral if

it is supplemented with n ¼ �G=GF options having Gamma GF.

Theta characterizes the time decay of the portfolio price. In add-

ition, two other Greeks, Vega and Rho, are used to measure the

portfolio sensitivity to its volatility and risk-free rate, respectively

y ¼ @P
@s

, r ¼ @P
@r

(9:4:13)

Several assumptions that are made in BST can be easily relaxed. In

particular, dividends can be accounted. Also, r and s can be treated as

time-dependent parameters. BST has been expanded in several ways

(see [1–3, 7, 8] and references therein). One of the main directions

addresses so-called volatility smile. The problem is that if all charac-

teristics of the European option besides the strike price are fixed, its

implied volatility derived from the Black-Scholes expression is con-

stant. However, real market price volatilities do depend on the strike

price, which manifests in ‘‘smile-like’’ graphs. Several approaches

have been developed to address this problem. One of them is introdu-

cing the time dependencies into the interest rates or/and volatilities
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(so-called term structure). In a different approach, the lognormal

stock price distribution is substituted with another statistical distri-

bution. Also, the jump-diffusion stochastic processes are sometimes

used instead of the geometric Brownian motion.

Other directions for expanding BST address the market imperfec-

tions, such as transaction costs and finite liquidity. Finally, the option

price in the current option pricing theory depends on time and price

of the underlying asset. This seemingly trivial assumption was ques-

tioned in [9]. Namely, it was shown that the option price might

depend also on the number of shares of the underlying asset in the

arbitrage-free portfolio. Discussion of this paradox is given in the

Appendix section of this chapter.

9.5 REFERENCES FOR FURTHER READING

Hull’s book is the classical reference for the first reading on finan-

cial derivatives [1]. A good introduction to mathematics behind the

option theory can be found in [4]. Detailed presentation of the option

theory, including exotic options and extensions to BST, is given in

[2, 3].

9.6 APPENDIX: THE INVARIANT
OF THE ARBITRAGE-FREE PORTFOLIO

As we discussed in Section 9.4, the option price F(S, t) in BST is a

function of the stock price and time. The arbitrage-free portfolio in

BST consists of one share and of a number of options (M0) that hedge

this share [5]. BST can also be derived with the arbitrage-free port-

folio consisting of one option and of a number of shares M�1
0 (see,

e.g., [1]). However, if the portfolio with an arbitrary number of shares

N is considered, and N is treated as an independent variable, that is,

F ¼ F(S, t, N) (9:6:1)

then a non-zero derivative, @F=@N, can be recovered within the

arbitrage-free paradigm [9]. Since options are traded independently

from their underlying assets, the relation (9.6.1) may look senseless to

the practitioner. How could this dependence ever come to mind?
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Recall the notion of liquidity discussed in Section 2.1. If a market

order exceeds supply of an asset at current ‘‘best’’ price, then the

order is executed within a price range rather than at a single price. In

this case within continuous presentation,

S ¼ S(t, N) (9:6:2)

and the expense of buying N shares at time t equals

ðN
0

S(t, x)dx (9:6:3)

The liquidity effect in pricing derivatives has been addressed in [10,

11] without proposing (9.6.1). Yet, simply for mathematical general-

ity, one could assume that (9.6.1) may hold if (9.6.2) is valid. Surpris-

ingly, the dependence (9.6.1) holds even for infinite liquidity. Indeed,

consider the arbitrage-free portfolio P with an arbitrary number of

shares N at price S and M options at price F:

P(S, t, N) ¼ NS(t)þMF(S, t, N) (9:6:4)

Let us assume that N is an independent variable and M is a parameter

to be defined from the arbitrage-free condition, similar to M0 in BST.

As in BST, the asset price S ¼ S(t) is described with the geometric

Brownian process

dS ¼ mSdtþ sSdW: (9:6:5)

In (9.6.5), m and s are the price drift and volatility, and W is the

standard Wiener process. According to the Ito’s Lemma,

dF ¼ @F
@t

dtþ @F
@S

dSþ s2

2
S2 @

2F

@S2
dtþ @F

@N
dN (9:6:6)

It follows from (9.6.4) that the portfolio dynamic is

dP ¼MdFþNdSþ SdN (9:6:7)

Substituting equation (9.6.6) into equation (9.6.7) yields

dP ¼ [M
@F

@S
þN]dSþ [M

@F

@N
þ S]dNþM

@F

@t
þ s2

2
S2 @

2F

@S2

� �
dt

(9:6:8)
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As within BST, the arbitrage-free portfolio grows with the risk-free

interest rate, r

dP ¼ rPdt (9:6:9)

Then the combination of equation (9.6.8) and equation (9.6.9)

yields

[M
@F

@S
þN]dSþ [M

@F

@t
þ s2

2
MS2 @

2F

@S2
� rMF� rNS]dtþ

[M
@F

@N
þ S]dN ¼ 0

(9:6:10)

Since equation (9.6.10) must be valid for arbitrary values of dS, dt

and dN, it can be split into three equations

M
@F

@S
þN ¼ 0 (9:6:11)

M
@F

@t
þ s2

2
S2 @

2F

@S2
� rF

� �
� rNS ¼ 0 (9:6:12)

M
@F

@N
þ S ¼ 0 (9:6:13)

Let us present F(S, t, N) in the form

F(S, t, N) ¼ F0(S, t)Z(N) (9:6:14)

where Z(N) satisfies the condition

Z(1) ¼ 1 (9:6:15)

Then it follows from equation (9.6.11) that

M ¼ �N= Z
@F0

@S

� �
: (9:6:16)

This transforms equation (9.6.15) and equation (9.6.16), respectively,

to

@F0

@t
þ rS

@F0

@S
þ s2

2
S2 @

2F0

@S2
� rF0 ¼ 0 (9:6:17)

dZ

dN
¼ (S=F0)

@F0

@S
(Z=N), (9:6:18)
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Equation (9.6.17) is the classical Black-Scholes equation (cf. with

(9.4.6)) while equations (9.6.16) and (9.6.18) define the values of M

and Z(N). Solution to equation (9.6.18) that satisfies the condition

(9.6.15) is

Z(N) ¼ Na (9:6:19)

where a ¼ (S=F0)D, D ¼ @F0

@S
¼ �M�1

0 . Equation (9.6.13) and equa-

tion (9.6.16) yield

M ¼ �N1�a=D ¼ N1�aM0 (9:6:20)

Hence, the option price in the arbitrage-free portfolio with N shares

equals

F(S, t, N) ¼ F0(S, t)Na (9:6:21)

It coincides with the BST solution F0(S, t) only if N ¼ 1, that is when

the portfolio has one share. However, the total expense of hedging N

shares in the arbitrage-free portfolio

Q ¼MF ¼ �(N=D)F0 ¼ NM0F0 (9:6:22)

is the same as within BST. Therefore, Q is the true invariant of the

arbitrage-free portfolio.

Invariance of the hedging expense is easy to understand using the

dimensionality analysis. Indeed, the arbitrage-free condition (9.6.9) is

given in units of the portfolio and therefore can only be used for

defining part of the portfolio. Namely, the arbitrage-free condition

can be used for defining the hedging expense Q ¼MF but not for

defining both factors M and F. Similarly, the law of energy conser-

vation can be used for defining the kinetic energy of a body,

K ¼ 0:5mV2. Yet, this law alone cannot be used for calculating the

body’s mass, m, and velocity, V. Note, however, that if a body has

unit mass (m ¼ 1), then the energy conservation law effectively yields

the body’s velocity. Similarly, the arbitrage-free portfolio with one

share does not reveal dependence of the option price on the number of

shares in the portfolio.
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9.7 EXERCISES

1. (a) Calculate the Black-Scholes prices of the European call and

put options with six-month maturity if the current stock

price is $20 and grows with average rate of m ¼ 10%, vola-

tility is 20%, and risk-free interest rate is 5%. The strike price

is: (1) $18; (2) $22.

(b) How will the results above change if m ¼ 5%?

2. Is there an arbitrage opportunity with the following assets: the

price of the XYZ stock with no dividends is $100; the European

put options at $98 with six-month maturity are sold for $3.50;

the European call options at $98 with the same maturity are sold

for $8; T-bills with the same maturity are sold for $98. Hint:

Check the put-call parity.

**3. Compare the Ito’s and Stratonovich’s approaches for derivation

of the Black-Scholes equation (consult [12]).
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Chapter 10

Portfolio Management

This chapter begins with the basic ideas of portfolio selection.

Namely, in Section 10.1, the combination of two risky assets and

the combination of a risky asset and a risk-free asset are considered.

Then two major portfolio management theories are discussed: the

capital asset pricing model (Section 10.2) and the arbitrage pricing

theory (Section 10.3). Finally, several investment strategies based on

exploring market arbitrage opportunities are introduced in Section

10.4.

10.1 PORTFOLIO SELECTION

Optimal investing is an important real-life problem that has been

translated into elegant mathematical theories. In general, opportun-

ities for investing include different assets: equities (stocks), bonds,

foreign currency, real estate, antique, and others. Here portfolios

that contain only financial assets are considered.

There is no single strategy for portfolio selection, because there is

always a trade-off between expected return on portfolio and risk of

portfolio losses. Risk-free assets such as the U.S. Treasury bills guar-

antee some return, but it is generally believed that stocks provide

higher returns in the long run. The trouble is that the notion of ‘‘long

run’’ is doomed to bear an element of uncertainty. Alas, a decade of
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market growth may end up with a market crash that evaporates a

significant part of the equity wealth of an entire generation. Hence,

risk aversion (that is often well correlated with investor age) is an

important factor in investment strategy.

Portfolio selection has two major steps [1]. First, it is the selection

of a combination of risky and risk-free assets and, secondly, it is the

selection of risky assets. Let us start with the first step.

For simplicity, consider a combination of one risky asset and one

risk-free asset. If the portion of the risky asset in the portfolio is

a(a � 1), then the expected rate of return equals

E[R] ¼ aE[Rr]þ (1� a)Rf ¼ Rf þ a(E[Rr]�Rf) (10:1:1)

where Rf and Rr are rates of returns of the risk-free and risky assets,

respectively. In the classical portfolio management theory, risk is

characterized with the portfolio standard deviation, s.1 Since no

risk is associated with the risk-free asset, the portfolio risk in our

case equals

s ¼ asr (10:1:2)

Substituting a from (10.1.2) into (10.1.1) yields

E[R] ¼ Rf þ s(E[Rr]�Rf)=sr (10:1:3)

The dependence of the expected return on the standard deviation is

called the risk-return trade-off line. The slope of the straight line

(10.1.3)

s ¼ (E[Rr]�Rf)=sr (10:1:4)

is the measure of return in excess of the risk-free return per unit of

risk. Obviously, investing in a risky asset makes sense only if s > 0,

that is, E[Rr] > Rf. The risk-return trade-off line defines the mean-

variance efficient portfolio, that is, the portfolio with the highest

expected return at a given risk level.

On the second step of portfolio selection, let us consider the port-

folio consisting of two risky assets with returns R1 and R2 and with

standard deviations s1 and s2, respectively. If the proportion of the

risky asset 1 in the portfolio is g(g � 1), then the portfolio rate of

return equals

E[R] ¼ gE[R1]þ (1� g)E[R2] (10:1:5)
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and the portfolio standard deviation is

s2 ¼ g2s1
2 þ (1� g)2s2

2 þ 2g(1� g)s12 (10:1:6)

In (10.1.6), s12 is the covariance between the returns of asset 1 and

asset 2. For simplicity, it is assumed further that the asset returns are

uncorrelated, that is, s12 ¼ 0. The value of g that yields minimal risk

for this portfolio equals

gm ¼ s2
2=(s1

2 þ s2
2), (10:1:7)

This value yields the minimal portfolio risk sm

sm
2 ¼ s1

2s2
2=(s1

2 þ s2
2) (10:1:8)

Consider an example with E[R1] ¼ 0:1, E[R2] ¼ 0:2, s1 ¼ 0:15,

s2 ¼ 0:3. If g ¼ 0:8, then s � 0:134 < s1 and E[R] ¼ 0:12 > E[R1].

Hence, adding the more risky asset 2 to asset 1 decreases the portfolio

risk and increases the portfolio return. This somewhat surprising

outcome demonstrates the advantage of portfolio diversification.

Finally, let us combine the risk-free asset with a portfolio that

contains two risky assets. The optimal combination of the risky

asset portfolio and the risk-free asset can be found at the tangency

point between the straight risk-return trade-off line with the intercept

E[R] ¼ Rf and the risk-return trade-off curve for the risky asset

portfolio (see Figure 10.1). For the portfolio with two risky uncorrel-

ated assets, the proportion g at the tangency point T equals

gT ¼ (E[R1]�Rf)s2
2={(E[R1]�Rf)s2

2 þ (E[R2]�Rf)s1
2}

(10:1:9)

Substituting gT from (10.1.9) into (10.1.5) and (10.1.6) yields the

coordinates of the tangency point (i.e., E[RT] and sT). A similar

approach can be used in the general case with an arbitrary number

of risky assets. The return E[RT] for a given portfolio with risk sT is

‘‘as good as it gets.’’ Is it possible to have returns higher than E[RT]

while investing in the same portfolio? In other words, is it possible to

reach say point P on the risk-return trade-off line depicted in Figure.

10.1? Yes, if you borrow money at rate Rf and invest it in the portfolio

with g ¼ gT. Obviously, the investment risk is then higher than that of

sT.
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10.2 CAPITAL ASSET PRICING MODEL (CAPM)

The Capital Asset Pricing Model (CAPM) is based on the portfolio

selection approach outlined in the previous section. Let us consider

the entire universe of risky assets with all possible returns and risks.

The set of optimal portfolios in this universe (i.e., portfolios with

maximal returns for given risks) forms what is called a efficient

frontier. The straight line that is tangent to the efficient frontier and

has intercept Rf is called the capital market line.2 The tangency point

between the capital market line and the efficient frontier corresponds

to the so-called super-efficient portfolio.

In CAPM, it is assumed that all investors have homogenous expect-

ations of returns, risks, and correlations among the risky assets. It is

also assumed that investors behave rationally, meaning they all hold

optimal mean-variance efficient portfolios. This implies that all invest-

ors have risky assets in their portfolio in the same proportions as the

entire market. Hence, CAPM promotes passive investing in the index

0
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Figure 10.1 The return-risk trade-off lines: portfolio with the risk-free

asset and a risky asset (dashed line); portfolio with two risky assets (solid

line); Rf ¼ 0:05, s1 ¼ 0:12, s2 ¼ 0:15, E[R1] ¼ 0:08, E[R2] ¼ 0:14.
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mutual funds. Within CAPM, the optimal investing strategy is simply

choosing a portfolio on the capital market line with acceptable risk

level. Therefore, the difference among rational investors is determined

only by their risk aversion, which is characterized with the proportion

of their wealth allocated to the risk-free assets. Within the CAPM

assumptions, it can be shown that the super-efficient portfolio consists

of all risky assets weighed with their market values. Such a portfolio is

called a market portfolio.3

CAPM defines the return of a risky asset i with the security market

line

E[Ri] ¼ Rf þ bi(E[RM]�Rf) (10:2:1)

where RM is the market portfolio return and parameter beta bi equals

bi ¼ Cov[Ri, RM]=Var[RM] (10:2:2)

Beta defines sensitivity of the risky asset i to the market dynamics.

Namely, bi > 1 means that the asset is more volatile than the entire

market while bi < 1 implies that the asset has a lower sensitivity to the

market movements. The excess return of asset i per unit of risk (so-

called Sharpe ratio) is another criterion widely used for estimation of

investment performance

Si ¼ (E[Ri]�Rf)=si (10:2:3)

CAPM, being the equilibrium model, has no time dependence. How-

ever, econometric analysis based on this model can be conducted

providing that the statistical nature of returns is known [2]. It is

often assumed that returns are independently and identically distrib-

uted. Then the OLS method can be used for estimating bi in the

regression equation for the excess return Zi ¼ Ri �Rf

Zi(t) ¼ ai þ biZM(t)þ ei(t) (10:2:4)

It is usually assumed that ei(t) is a normal process and the S&P 500

Index is the benchmark for the market portfolio return RM(t). More

details on the CAPM validation and the general results for the mean-

variance efficient portfolios can be found in [2, 3].

As indicated above, CAPM is based on the belief that investing in

risky assets yields average returns higher than the risk-free return.

Hence, the rationale for investing in risky assets becomes question-

able in bear markets. Another problem is that the asset diversification
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advocated by CAPM is helpful if returns of different assets are

uncorrelated. Unfortunately, correlations between asset returns may

grow in bear markets [4]. Besides the failure to describe prolonged

bear markets, another disadvantage of CAPM is its high sensitivity to

proxy for the market portfolio. The latter drawback implies that

CAPM is accurate only conditionally, within a given time period,

where the state variables that determine economy are fixed [2]. Then

it seems natural to extend CAPM to a multifactor model.

10.3 ARBITRAGE PRICING THEORY (APT)

The CAPM equation (10.2.1) implies that return on risky assets is

determined only by a single non-diversifiable risk, namely by the risk

associated with the entire market. The Arbitrage Pricing Theory

(APT) offers a generic extension of CAPM into the multifactor

paradigm.

APT is based on two postulates. First, the return for an asset i

(i ¼ 1, . . . , N) at every time period is a weighed sum of the risk factor

contributions fj(t) (j ¼ 1, . . . , K, K < N) plus an asset-specific com-

ponent ei(t)

Ri(t) ¼ ai þ bi1f1 þ bi2f2 þ . . .þ biKfK þ ei(t) (10:3:1)

In (10.3.1), bij are the factor weights (betas). It is assumed that the

expectations of all factor values and for the asset-specific innovations

are zero

E[f1(t)] ¼ E[f2(t)] ¼ . . . ¼ E[fK(t)] ¼ E[ei(t)] ¼ 0 (10:3:2)

Also, the time distributions of the risk factors and asset-specific

innovations are independent

Cov[fj(t), fj(t
0)] ¼ 0, Cov[ei(t), ei(t

0)] ¼ 0, t 6¼ t
0

(10:3:3)

and uncorrelated

Cov[fj(t), ei(t)] ¼ 0 (10:3:4)

Within APT, the correlations between the risk factors and the asset-

specific innovations may exist, that is Cov[fj(t), fk(t)] and

Cov[ei(t), ej(t)] may differ from zero.
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The second postulate of APT requires that there are no arbitrage

opportunities. This implies, in particular, that any portfolio in which

all factor contributions are canceled out must have return equal to

that of the risk-free asset (see Exercise 3). These two postulates lead to

the APT theorem (see, e.g., [5]). In its simple form, it states that there

exist such Kþ 1 constants l0, l1, . . .lK (not all of them equal zero)

that

E[Ri(t)] ¼ l0 þ bi1l1 þ . . .þ biKlK (10:3:5)

While l0 has the sense of the risk-free asset return, the numbers lj are

named the risk premiums for the j-th risk factors.

Let us define a well-diversified portfolio as a portfolio that consists

of N assets with the weights wi where
PN
i¼1

wi ¼ 1, so that wi < W=N

and W � 1 is a constant. Hence, the specific of a well-diversified

portfolio is that it is not overweighed by any of its asset components.

APT turns out to be more accurate for well-diversified portfolios

than for individual stocks. The general APT states that if the return of

a well-diversified portfolio equals

R(t) ¼ aþ b1f1 þ b2f2 þ . . .þ bKfK þ e(t) (10:3:6)

where

a ¼
XN
i¼1

wiai, bi ¼
XN
k¼1

wkbik (10:3:7)

then the expected portfolio return is

E[R(t)] ¼ l0 þ b1l1 þ . . .þ bKlK (10:3:8)

In addition, the returns of the assets that constitute the portfolio

satisfy the simple APT (10.3.5).

APT does not specify the risk factors. Yet, the essential sources of

risk are well described in the literature [6]. They include both macro-

economic factors including inflation risk, interest rate, and corporate

factors, for example, Return on Equity (ROE).4 Development of

statistically reliable multifactor portfolio models poses significant

challenges [2]. Yet, multifactor models are widely used in active

portfolio management.
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Both CAPM and APT consider only one time period and treat the

risk-free interest rate as an exogenous parameter. However, in real

life, investors make investing and consumption decisions that are in

effect for long periods of time. An interesting direction in the port-

folio theory (that is beyond the scope of this book) describes invest-

ment and consumption processes within a single framework. The risk-

free interest rate is then determined by the consumption growth and

by investor risk aversion. The most prominent theories in this direc-

tion are the intertemporal CAPM (ICAPM) and the consumption

CAPM (CCAPM) [2, 3, 7].

10.4 ARBITRAGE TRADING STRATEGIES

The simple investment strategy means ‘‘buy and hold’’ securities

of ‘‘good’’ companies until their performance worsens, then sell them

and buy better assets. A more sophisticated approach is sensitive to

changing economic environment and an investor’s risk tolerance,

which implies periodic rebalancing of the investor portfolio between

cash, fixed income, and equities. Proponents of the conservative

investment strategy believe that this is everything an investor should

do while investing for the ‘‘long run.’’ Yet, many investors are not

satisfied with the long-term expectations: they want to make money

at all times (and who could blame them?). Several concepts being

intensively explored by a number of financial institutions, particu-

larly by the hedge funds, are called market-neutral strategies.

In a nutshell, market-neutral strategy implies hedging the risk of

financial losses by combining long and short positions in the port-

folio. For example, consider two companies within the same industry,

A and B, one of which (A) yields consistently higher returns. The

strategy named pair trading involves simultaneously buying shares

A and short selling shares B. Obviously, if the entire sector rises,

this strategy does not bring as much money as simply buying

shares A. However, if the entire market falls, presumably shares B

will have higher losses than shares A. Then the profits from short

selling shares B would more than compensate for the losses from

buying shares A.
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Specifics of the hedging strategies are not widely advertised for

obvious reasons: the more investors target the same market ineffi-

ciency, the faster it is wiped out. Several directions in the market-

neutral investing are described in the literature [8].

Convertible arbitrage. Convertible bonds are bonds that can be

converted into shares of the same company. Convertible bonds

often decline less in a falling market than shares of the same company

do. Hence, the idea of the convertible arbitrage is buying convertible

bonds and short selling the underlying stocks.

Fixed-income arbitrage. This strategy implies taking long and short

positions in different fixed-income securities. By watching the correl-

ations between different securities, one can buy those securities

that seem to become underpriced and sell short those that look

overpriced.

Mortgage-backed securities (MBS) arbitrage. MBS is actually a

form of fixed income with a prepayment option. Yet, there are so

many different MBS that this makes them a separate business.

Merger arbitrage. This form of arbitrage involves buying shares of a

company that is being bought and short selling the shares of the buying

company. The rationale behind this strategy is that companies are

usually acquired at a premium, which sends down the stock prices of

acquiring companies.

Equity hedge. This strategy is not exactly the market-neutral one, as

the ratio between long and short equity positions may vary depending

on the market conditions. Sometimes one of the positions is the stock

index future while the other positions are the stocks that constitute

this index (so-called index arbitrage). Pair trading also fits this

strategy.

Equity market-neutral strategy and statistical arbitrage. Nicholas

discerns these two strategies by the level of constraints (availability of

resources) imposed upon the portfolio manager [8]. The common

feature of these strategies is that (in contrast to the equity hedge),

they require complete offsetting of the long positions by the short

positions. Statistical arbitrage implies fewer constraints in the devel-

opment of quantitative models and hence a lower amount of the

portfolio manager’s discretion in constructing a portfolio.

Relative value arbitrage. This is a synthetic approach that may

embrace several hedging strategies and different securities including
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equities, bonds, options, and foreign currencies. Looking for the arbi-

trage opportunities ‘‘across the board’’ is technically more challenging

but potentially rewarding.

Some academic research on efficiency of the arbitrage trading

strategies can be found in [9–12] and references therein. Note that

the research methodology in this field is itself a non-trivial problem

[13].

10.5 REFERENCES FOR FURTHER READING

A good introduction into the finance theory, including CAPM, is

given in [1]. For a description of the portfolio theory and investment

science with an increasing level of technical detail, see [5, 14].

10.6 EXERCISES

1. Consider a portfolio with two assets having the following

returns and standard deviations: E[R1] ¼ 0:15, E[R2] ¼ 0:1,

s1 ¼ 0:2, s2 ¼ 0:15. The proportion of asset 1 in the portfolio

g ¼ 0:5. Calculate the portfolio return and standard deviation.

The correlation coefficient between assets is (a) 0.5; (b) �0.5.

2. Consider returns of stock A and the market portfolio M in three

years:

A �7% 12% 26%

M �5% 9% 18%

Assuming the risk-free rate is 5%, (a) calculate b of stock A; and

(b) verify if CAPM describes pricing of stock A.

3. Providing the stock returns follow the two-factor APT:

Ri(t) ¼ aiþ bi1 f1 þ bi2 f2 þ ei(t), construct a portfolio with

three stocks (i.e., define w1, w2, and w3 ¼ 1� w1 � w2) that

yields return equal to that of the risk-free asset.

4. Providing the stock returns follow the two-factor simple APT,

derive the values of the risk premiums. Assume the expected

returns of two stocks and the risk-free rate are equal to R1, R2,

and Rf, respectively.
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Chapter 11

Market Risk Measurement

The widely used risk measure, value at risk (VaR), is discussed in

Section 11.1. Furthermore, the notion of the coherent risk measure is

introduced and one such popular measure, namely expected tail losses

(ETL), is described. In Section 11.2, various approaches to calculating

risk measures are discussed.

11.1 RISK MEASURES

There are several possible causes of financial losses. First, there is

market risk that results from unexpected changes in the market prices,

interest rates, or foreign exchange rates. Other types of risk relevant

to financial risk management include liquidity risk, credit risk, and

operational risk [1]. The liquidity risk closely related to market risk is

determined by a finite number of assets available at a given price (see

discussion in Section 2.1). Another form of liquidity risk (so-called

cash-flow risk) refers to the inability to pay off a debt in time. Credit

risk arises when one of the counterparts involved in a financial

transaction does not fulfill its obligation. Finally, operational risk is

a generic notion for unforeseen human and technical problems, such

as fraud, accidents, and so on. Here we shall focus exclusively on

measurement of the market risk.

In Chapter 10, we discussed risk measures such as the asset return

variance and the CAPM beta. Several risk factors used in APT were
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also mentioned. At present, arguably the most widely used risk meas-

ure is value at risk (VaR) [1]. In short, VaR refers to the maximum

amount of an asset that is likely to be lost over a given period at a

specific confidence level. This implies that the probability density

function for profits and losses (P=L)1 is known. In the simplest case,

this distribution is normal

PN(x) ¼ 1ffiffiffiffiffiffi
2p
p

s
exp [�(x� m)2=2s2] (11:1:1)

where m and s are the mean and standard deviation, respectively.

Then for the chosen confidence level a,

VAR(a) ¼ �sza � m (11:1:2)

The value of za can be determined from the cumulative distribution

function for the standard normal distribution (3.2.10)

Pr(Z < za) ¼
ðza
�1

1ffiffiffiffiffiffi
2p
p exp [�z2=2]dz ¼ 1� a (11:1:3)

Since za < 0 at a > 50%, the definition (11.1.2) implies that positive

values of VaR point to losses. In general, VaR(a) grows with the

confidence level a. Sufficiently high values of the mean

P=L (m > �sza) for given a move VaR(a) into the negative region,

which implies profits rather than losses. Examples of za for typical

values of a ¼ 95% and a ¼ 99% are given in Figure 11.1. Note that

the return variance s corresponds to za ¼ �1 and yields a � 84%.

The advantages of VaR are well known. VaR is a simple and

universal measure that can be used for determining risks of different

financial assets and entire portfolios. Still, VaR has some drawbacks

[2]. First, accuracy of VaR is determined by the model assumptions

and is rather sensitive to implementation. Also, VaR provides an

estimate for losses within a given confidence interval a but says

nothing about possible outcomes outside this interval. A somewhat

paradoxical feature of VaR is that it can discourage investment

diversification. Indeed, adding volatile assets to a portfolio may

move VaR above the chosen risk threshold. Another problem with

VaR is that it can violate the sub-additivity rule for portfolio risk.

According to this rule, the risk measure r must satisfy the condition
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r(Aþ B) � r(A)þ r(B) (11:1:4)

which means the risk of owning the sum of two assets must not be

higher than the sum of the individual risks of these assets. The

condition (11.1.4) immediately yields an upper estimate of combined

risk. Violation of the sub-additivity rule may lead to several problems.

In particular, it may provoke investors to establish separate accounts

for every asset they have. Unfortunately, VaR satisfies (11.1.4) only if

the probability density function for P/L is normal (or, more generally,

elliptical) [3].

The generic criterions for the risk measures that satisfy the require-

ments of the modern risk management are formulated in [3]. Besides

the sub-additivity rule (11.1.4), they include the following conditions.

r(lA) ¼ lr(A), l > 0 (homogeneity) (11:1:5)

r(A) � r(B), if A � B (monotonicity) (11:1:6)

r(Aþ C) ¼ r(A)� C (translation invariance) (11:1:7)

In (11.1.7), C represents a risk-free amount. Adding this amount to

a risky portfolio should decrease the total risk, since this amount is
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Figure 11.1 VaR for the standard normal probability distribution of P/L.
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not subjected to potential losses. The risk measures that satisfy the

conditions (11.1.4)–(11.1.7) are called coherent risk measures. It can

be shown that any coherent risk measure represents the maximum of

the expected loss on a set of ‘‘generalized scenarios’’ where every such

scenario is determined with its value of loss and probability of occur-

rence [3]. This result yields the coherent risk measure called expected

tail loss (ETL):2

ETL ¼ E[LjL > VaR] (11:1:8)

While VaR is an estimate of loss within a given confidence level,

ETL is an estimate of loss within the remaining tail. For a given

probability distribution of P/L and a given a, ETL is always higher

than VaR (cf. Figures 11.1 and 11.2).

ETL has several important advantages over VaR [2]. In short, ETL

provides an estimate for an average ‘‘worst case scenario’’ while VaR

only gives a possible loss within a chosen confidence interval. ETL

has all the benefits of the coherent risk measure and does not discour-

age risk diversification. Finally, ETL turns out to be a more conveni-

ent measure for solving the portfolio optimization problem.
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Figure 11.2 ETL for the standard normal probability distribution of P/L.

124 Market Risk Measurement

Schmidt / Quantitative Finance: An Introduction For Physicists Final Proof 25.10.2004 11:36am page 124



11.2 CALCULATING RISK

Two main approaches are used for calculating VaR and ETL [2].

First, there is historical simulation, a non-parametric approach that

employs historical data. Consider a sample of 100 P/L values as a

simple example for calculating VaR and ETL. Let us choose the

confidence level of 95%. Then VaR is the sixth smallest number in

the sample while ETL is the average of the five smallest numbers

within the sample. In the general case of N observations, VaR at the

confidence level a is the [N(1� a)þ 1] lowest observation and ETL is

the average of N(1� a) smallest observations.

The well-known problem with the historical simulation is handling

of old data. First, ‘‘too old’’ data may lose their relevance. Therefore,

moving data windows (i.e., fixed number of observations prior to

every new period) are often used. Another subject of concern is

outliers. Different data weighting schemes are used to address this

problem. In a simple approach, the historical data X(t� k) are multi-

plied by the factor lk where 0 < l < 1. Another interesting idea is

weighting the historical data with their volatility [4]. Namely, the asset

returns R(t) at time t used in forecasting VaR for time T are scaled

with the volatility ratio

R0(t) ¼ R(t)s(T)=s(t) (11:2:1)

where s(t) is the historical forecast of the asset volatility.3 As a result,

the actual return at day t is increased if the volatility forecast at day T

is higher than that of day t, and vice versa. The scaled forecasts R0(t)
are further used in calculating VaR in the same way as the forecasts

R(t) are used in equal-weight historical simulation. Other more so-

phisticated non-parametric techniques are discussed in [2] and refer-

ences therein.

An obvious advantage of the non-parametric approaches is their

relative conceptual and implementation simplicity. The main disad-

vantage of the non-parametric approaches is their absolute depend-

ence on the historical data: Collecting and filtering empirical data

always comes at a price.

The parametric approach is a plausible alternative to historical

simulation. This approach is based on fitting the P/L probability

distribution to some analytic function. The (log)normal, Student
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and extreme value distributions are commonly used in modeling P/L

[2, 5]. The parametric approach is easy to implement since the analytic

expressions can often be used. In particular, the assumption of the

normal distribution reduces calculating VaR to (11.1.2). Also, VaR

for time interval T can be easily expressed via VaR for unit time (e.g.,

via daily VaR (DVaR) providing T is the number of days)

VaR(T) ¼ DVaR
ffiffiffiffi
T
p

(11:2:2)

VaR for a portfolio of N assets is calculated using the variance of the

multivariate normal distribution

sN
2 ¼

XN
i, j¼1

sij (11:2:3)

If the P/L distribution is normal, ETL can also be calculated analyt-

ically

ETL(a) ¼ sPSN(Za)=(1� a)� m (11:2:4)

The value za in (11.2.4) is determined with (11.1.3). Obviously, the

parametric approach is as good and accurate as the choice of the

analytic probability distribution.

Calculating VaR has become a part of the regulatory environment

in the financial industry [6]. As a result, several methodologies have

been developed for testing the accuracy of VaR models. The most

widely used method is the Kupiec test. This test is based on the

assumption that if the VaR(a) model is accurate, the number of the

tail losses n in a sample N is determined with the binomial distribu-

tion

PB(n; N, 1� a) ¼ N!

n!(N� n)!
(1� a)na(N�n) (11:2:5)

The null hypothesis is that n/N equals 1� a, which can be tested with

the relevant likelihood ratio statistic. The Kupiec test has clear mean-

ing but may be inaccurate for not very large data samples. Other

approaches for testing the VaR models are described in [2, 6] and

references therein.
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11.3 REFERENCES FOR FURTHER READING

The Jorion’s monograph [1] is a popular reference for VaR-based

risk management. The Dowd’s textbook [2] is a good resource for the

modern risk measurement approaches beyond VaR.

11.4 EXERCISES

1. Consider a portfolio with two assets: asset 1 has current value $1

million and annual volatility 12%; asset 2 has current value $2

million and annual volatility 24%. Assuming that returns are

normally distributed and there are 250 working days per year,

calculate 5-day VaR of this portfolio with 99% confidence level.

Perform calculations for the asset correlation coefficient equal

to (a) 0.5 and (b) �0.5.

2. Verify (11.2.4).

*3. Implement the algorithm of calculating ETL for given P/L

density function. Analyze the algorithm accuracy as a function

of the number of integration points by comparing the calcula-

tion results with the analytic expression for the normal distribu-

tion (11.2.4).
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Chapter 12

Agent-Based Modeling
of Financial Markets

12.1 INTRODUCTION

Agent-based modeling has become a popular methodology in

social sciences, particularly in economics.1 Here we focus on the

agent-based modeling of financial markets [1]. The very idea of

describing markets with models of interacting agents (traders, invest-

ors) does not fit well with the classical financial theory that is based

on the notions of efficient markets and rational investors. However, it

has become obvious that investors are neither perfectly rational nor

have homogeneous expectations of the market trends (see also Section

2.3). Agent-based modeling proves to be a flexible framework for a

realistic description of the investor adaptation and decision-making

process.

The paradigm of agent-based modeling applied to financial markets

implies that trader actions determine price. This concept is similar to

that of statistical physics within which the thermodynamic (macro-

scopic) properties of the medium are described via molecular inter-

actions. A noted expansion of the microscopic modeling methodology

into social systems is the minority game (see [2] and references therein).

Its development was inspired by the famous El Farol’s bar problem [3].

This problem considers a number of patrons N willing to attend a bar

with a number of seats Ns. It is assumed that Ns < N and every patron

prefers to stay at home if he expects that the number of people
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attending the bar will exceed Ns. There is no communication among

patrons and they make decisions using only information on past

attendance and different predictors (e.g., attendance today is the

same as yesterday, or is some average of past attendance).

The minority game is a simple binary choice problem in which

players have to choose between two sides, and those on the minority

side win. Similarly to the El Farol’s bar problem, in the minority

game there is no communication among players and only a given set

of forecasting strategies defines player decisions. The minority game

is an interesting stylized model that may have some financial implica-

tions [2]. But we shall focus further on the models derived specifically

for describing financial markets.

In the known literature, early work on the agent-based modeling of

financial markets can be traced back to 1980 [4]. In this paper, Beja and

Goldman considered two major trading strategies, value investing and

trend following. In particular, they showed that system equilibrium

may become unstable when the number of trend followers grows.

Since then, many agent-based models of financial markets have

been developed (see, e.g., reviews [1, 5], the recent collection [6] and

references therein). We divide these models into two major groups. In

the first group, agents make decisions based on their own predictions

of future prices and adapt their beliefs using different predictor func-

tions of past returns. The principal feature of this group is that price is

derived from the supply-demand equilibrium [7–10].2 Therefore, we

call this group the adaptive equilibrium models. In the other group, the

assumption of the equilibrium price is not employed. Instead, price is

assumed to be a dynamic variable determined via its empirical relation

to the excess demand (see, e.g., [11, 12]). We call this group the non-

equilibrium price models. In the following two sections, we discuss two

instructive examples for both groups of models, respectively. Finally,

Section 12.4 describes a non-equilibrium price model that is derived

exclusively in terms of observable variables [13].

12.2 ADAPTIVE EQUILIBRIUM MODELS

In this group of models [7–10], agents can invest either in the risk-

free asset (bond) or in the risky asset (e.g., a stock market index). The

risk-free asset is assumed to have an infinite supply and a constant
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interest rate. Agents attempt to maximize their wealth by using some

risk aversion criterion. Predictions of future return are adapted using

past returns. The solution to the wealth maximization problem yields

the investor demand for the risky asset. This demand in turn deter-

mines the asset price in equilibrium. Let us formalize these assump-

tions using the notations from [10]. The return on the risky asset at

time t is defined as

rt ¼ (pt � pt�1 þ yt)=pt�1 (12:2:1)

where pt and yt are (ex-dividend) price and dividend of one share of

the risky asset, respectively. Wealth dynamics of agent i is given by

Wi, tþ1 ¼ R(1� pi, t)Wi, t þ pi, tWi, t(1þ rtþ1)

¼Wi, t[Rþ pi, t(rtþ1 � r)] (12:2:2)

where r is the interest rate of the risk-free asset, R ¼ 1þ r, and pi, t is

the proportion of wealth of agent i invested in the risky asset at time t.

Every agent is assumed to be a taker of the risky asset at price that is

established in the demand-supply equilibrium. Let us denote Ei, t and

Vi, t the ‘‘beliefs’’ of trader i at time t about the conditional expect-

ation of wealth and the conditional variance of wealth, respectively. It

follows from (12.2.2) that

Ei, t[Wi, tþ1] ¼Wi, t[Rþ pi, t(Ei, t[rtþ1]� r)], (12:2:3)

Vi, t[Wi, tþ1] ¼ p2
i, tW

2
i, tVi, t[rtþ1] (12:2:4)

Also, every agent i believes that return of the risky asset is normally

distributed with mean Ei, t[rtþ1] and variance Vi, t[rtþ1]. Agents choose

the proportion pi, t of their wealth to invest in the risky asset, which

maximizes the utility function U

max
pi, t

{Ei, t[U(Wi, tþ1)]} (12:2:5)

The utility function chosen in [9, 10] is

U(Wi, t) ¼ log (Wi, t) (12:2:6)

Then demand pi, t that satisfies (12.2.5) equals

pi, t ¼
Ei, t[rtþ1]� r

Vi, t[rtþ1]
(12:2:7)
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Another utility function used in the adaptive equilibrium models

employs the so-called constant absolute risk aversion (CARA) function

[7, 8]

U(Wi, t) ¼ Ei, t[Wi, tþ1]�
a

2
Vi, t[Wi, tþ1] (12:2:8)

where a is the risk aversion constant. For the constant conditional

variance Vi, t ¼ s2, the CARA function yields the demand

pi, t ¼
Ei, t[rtþ1]� r

as2
(12:2:9)

The number of shares of the risky asset that corresponds to demand

pi, t equals

Ni, t ¼ pi, tWi, t=pt (12:2:10)

Since the total number of shares assumed to be fixed�P
i

Ni, t ¼ N ¼ const
�
, the market-clearing price equals

pt ¼
1

N

X
i

pi, t Wi, t (12:2:11)

The adaptive equilibrium model described so far does not contradict

the classical asset pricing theory. The new concept in this model is the

heterogeneous beliefs. In its general form [7, 10]

Ei, t[rtþ1] ¼ fi(rt�1, . . . , rt�Li), (12:2:12)

Vi, t[rtþ1] ¼ gi(rt�1, . . . , rt�Li) (12:2:13)

The deterministic functions fi and gi depend on past returns with lags

up to Li and may vary for different agents.3

While variance is usually assumed to be constant (gi ¼ s2), several

trading strategies fi are discussed in the literature. First, there are

fundamentalists who use analysis of the business fundamentals to

make their forecasts on the risk premium dF

EF, t[rtþ1] ¼ rþ dF (12:2:14)

In simple models, the risk premium dF > 0 is a constant but it can be a

function of time and/or variance in the general case. Another major

strategy is momentum trading (traders who use it are often called

chartists). Momentum traders use history of past returns to make

their forecasts. Namely, their strategy can be described as
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EM, t[rtþ1] ¼ rþ dM þ
XL
k¼1

akrt�k (12:2:15)

where dM > 0 is the constant component of the momentum risk

premium and ak > 0 are the weights of past returns rt�k. Finally,

contrarians employ the strategy that is formally similar to the momen-

tum strategy

EC, t[rtþ1] ¼ rþ dC þ
XL
k¼1

bkrt�k (12:2:16)

with the principal difference that all bk are negative. This implies that

contrarians expect the market to turn around (e.g., from bull market

to bear market).

An important feature of adaptive equilibrium models is that agents

are able to analyze performance of different strategies and choose the

most efficient one. Since these strategies have limited accuracy, such

adaptability is called bounded rationality.

In the limit of infinite number of agents, Brock and Hommes offer

a discrete analog of the Gibbs probability distribution for the fraction

of traders with the strategy i [7]

nit ¼ exp [b(Fi, t�1 � Ci)]=Zt, Zt ¼
X

i

exp [b(Fi, t�1 � Ci)] (12:2:17)

In (12.2.17), Ci � 0 is the cost of the strategy i, the parameter b is

called the intensity of choice, and Fi, t is the fitness function that

characterizes the efficiency of strategy i. The natural choice for the

fitness function is

Fi, t ¼ gFi, t�1 þ wi, t, wi, t ¼ pi, t(Wi, t �Wi, t�1)=Wi, t�1 (12:2:18)

where 0 � g � 1 is the memory parameter that retains part of past

performance in the current strategy.

Adaptive equilibrium models have been studied in several direc-

tions. Some work has focused on analytic analysis of simpler models.

In particular, the system stability and routes to chaos have been

discussed in [7, 10]. In the meantime, extensive computational model-

ing has been performed in [9] and particularly for the so-called Santa

Fe artificial market, in which a significant number of trading strat-

egies were implemented [8].
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12.3 NON-EQUILIBRIUM PRICE MODELS

The concept of market clearing that is used in determining price of

the risky asset in the adaptive equilibrium models does not accurately

reflect the way real markets work. In fact, the number of shares

involved in trading varies with time, and price is essentially a dynamic

variable. A simple yet reasonable alternative to the price-clearing

paradigm is the equation of price formation that is based on the

empirical relation between price change and excess demand [4].

Different agent decision-making rules may be implemented within

this approach. Here the elaborated model offered by Lux [11] is

described. In this model, two groups of agents, namely chartists and

fundamentalists, are considered. Agents can compare the efficiency of

different trading strategies and switch from one strategy to another.

Therefore, the numbers of chartists, nc(t), and fundamentalists, nf (t),

vary with time while the total number of agents in the market N is

assumed constant. The chartist group in turn is sub-divided into

optimistic (bullish) and pessimistic (bearish) traders with the numbers

nþ(t) and n�(t), respectively

nc(t)þ nf(t) ¼ N, nþ(t)þ n�(t) ¼ nc(t) (12:3:1)

Several aspects of trader behavior are considered. First, the chartist

decisions are affected by the peer opinion (so-called mimetic conta-

gion). Secondly, traders change strategy while seeking optimal per-

formance. Finally, traders may exit and enter markets. The bullish

chartist dynamics is formalized in the following way:

dnþ=dt ¼ (n�pþ� � nþp�þ)(1� nf=N)þ mimetic contagion

nfnþ(pþf � pfþ)=Nþ changes of strategy

(b� a)nþ market entry and exit (12:3:2)

Here, pab denotes the probability of transition from group b to group

a. Similarly, the bearish chartist dynamics is given by

dn�=dt ¼ (nþp�þ � n�pþ�)(1� nf=N)þ mimetic contagion

nfn�(p�f � pf�)=Nþ changes of strategy

(b� a)n� market entry and exit (12:3:3)

It is assumed that traders entering the market start with the chartist

strategy. Therefore, constant total number of traders yields the
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relation b ¼ aN=nc. Equations (12.3.1)–(12.3.3) describe the dynam-

ics of three trader groups (nf , nþ, n�) assuming that all transfer

probabilities pab are determined. The change between the chartist

bullish and bearish mood is given by

pþ� ¼ 1=p�þ ¼ n1exp(�U1),

U1 ¼ a1(nþ � n�)=nc þ (a2=n1)dP=dt (12:3:4)

where n1, a1 and a2 are parameters and P is price. Conversion of

fundamentalists into bullish chartists and back is described with

pþf ¼ 1=pfþ ¼ n2 exp(�U21),

U21 ¼ a3((rþ n�1
2 dP=dt)=P�R� sj(Pf � P)=Pj) (12:3:5)

where n2 and a3 are parameters, r is the stock dividend, R is the

average revenue of economy, s is a discounting factor 0 < s < 1, and

Pf is the fundamental price of the risky asset assumed to be an input

parameter. Similarly, conversion of fundamentalists into bearish

chartists and back is given by

p�f ¼ 1=pf� ¼ n2 exp(�U22),

U22 ¼ a3(R� (rþ n�1
2 dP=dt)=P� sj(Pf � P)=Pj) (12:3:6)

Price P in (12.3.4)–(12.3.6) is a variable that still must be defined.

Hence, an additional equation is needed in order to close the system

(12.3.1)–(12.3.6). As it was noted previously, an empirical relation

between the price change and the excess demand constitutes the

specific of the non-equilibrium price models4

dP=dt ¼ bDex (12:3:7)

In the model [11], the excess demand equals

Dex ¼ tc(nþ � n�)þ gnf(Pf � P) (12:3:8)

The first and second terms in the right-hand side of (12.3.8) are the

excess demands of the chartists and fundamentalists, respectively;

b, tc and g are parameters.

The system (12.3.1)–(12.3.8) has rich dynamic properties deter-

mined by its input parameters. The system solutions include stable

equilibrium, periodic patterns, and chaotic attractors. Interestingly,

the distributions of returns derived from the chaotic trajectories

may have fat tails typical for empirical data. Particularly in [14], the
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model [11] was modified to describe the arrival of news in the market,

which affects the fundamental price. This process was modeled with

the Gaussian random variable e(t) so that

ln Pf(t)� ln Pf(t� 1) ¼ e(t) (12:3:9)

The modeling results exhibited the power-law scaling and temporal

volatility dependence in the price distributions.

12.4 THE OBSERVABLE VARIABLES MODEL

12.4.1 THE FRAMEWORK

The models discussed so far are capable of reproducing important

features of financial market dynamics. Yet, one may notice a degree

of arbitrariness in this field. The number of different agent types and

the rules of their transition and adaptation vary from one model to

another. Also, little is known about optimal choice of the model

parameters [15, 16]. As a result, many interesting properties, such as

deterministic chaos, may be the model artifacts rather than reflections

of the real world.5

A parsimonious approach to choosing variables in the agent-based

modeling of financial markets was offered in [17]. Namely, it was

suggested to derive agent-based models exclusively in terms of observ-

able variables. Note that the notion of observable data in finance

should be discerned from the notion of publicly available data. While

the transaction prices in regulated markets are publicly available, the

market microstructure is not (see Section 2.1). Still, every event in the

financial markets that affects the market microstructure (such as

quote submission, quote cancellation, transactions, etc.) is recorded

and stored for business and legal purposes. This information allows

one to reconstruct the market microstructure at every moment. We

define observable variables in finance as those that can be retrieved or

calculated from the records of market events. Whether these records

are publicly available at present is a secondary issue. More import-

antly, these data exist and can therefore potentially be used for

calibrating and testing the theoretical models.

The numbers of agents of different types generally are not observ-

able. Indeed, consider a market analog of ‘‘Maxwell’s Demon’’ who is
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able to instantly parse all market events. The Demon cannot discern

‘‘chartists’’ and ‘‘fundamentalists’’ in typical situations, such as when

the current price, being lower than the fundamental price, is growing.

In this case, all traders buy rather than sell. Similarly, when the

current price, being higher than the fundamental price, is falling, all

traders sell rather than buy.

Only price, the total number of buyers, and the total number of

sellers are always observable. Whether a trader becomes a buyer or

seller can be defined by mixing different behavior patterns in the

trader decision-making rule. Let us describe a simple non-equilibrium

price model derived along these lines [17]. We discern ‘‘buyers’’ (þ)

and ‘‘sellers’’ (�). Total number of traders is N

Nþ(t)þN�(t) ¼ N (12:4:1)

The scaled numbers of buyers, nþ(t) ¼ Nþ(t)=N, and sellers, n�(t)
¼ N�(t)=N, are described with equations

dnþ=dt ¼ vþ�n� � v�þnþ (12:4:2)

dn�=dt ¼ v�þnþ � vþ�n� (12:4:3)

The factors vþ� and v�þ characterize the probabilities for transfer

from seller to buyer and back, respectively

vþ� ¼ 1=v�þ ¼ n exp (U), U ¼ ap�1dp=dtþ b(1� p) (12:4:4)

Price p(t) is given in units of its fundamental value. The first term in

the utility function, U, characterizes the ‘‘chartist’’ behavior while the

second term describes the ‘‘fundamentalist’’ pattern. The factor n has

the sense of the frequency of transitions between seller and buyer

behavior. Since nþ(t) ¼ 1� n�(t), the system (12.4.1)–(12.4.3) is re-

duced to the equation

dnþ=dt ¼ vþ�(1� nþ)� v�þnþ (12:4:5)

The price formation equation is assumed to have the following

form

dp=dt ¼ gDex (12:4:6)

where the excess demand, Dex, is proportional to the excess number of

buyers

Dex ¼ d(nþ � n�) ¼ d(2nþ � 1) (12:4:7)
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12.4.2 PRICE-DEMAND RELATIONS

The model described above is defined with two observable vari-

ables, nþ(t) and p(t). In equilibrium, its solution is nþ ¼ 0:5 and

p ¼ 1. The necessary stability condition for this model is

adgn � 1 (12:4:8)

The typical stable solution for this model (relaxation of the initially

perturbed values of nþ and p) is given in Figure 12.1. Lower values of

a and g suppress oscillations and facilitate relaxation of the initial

perturbations. Thus, the rise of the ‘‘chartist’’ component in the utility

function increases the price volatility. Numerical solutions with the

values of a and g that slightly violate the condition (12.4.8) can lead to

the limit cycle providing that the initial conditions are very close to

the equilibrium values (see Figure 12.2). Otherwise, violation of the

condition (12.4.8) leads to system instability, which can be interpreted

as a market crash.

The basic model (12.4.1)–(12.4.7) can be extended in several

ways. First, the condition of the constant number of traders (12.4.1)
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Figure 12.1 Dynamics of excess demand (Dex) and price for the model

(12.4.5)–(12.4.7) with a ¼ b ¼ g ¼ 1, nþ(0) ¼ 0.4 and p(0) ¼ 1.05.
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can be dropped. The system has three variables (nþ, n�, p) and

therefore may potentially describe deterministic chaos (see Chapter

7). Also, one can randomize the model by adding noise to the utility

function (12.4.4) or to the price formation equation (12.4.6). Interest-

ingly, the latter option may lead to a negative correlation between

price and excess demand, which is not possible for the deterministic

equation (12.4.6) [17].

12.4.3 WHY TECHNICAL TRADING MAY BE SUCCESSFUL

A simple extension of the basic model (12.4.1)–(12.4.7) provides

some explanation as to why technical trading may sometimes be

successful [18]. Consider a system with a constant number of traders

N that consists of ‘‘regular’’ traders NR and ‘‘technical’’ traders

NT: NT þNR ¼ N ¼ const. The ‘‘regular’’ traders are divided into

buyers, Nþ(t), and sellers, N�(t): Nþ þN� ¼ NR ¼ const. The rela-

tive numbers of ‘‘regular’’ traders, nþ(t) ¼ Nþ(t)=N and

n�(t) ¼ N�(t)=N, are described with the equations (12.4.2)–(12.4.4).

The price formation in equation (12.4.6) is also retained. However,
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Figure 12.2 Dynamics of excess demand (Dex) and price for the model

(12.4.5)–(12.4.7) with a ¼ 1.05, b ¼ g ¼ 1, nþ(0) ¼ 0.4 and p(0) ¼ 1.05.
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the excess demand, in contrast to (12.4.7), incorporates the ‘‘tech-

nical’’ traders

Dex ¼ d(nþ � n� þ FnT) (12:4:9)

In (12.4.9), nT ¼ NT=N and function F is defined by the technical

trader strategy. We have chosen a simple technical rule ‘‘buying on

dips – selling on tops,’’ that is, buying at the moment when the price

starts rising, and selling at the moment when price starts falling

F(k) ¼
1, p(k) > p(k� 1) and p(k� 1) < p(k� 2)

�1, p(k) < p(k� 1) and p(k� 1) > p(k� 2)

0, otherwise

8<
: (12:4:10)

Figure 12.3 shows that inclusion of the ‘‘technical’’ traders in the

model strengthens the price oscillations. This result can be easily

interpreted. If ‘‘technical’’ traders decide that price is going to fall,

they sell and thus decrease demand. As a result, price does fall and

the ‘‘chartist’’ mood of ‘‘regular’’ traders forces them to sell. This

suppresses price further until the ‘‘fundamentalist’’ motivation of
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Figure 12.3 Price dynamics for the technical strategy (12.4.10) for

a ¼ g ¼ d ¼ n ¼ 1 and b ¼ 4 with initial conditions nþ(0) ¼ 0.4 and p(0)

¼ 1.05.

140 Agent-Based Modeling of Financial Markets

Schmidt / Quantitative Finance: An Introduction For Physicists Final Proof 25.10.2004 11:38am page 140

andrey
tr-soft-org



‘‘regular’’ traders becomes overwhelming. The opposite effect occurs

if ‘‘technical’’ traders decide that it is time to buy: they increase

demand and price starts to grow until it notably exceeds its funda-

mental value. Hence, if the ‘‘technical’’ traders are powerful enough in

terms of trading volumes, their concerted action can sharply change

demand upon ‘‘technical’’ signal. This provokes the ‘‘regular’’ traders

to amplify a new trend, which moves price in the direction favorable

to the ‘‘technical’’ strategy.

12.4.4 THE BIRTH OF A LIQUID MARKET

Market liquidity implies the presence of traders on both the bid/ask

sides of the market. In emergent markets (e.g., new electronic

auctions), this may be a matter of concern. To address this problem,

the basic model (12.4.1)–(12.4.7) was expanded in the following way

[19]

dnþ=dt ¼ vþ�n� � v�þnþ þ SRþi þ rþ (12:4:11)

dn�=dt ¼ v�þnþ � vþ�n� þ SR�i þ r� (12:4:12)

The functions R�i(i ¼ 1, 2, . . . , M) and r� are the deterministic and

stochastic rates of entering and exiting the market, respectively. Let us

consider three deterministic effects that define the total number of

traders.6 First, we assume that some traders stop trading immediately

after completing a trade as they have limited resources and/or need

some time for making new decisions

Rþ1 ¼ R�1 ¼ �bnþn�, b > 0 (12:4:13)

Also, we assume that some traders currently present in the market will

enter the market again and will possibly bring in some ‘‘newcomers.’’

Therefore, the inflow of traders is proportional to the number of

traders present in the market

Rþ2 ¼ R�2 ¼ a(nþ þ n�), a > 0 (12:4:14)

Lastly, we account for ‘‘unsatisfied’’ traders leaving the market.

Namely, we assume that those traders who are not able to find the

trading counterparts within a reasonable time exit the market
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Rþ3 ¼
�c(nþ � n�) if nþ > n�
0, if nþ � n�

�

R�3 ¼
�c(n� � nþ) if n� > nþ
0, if n� � nþ

�
(12:4:15)

We call the parameter c > 0 the ‘‘impatience’’ factor. Here, we neglect

the price variation, so that vþ� ¼ v�þ ¼ 0. We also neglect the sto-

chastic rates r�. Let us specify

nþ(0)� n�(0) ¼ d > 0: (12:4:16)

Then equations (12.4.11)–(12.4.12) have the following form

dnþ=dt ¼ a(nþ þ n�)� bnþn� � c(nþ � n�) (12:4:17)

dn�=dt ¼ a(nþ þ n�)� bnþn� (12:4:18)

The equation for the total number of traders n ¼ nþ þ n� has the

Riccati form7

dn=dt ¼ 2an� 0:5bn2 þ 0:5bd2 exp (�2ct)� cd exp (�ct) (12:4:19)

Equation (12.4.19) has the asymptotic solution

n0 ¼ 4a=b (12:4:20)

An example of evolution of the total number of traders (in units of n0)

is shown in Figure 12.4 for different values of the ‘‘impatience’’

factor. Obviously, the higher the ‘‘impatience’’ factor, the deeper the

minimum of n(t) will be. At sufficiently high ‘‘impatience’’ factor, the

finite-difference solution to equation (12.4.19) falls to zero. This

means that the market dies out due to trader impatience. However,

the exact solution never reaches zero and always approaches the

asymptotic value (12.4.20) after passing the minimum. This demon-

strates the drawback of the continuous approach. Indeed, a non-zero

number of traders that is lower than unity does not make sense. One

way around this problem is to use a threshold, nmin, such that

n� (t) ¼ 0 if n� (t) < nmin (12:4:21)

Still, further analysis shows that the discrete analog of the system

(12.4.17)–(12.4.18) may be more adequate than the continuous model

[19].8
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12.5 REFERENCES FOR FURTHER READING

Reviews [1, 5] and the recent collection [6] might be a good starting

point for deeper insight into this quickly evolving field.

12.6 EXERCISES

**1. Discuss the derivation of the GARCH process with the agent-

based model [21].
**2. Discuss the insider trading model [22]. How would you model

agents having knowledge of upcoming large block trades?
**3. Discuss the parsimony problem in agent-based modeling of

financial markets (use [16] as the starting point).
**4. Discuss the agent-based model of business growth [23].
**5. Verify if the model (12.4.1)–(12.4.7) exhibits a price distribu-

tion with fat tails.
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Figure 12.4 Dynamics of the number of traders described with equation

(12.4.19) with a ¼ 0.25, b ¼ 1, nþ(0) ¼ 0.2, and n�(0) ¼ 0.1: 1 - c ¼ 1; 2 - c ¼
10; 3 - c ¼ 20.
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Comments

CHAPTER 1

1. The author calls this part academic primarily because he has difficulty

answering the question ‘‘So, how can we make some money with this

stuff?’’ Undoubtedly, ‘‘money-making’’ mathematical finance has deep

academic roots.

2. Lots of information on the subject can also be found on the websites

http://www.econophysics.org and http://www.unifr.ch/econophysics.

3. Still, Section 7.1 is a useful precursor for Chapter 12.

4. It should be noted that scientific software packages such as Matlab and

S-Plus (let alone ‘‘in-house’’ software developed with C/Cþþ) are often

used for sophisticated financial data analysis. But Excel, having a wide

array of built-in functions and programming capabilities with Visual

Basic for Applications (VBA) [13], is ubiquitously employed in the finan-

cial industry.

CHAPTER 2

1. In financial literature, return is sometimes defined as [P(t)� P(t�1)] while

the variable R(t) in (2.2.1) is named rate of return.

2. For the formal definition of IID, see Section 5.1.

3. USD/JPY denotes the price of one USD in units of JPY, etc.

4. Technical analysis is based on the seeking and interpretation of patterns

in past prices [7]. Fundamental analysis is evaluation the company’s
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business quality based on its growth expectations, cash flow, and so

on [8].

5. Arbitrage trading strategies are discussed in Section 10.4.

6. An instructive discussion on EMH and rational bubbles is given also on

L. Tesfatsion’s website: http://www.econ.iastate.edu/classes/econ308/tes-

fatsion/emarketh.htm.

CHAPTER 4

1. In the physical literature, the diffusion coefficient is often defined as

D ¼ kT=(6pZR). Then E[r2]� r0
2 ¼ 6Dt.

2. The general case of the random walk is discussed in Section 5.1.

3. Here we simplify the notations: m(t) ¼ m, s(y(t), t) ¼ s.

4. The notation y ¼ O(x) means that y and x are of the same asymptotic

order, that is, 0 < lim
t!0

[y(t)=x(t)] <1.

CHAPTER 5

1. See http://econ.la.psu.edu/�hbierens/EASYREG.HTM.

CHAPTER 7

1. Ironically, markets may react unexpectedly even at ‘‘expected’’ news.

Consider a Federal Reserve interest rate cut, which is an economic

stimulus. One may expect market rally after its announcement. However,

prices might have already grown in anticipation of this event. Then

investors may start immediate profit taking, which leads to falling prices.

2. In the case with g < 0, the system has an energy source and the trajectory

is an unbounded outward spiral.

CHAPTER 8

1. See, for example, [1] and references therein. Note that the GARCH

models generally assume that the unconditional innovations are

normal.

2. While several important findings have been reported after publishing

[2], I think this conclusion still holds. On a philosophical note, statistical

data analysis in general is hardly capable of attaining perfection of

mathematical proof. Therefore, scholars with the ‘‘hard-science’’
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background may often be dissatisfied with rigorousness of empirical

research.

3. There has been some interesting research on the distribution of the

company sizes [3, 4].

4. The foreign exchange data available to academic research are overwhelm-

ingly bank quotes (indicative rates) rather than the real inter-bank trans-

action rates (so-called firm rates) [5].

CHAPTER 9

1. In financial literature, derivatives are also called contingent claims.

2. The names of the American and European options refer to the exercising

rule and are not related to geography. Several other types of options with

complicated payoff rules (so-called exotic options) have been introduced

in recent years [1�3].

3. The U.S. Treasury bills are often used as a benchmark for the risk-free

asset.

4. Here and further, the transaction fees are neglected.

5. We might choose also one share and � @F

@S

� ��1

options.

CHAPTER 10

1. See Chapter 11.

2. Qualitative graphical presentation of the efficient frontier and the capital

market line is similar to the trade-off curve and the trade-off straight line,

respectively, depicted in Figure 10.1.

3. Usually, Standard and Poor’s 500 Index is used as proxy for the U.S.

market portfolio.

4. ROE ¼ E/B where E is earnings; B is the book value that in a nutshell

equals the company’s assets minus its debt.

CHAPTER 11

1. In risk management, the self-explanatory notion of P/L is used rather

than return.

2. In the current literature, the following synonyms of ETL are sometimes

used: expected shortfall and conditional VaR [2].

3. EWMA or GARCH are usually used for the historical volatility forecasts

(see Section 4.3).
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CHAPTER 12

1. Lots of useful information on agent-based computational economics are

present on L. Tesfatsion’s website: http://www.econ.iastate.edu/tesfatsi/

ace.htm. Recent developments in this field can also be found in the

materials of the regularly held Workshops on Economics and Heteroge-

neous Interacting Agents (WEHIA), see, for example, http://www.nda.

ac.jp/cs/AI/wehia04.

2. I have listed the references to several important models. Early research

and recent working papers on the agent-based modeling of financial

markets can be found on W. A. Brock’s (http://www.ssc.wisc.edu/

�wbrock/),

C. Chiarella’s (http://www.business.uts.edu.au/finance/staff/carl.html),

J. D. Farmer’s (http://www.santafe.edu/�jdf),

B. LeBaron’s (http://people.brandeis.edu/�blebaron/index.htm),

T. Lux’s (http://www.bwl.uni-kiel.de/vwlinstitute/gwrp/team/lux.htm), and

S. Solomon’s (http://shum.huji.ac.il/�sorin/) websites.

3. In a more consistent yet computationally demanding formulation, the

function fi depends also on current return rt, that is, Ei, t[rtþ1] ¼
fi(rt, . . . , rt�Li) [8, 9].

4. Log price in the left-hand side of equation (12.3.7) may be a better choice

in order to avoid possible negative price values [12].

5. See also Section 7.1.

6. This model has some similarity with the mating dynamics model where

only agents of opposite sex interact and deactivate each other, at least

temporarily. In particular, this model could be used for describing at-

tendance of the singles’ clubs.

7. Equation (12.4.19) can be transformed into the Schrodinger equation

with the Morse-type potential [19].

8. Another interesting example of qualitative difference between the con-

tinuous and discrete evolutions of the same system is given in [20].
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Answers to Exercises

2.2 (a) $113.56; (b) $68.13.

2.4 Borrow 100000 USD to buy 100000/1.7705 GBP. Then buy (100000/

1.7705)/0.6694 EUR. Exchange the resulting amount to

1.1914[(100000/1.7705)/0.6694] � 100525 USD. Return the loan and

enjoy profits of $525 (minus transaction fees).

3.2 (a) 0.157; (b) 1.645; (c) 1.036

3.4 Since aXþ b � N(amþ b, (as)2), it follows that C2 ¼ a2 þ b2 and D ¼
(a þ b � C) m.

4.3 (t) ¼ X(0)exp(�mt)þ s
Ðt
0

exp[�m(t� s)]dW (s)

5.2 For this process, the AR(2) polynomial (5.1.12) is:1 – 1.2zþ 0.32z2¼ 0.

Since its roots, z ¼ (1.2 � 0.4)/0.64 > 1, are outside the unit circle, the

process is covariance-stationary.

5.3 Linear regression for the dividends in 2000 – 2003 is D ¼ 1.449 þ
0.044n (where n is number of years since 2000). Hence the dividend

growth is G ¼ 4.4%.

7.1 (a) X* ¼ 0.5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� C
p

. Hence there are two fixed points at C <
0.25, one fixed point at C ¼ 0.25, and none for C > 0.25.

(b) X1
* � 0.14645 is attractor with the basin 0 � X < X2

* where X2
* �

0.85355.

9.1 (a) 1) c ¼ 2.70, p ¼ 0.26; 2) c ¼ 0.58, p ¼ 2.04.

(b) The Black-Scholes option prices do not depend on the stock

growth rate (see discussion on the risk-neutral valuation).

9.2 Since the put-call parity is violated, you may sell a call and a T-bill for

$(8 þ 98) ¼ $106. Simultaneously, you buy a share and a put for $(100
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þ 3.50) ¼ $103.50 to cover your obligations. Then you have profits of

$(106 � 103.50) ¼ $2.50 (minus transaction fees).

10.1 (a) E[R] ¼ 0.13, s ¼ 0.159; (b) E[R] ¼ 0.13, s¼ 0.104.

10.2 (a) bA ¼ 1.43;

(b) For bA¼ 1.43, E[RA] ¼ 0.083 according to eq(10.2.1). However,

the average return for the given sample of returns is 0.103. Hence

CAPM is violated in this case.

10.3 w1 ¼ (b21 b32�b22 b31)/[ b11(b22�b32) þ b21(b32�b12) þ b31(b12�b22)],

w2 ¼ (b12 b31�b11b32)/[b22(b11�b31) þ b12(b31�b21) þ b32(b21�b11)].

10.4 l1 ¼ [b22(R1�Rf)�b12(R2�Rf)]/(b11b22�b12b21), l2 ¼ [b11(R2�Rf)�
10.4 b21(R1�Rf)]/(b11b22�b12b21).

11.1 (a) $136760; (b) $78959.
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Index

A
Adaptive equilibrium models, 130–132

APT. See Arbitrage Pricing Theory

Arbitrage, 11

convertible, 119

equity market-neutral strategy and

statistical, 119

fixed-income, 119

merger, 119

relative value, 119–120

statistical, 13

trading strategies of, 118–120

Arbitrage Pricing Theory (APT), 116–118

ARCH. See Autoregressive conditional

heteroskedascisity

ARIMA. See Autoregressive moving

integrated average model

ARMA. See Autoregressive moving average

model

Ask, 5

Attractor, 72

quasi-periodic, 78

strange, 69

Autocorrelation function, 47

Autocovariance, 47

Autonomous systems, 75

Autoregressive conditional heteroskedascisity

(ARCH), 52

exponential generalized (EGARCH), 53–54

generalized (GARCH), 52–53, 87

integrated generalized (IGARCH), 53

Autoregressive moving average model

(ARMA), 45–46

integrated (ARIMA), 46

Autoregressive moving integrated average

model (ARIMA), 46

Autoregressive process, 43

B
Basin of attraction, 72

Behavioral finance, 13

Bernoulli trials, 20

Beta, 115

Bid, 5

Bifurcation

global, 82

Hopf, 78

local, 82

point of, 70, 71f

Binomial

cascade, 64–66, 65f

distribution, 21

measure, 64

tree, 98–101, 99f

Black-Scholes equation, 102–104

Black-Scholes Theory (BST), 101–105

Bond, 130–131

Bounded rationality, 14, 133

Box-counting dimension, 61

Brownian motion, 32–35

arithmetic, 34

fractional, 62–63

geometric, 34
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C
Capital Asset Pricing Model (CAPM),

114–116, 118

Capital market line, 114

CAPM. See Capital Asset Pricing Model

CARA. See Constant absolute risk aversion

function

Cascade, 64

binomial, 64–66, 65f

canonical, 66

conservative, 65

microcanonical, 65

multifractal, 63–64

multiplicative process of, 64

Cauchy (Lorentzian) distribution, 23, 24f

standard, 23

Central limit theorem, 22

Chaos, 70, 82–85

measuring, 83–85

Chaotic transients, 83

Chapmen-Kolmogorov equation, 30–31

Characteristic function, 25

Chartists, 132, 134–135, 137, 138

Coherent risk measures, 124

Cointegration, 51

Compound stochastic process, 92

Compounded return, 8

continuously, 8

Conditional expectation, 18

Conservative system, 76–77

Constant absolute risk aversion (CARA)

function, 132

Contingent claim. See Derivatives

Continuously compounded return, 8. See also

Log return

Continuous-time random walk, 34

Contract

forward, 93

future, 94

Contrarians, 133

Correlation

coefficient, 20

dimension, 85

Covariance, 20

matrix of, 20

stationarity-, 49

Crises, 83

Cumulative distribution function, 18

D
Damped oscillator, 76, 76f

Data

granularity, 88

snooping, 54

Delta, 103

Delta-neutral portfolios, 104

Derivatives, 93

Deterministic trend v. stochastic trend,

49–50, 50f

Dickey-Fuller method, 45, 51

Dimension

box-counting, 61

correlation, 85

fractal, 60

Discontinuous jumps, 31

Discounted-cash-flow pricing model, 8–9

Discounting, 9

Discrete random walk, 33

Dissipative system, 76

Distribution

binomial, 21

Cauchy (Lorentzian), 23, 24f

extreme value, 23

Frechet, 24

Gumbel, 24

Iibull, 24

Levy, 25–27

lognormal, 22–23

normal (Gaussian), 21–22

Pareto, 24, 26

Poisson, 21

stable, 25

standard Cauchy, 23

standard normal, 22, 24f

standard uniform, 20

uniform, 20

Dividend effects, 8–10, 96

Dogs of the Dow, 14

Doob-Meyer decomposition theorem, 41

Dow-Jones index

returns of, 89
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Dummy parameters, 51

Dynamic hedging, 104

E
Econometrics, 1

Econophysics, 1–2

Efficient frontier, 114

Efficient market, 12

Efficient Market Hypothesis (EMH), 12–14, 40

random walk, 12–13

semi-strong, 12

strong, 12

weak, 12

Efficient Market Theory, 12

EGARCH. See Exponential generalized

autoregressive conditional

heteroskedascisity

EMH. See Efficient Market Hypothesis

Equilibrium models

adaptive, 130–133

non-, 130, 134–135

Equity hedge, 119

Error function, 22

ETL. See Expected tail loss

Euro, 88

EWMA. See Exponentially weighed

moving average; exponentially weighed

moving average

Exchange rates

foreign, 86

Exogenous variable, 56

Exotic options, 141

Expectation, 18. See also Mean

Expected shortfall, 141

Expected tail loss (ETL), 124, 124f

Expiration date, 94. See also Maturity

Exponential generalized autoregressive

conditional heteroskedascisity

(EGARCH), 53–54

Exponentially weighed moving average

(EWMA), 53

Extreme value distribution, 23

F
Fair game, 40

Fair prices, 12–13

Firm rates, 141

Fisher-Tippett theorem, 23–24

Fixed point, 69–70

Flow, 73–74

Fokker-Planck equation, 30–31

Foreign exchange rates, 141

Forward contract, 93

Fractal. See also Multifractal

box-counting dimension, 61

deterministic, 60–63, 60f

dimension, 60

iterated function systems of, 61

random, 60

stochastic, 60f

technical definitions of, 55–56

Frechet distribution, 24

Fundamental analysis, 12

Fundamentalists, 132, 134–135, 137, 141

Future

contract, 94

value, 9

Future contract, 94

G
Gamma, 103

Gamma-neutral, 104

GARCH. See Generalized autoregressive

conditional heteroskedascisity

Gaussian distribution, 21–22

Generalized autoregressive conditional

heteroskedascisity (GARCH), 52–53,

85

Given future value, 9

Granger causality, 56

Greeks, 103

Gumbel distribution, 24
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H
Hamiltonian system, 76–77

Hang-Seng index

returns of, 89

Historical simulation, 125

Hölder exponent, 63

Homoskedastic process, 51–54

Hopf bifurcation, 78

Hurst exponent, 62

I
IGARCH. See Integrated generalized

autoregressive conditional

heteroskedascisity

Iibull distribution, 24

IID. See Independently and identically

distributed process

Implied volatility, 103

Independent variables, 20

Independently and identically distributed

process (IID), 33

Indicative rates, 141

Initial condition, 30

Integral

stochastic, 36–39

stochastic Ito’s, 38–39

Integrated generalized autoregressive

conditional heteroskedascisity

(IGARCH), 53

Integrated of order, 45

Intermittency, 83

Irrational exuberance, 13

Iterated map, 71

Iteration function, 71

Ito’s integral

stochastic, 38–39

Ito’s lemma, 35–36

J
January Effect, 14

Joint distribution, 19

K
Kolmogorov-Sinai entropy, 84

Kupiec test, 126

Kurtosis, 19

L
Lag operator, 43–44

Langevin equation, 32

Law of One Price, 10

Leptokurtosis, 19

Levy distribution, 25–26

Limit cycle, 77

Limit orders, 6

Log return, 8. See also Continuously

compounded return

Logistic map, 70–72, 73f, 74f

attractor on, 72

basin of attraction on, 72

fixed point on, 71–73

Lognormal distribution, 22–23

Long position, 6

Lorentzian distribution. See Cauchy

(Lorentzian) distribution

Lorenz model, 70–71, 79–82, 80f, 81f, 82f

Lotka-Volterra system, 90

Lyapunov exponent, 82–85

M
Market(s)

bourse, 5

exchange, 5

liquidity, 6, 141–142, 143f

microstructure, 6

orders, 6

over-the-counter, 5

price formation, 5–7

Market microstructure, 136

Market portfolio, 115

Market-neutral strategies, 118

Markov process, 29–32

Martingale, 39–41
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sub, 40

super, 40

Mathematical Finance, 1

Maturity, 93–94

Maximum likelihood estimate (MLE), 48

‘‘Maxwell’s Demon,’’ 136–137

MBS. See mortgage-backed securities

arbitrage

Mean, 18

reversion, 44

squared error, 48

Mean squared error (MSE), 48

Mean-reverting process, 42

Mean-square limit, 38

Mean-variance efficient portfolio, 108

Median, 18

Microsoft Excel, 4, 25

Mimetic contagion, 134

Minority game, 129–130

MLE. See Maximum likelihood estimate

Mortgage-backed securities (MBS)

arbitrage, 119

Moving average model, 45–47

autoregressive, 45–46

invertible, 46–47

MSE. See Mean squared error

Multifractal, 63–64. See also Fractal

binomial measure, 64

cascade, 63–64

spectrum, 64

Multipliers, 64

Multivariate time series, 54–57

N
Noise

non-white, 38

white, 33, 43

Nonanticipating function, 39

Non-equilibrium price models, 130, 134–136

Non-integrable system, 75

Normal distribution, 21–22

standard, 22, 24f

Notations, 4

O
OLS. See Ordinary least squares

Operational time, 7

Options, 98

American, 94–96

call, 94

European, 94–96

exercise price of, 94

exotic, 141

expiration date of, 94

long call, 95, 97f

long put, 95, 97f

maturity of, 93–94

premium of, 96

put, 94

short call, 95, 97f

short put, 95–96, 97f

strike price of, 94

Orders

limit, 6

market, 6

stop, 6

Ordinary least squares (OLS), 48

Ornstein-Uhlenbeck equation, 42

P
Pair trading, 118

Pareto distribution, 24, 26

Partition function, 67

Partly forcastable prices, 70

Period-doubling, 82

Persistent process, 62

anti-, 63

P/L. See Profits and losses

Poisson distribution, 21

Portfolio

delta-neutral, 106

rebalancing, 106

well-diversified, 117

Portfolio selection, 111–115

Position
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long, 93

short, 93

Positive excess kurtosis. See

Leptokurtosis

Present value, 8–9

Present-value pricing model. See Discounted-

cash-flow pricing model

Price

exercise, 94

option, 96

spot, 94

strike, 94

Price-demand relations, 138–139, 138f,

139f

Pricing model

discounted-cash-flow, 8–9

future value, 9

given future value, 9

present-value, 8

Probability density function, 16

Process

anti-persistent, 63

autoregressive, 43

compound stochastic, 92

homoskedastic, 51–54

independently and identically distributed

(IID), 33

Markov, 29–32

mean-reverting, 42

multiplicative, 64

persistent, 62

scale-free, 26

standard Wiener, 31–32, 34–35

stationary, 49

stochastic, 29–42

Profits and losses (P/L), 122, 123f, 124f

Put-call parity, 96

Q
Quasi-periodic attractors, 78

Quasi-periodicity, 83

R
Random walk, 12–13, 44

continuous-time, 34

with drifts, 45

Rate of return, 139

Rates

firm, 141

foreign exchange, 141

indicative, 141

Rational bubble, 9

Rational investors, 12–13

Rescaled range (R/S) analysis, 63, 88

Return

compounded, 8

log, 8

required rate of, 10

simple, 7

Return on Equity (ROE), 117

Rho, 104

Riemann integral, 36

Riemann-Stieltjes integral, 36–37

Risk

cash-flow, 121

coherent, measures, 124

credit, 121

liquidity, 121

market, 121

operational, 121

Risk-free asset, 130–131. See also Bond

Risk-neutral valuation, 99

Risk-return trade off line, 112

Risky asset, 130–131

ROE. See Return on Equity

R/S. See Rescaled range analysis

S
Santa Fe artificial market, 133

Scale-free process, 26

Scaling function, 66–67

Seasonal effects, 45–46
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Security market line, 115

Self-affine object, 59

Self-affinity, 59

Sharpe ratio, 115

Short

position, 93

selling, 6

Simple return, 7

Simultaneous equation, 54

Skewness, 19

S&P 500 index, 24f, 87

returns of, 89

Stable distribution, 25

Standard deviation, 18

Standard Wiener process, 31–32, 34–35

Stationary process, 49

non-, 49

Statistical arbitrage, 14

Stieltjes integral, 37

Stochastic

compound, process, 92

differential equation, 35

integral, 36–39

Ito’s integral, 38–39

process, 29–42

trend, 49–50, 50f

Stochastic trend v. deterministic trend, 49–50,

50f

Stop orders, 6

Stratonovich’s integral, 39

Strict stationarity, 49

Submartingale, 40

Super-efficient portfolio, 114

Supermartingale, 40

T
Technical analysis, 12

Term structure, 104–105

Theta, 103

Tick, 6

Tick-by-tick data, 6–7

Traders

regular, 139–141

technical, 139–141, 140f

Trajectory, 71, 76f, 77–79, 78f, 79f

Trend

deterministic, 49–50, 50f

stochastic, 49–50

Truncated Levy flight, 26–27, 88–89

U
Uniform distribution, 20

standard, 20

Unit root, 45

Univariate time series, 43

V
Value at risk (VaR), 122–124, 123f

conditional, 141

Van der Pol

equation, 77–78

oscillator, 78f

VAR. See Vector autoregressive model

VaR. See Value at risk

Variance, 18

matrix, 19

Variate, 16

Vector autoregressive model (VAR), 55–56

Vega, 104

Volatility, 19

implied, 103

smile, 104

Volatility smile, 104–105

W
Weak stationarity, 49

White noise, 33, 43

non-, 39

Wiener process

standard, 31–32, 34–35

Z
Zipf’s law, 89
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