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MODELS WITH LAGGED
VARIABLES
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19.1 INTRODUCTION
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This chapter begins our introduction to the analysis of economic time series. By most
views, this ficld has become synonymous with empirical macroeconomics and the anal-
ysis of financial markets.! In this and the next chapter, we will consider a number of
models and topics in which time and relationships through time play an explicit part in
the formulation. Consider the dynamic regression model

= 1+ Boxs + BaXxi—1 + VY1 + & 19-1)

Models of this form specifically include as right-hand side variables earlier as well as
contemporaneous values of the regressors. It is also in this context that lagged values of
the dependent variable appear as a consequence of the theoretical basis of the model
rather than as a computational means of removing autocorrelation. There are several
reasons why lagged effects might appear in an empirical model.

¢ Inmodeling the response of economic variables to policy stimuli, it is expected that
there will be possibly long lags between policy changes and their impacts. The length
of lag between changes in monetary policy and its impact on important economic
variables such as output and investment has been a subject of analysis for several
decades.

e FEither the dependent variable or one of the independent variables is based on
expectations. Expectations about economic events are usually formed by aggregat-
ing new information and past experience. Thus, we might write the expectation of
a future value of variable x, formed this period, as

Xy = Et[xt*+1 [ Ze0 X1, Xe—2, - - ] = gz, Xe—1, Xi—2, .. .).

IThe literature in this area has grown at an impressive rate, and, more so than in any other area, it has
become impossible to provide comprehensive surveys in general textbooks such as this one. Fortunately,
specialized volumes have been produced that can fill this need at any level. Harvey (1990) has been in wide
use for some time. Among the many other books written in the 1990s, three very useful works are Enders
(1995). which presents the basics of time series analysis at an introductory level with several very detailed
applications; Hamilton (1994), which gives a relatively technical but quite comprehensive survey of the field;
and Lutkepohl (1993), which provides an extremely detailed treatment of the topics presented at the end
of this chapter. Hamilton also surveys a number of the applications in the contemporary literature. Two
references that are focused on financial econometrics are Mills (1993) and Tsay (2002). There are also a
number of important references that are primarily limited to forecasting, including Diebold (1998a, 1998b)
and Granger and Newbold (1996). A survey of recent research in many areas of time series analysis is Engle
and McFadden (1994). An extensive, fairly advanced treatise that analyzes in great depth all the issues we
touch on in this chapter is Hendry (1995). Finally, Patterson (2000) surveys most of the practical issues in
time series and presents a large variety of useful and very detailed applications.
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For example, forecasts of prices and income enter demand equations and con-
sumption equations. (See Example 18.1 for an influential application.)

e Certain economic decisions are explicitly driven by a history of related activities.
For example, energy demand by individuals is clearly a function not only of current
prices and income, but also the accumulated stocks of energy using capital. Even
energy demand in the macroeconomy behaves in this fashion—the stock of auto-
mobiles and its attendant demand for gasoline is clearly driven by past prices of
gasoline and automobiles. Other classic examples are the dynamic relationship be-
tween investment decisions and past appropriation decisions and the consumption
of addictive goods such as cigarettes and theater performances.

We begin with a general discussion of models containing lagged variables. In Sec-
tion 19.2, we consider some methodological issues in the specification of dynamic
regressions. In Sections 19.3 and 19.4, we describe a general dynamic model that en-
compasses some of the extensions and more formal models for time-series data that
are presented in Chapter 20. Section 19.5 takes a closer look at some of issues in model
specification. Finally, Section 19.6 considers systems of dynamic equations. These are
largely extensions of the models that we examined at the end of Chapter 15. But the
interpretation is rather different here. This chapter is generally not about methods of
estimation. OLS and GMM estimation are usually routine in this context. Since we are
examining time series data, conventional assumptions including ergodicity and station-
arity will be made at the outset. In particular, in the general framework, we will assume
that the multivariate stochastic process (y;, X;, ;) are a stationary and ergodic process.
As such, without further analysis, we will invoke the theorems discussed in Chapters 5,
12, 16, and 18 that support least squares and GMM as appropriate estimate techniques
in this context. In most of what follows, in fact, in practical terms, the dynamic regres-
sion model can be treated as a linear regression model, and estimated by conventional
methods (e.g., ordinary least squares or instrumental variables if ¢, is autocorrelated).
As noted, we will generally not return to the issue of estimation and inference the-
ory except where new results are needed, such as in the discussion of nonstationary
processes.

19.2 DYNAMIC REGRESSION MODELS

In some settings, economic agents respond not only to current values of independent
variables but to past values as well. When effects persist over time, an appropriate model
will include lagged variables. Example 19.1 illustrates a familiar case.

Example 19.1 A Structural Model of the Demand for Gasoline
Drivers demand gasoline not for direct consumption but as fuel for cars to provide a source
of energy for transportation. Per capita demand for gasoline in any period, G/pop, is deter-
mined partly by the current price, P, and per capita income, Y/pop, which influence how
intensively the existing stock of gasoline using “capital,” K, is used and partly by the size
and composition of the stock of cars and other vehicles. The capital stock is determined, in
turn, by income, Y/ pop; prices of the equipment such as new and used cars, Pnc and Puc;
the price of alternative modes of transportation such as public transportation, Ppt; and past
prices of gasoline as they influence forecasts of future gasoline prices. A structural model of
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these effects might appear as follows:
per capita demand: G:/pop; = a + BPg: + 8Yi/pop, + y K + U,
stock of vehicles: K:=(1- A)YK;_1 +1:, A = depreciation rate,
investment in new vehicles: I; = 0Y;/pop, + ¢E:[Pgi 1] + A PNC + Ao Puc; + A3 Ppts
expected price of gasoline:  E:[Pg1] = woPgr + W1 Pgi_1 + W2 Pg:_».

The capital stock is the sum of all past investments, so it is evident that not only current
income and prices, but all past values, play a role in determining K. When income or the
price of gasoline changes, the immediate effect will be to cause drivers to use their vehicles
more or less intensively. But, over time, vehicles are added to the capital stock, and some
cars are replaced with more or less efficient ones. These changes take some time, so the
full impact of income and price changes will not be felt for several periods. Two episodes in
the recent history have shown this effect clearly. For well over a decade following the 1973
oil shock, drivers gradually replaced their large, fuel-inefficient cars with smaller, less-fuel-
intensive models. In the late 1990s in the United States, this process has visibly worked
in reverse. As American drivers have become accustomed to steadily rising incomes and
steadily falling real gasoline prices, the downsized, efficient coupes and sedans of the 1980s
have yielded the highways to a tide of ever-larger, six- and eight-cylinder sport utility vehicles,
whose size and power can reasonably be characterized as astonishing.

19.2.1 LAGGED EFFECTS IN A DYNAMIC MODEL

The general form of a dynamic regression model is

o0
ye=a+ Bixi+e (19-2)
i=0
In this model, a one-time change in x at any point in time will affect E [y; | %, x—1. .. .]
in every period thereafter. When it is believed that the duration of the lagged effects
is extremely long—for example, in the analysis of monetary policy—infinite lag models
that have effects that gradually fade over time are quite common. But models are often
constructed in which changes in x cease to have any influence after a fairly small number
of periods. We shall consider these finite lag models first.

Marginal effects in the static classical regression model are one-time events. The
response of y to a change in x is assumed to be immediate and to be complete at the
end of the period of measurement. In a dynamic model, the counterpart to a marginal
effect is the effect of a one-time change in x; on the equilibrium of y,. If the level of x,
has been unchanged from, say, ¥ for many periods prior to time ¢, then the equilibrium
value of E[y, | X, x,—1, .. .] (assuming that it exists) will be

o0 o0 .
y=a+Y pE=a+x) B, (19-3)
i=0 i=0
where X is the permanent value of x,. For this value to be finite, we require that
0
2 b
i=0
Consider the effect of a unit change in ¥ occurring in period s. To focus ideas, consider

the earlier example of demand for gasoline and suppose that x; is the unit price. Prior to
the oil shock, demand had reached an equilibrium consistent with accumulated habits,

< 00, | 19-4)
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FIGURE 19.1 Lagged Adjustment.

experience with stable real prices, and the accumulated stocks of vehicles. Now suppose
that the price of gasoline, Pg, rises permanently from Pg to Pg + 1 in period s. The
path to the new equilibrium might appear as shown in Figure 19.1. The short-run effect
is the one that occurs in the same period as the.change in x. This effect is Sy in the figure.

R s

EFINITION 19.1 Impact Multiplier
= impact multiplier = short-run multiplier.

R

DEFINITION 19.2 Cumulated Effect
The accumulated effect T periods later of an impulse at time tis B, = 3 [_, Bi.

In Figure 19.1, we see that the total effect of a price change in period ¢ after three periods
have elapsed will be By + 1 + B2 + Bs.

The difference between the old equilibrium Dy and the new one D is the sum of
the individual period effects. The long-run multiplier is this total effect.
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S B

DEFINITION 19.3 Equilibrium Multiplier

B = Y2 Bi = equilibrium multiplier = long-run multiplier.

Since the lag coefficients are regression coefficients, their scale is determined by the
scales of the variables in the model. As such, it is often useful to define the

. pi
lag weights: w; = —— (19-5
g weig =S5 | )

so that "2y w; = 1, and to rewrite the model as
o0
y=a+ By wixiten (19-6)
i=0 ) .

(Note the equation for the expected price in Example 19.1.) Two useful statistics, based
on the lag weights, that characterize the period of adjustment to a new equilibrium are
the median lag = smallest ¢* such that >>%", w; > 0.5 and the mean lag = > - iw;.2

19.2.2 THE LAG AND DIFFERENCE OPERATORS
A convenient device for manipulating lagged variables is the lag operator,

th = xtfl.
Some basic results are La = a if a is a constant and L(Lx,)= L*x, =x,_5. Thus,
LPxy =x;_p, LY(LPx;) = LPYx = x,_p_q, and (L 4+ L7)x, = X;,_, + X;_4. By convention,
L%, =1x, = x;. A related operation is the first difference,

Axt =Xt — Xi—1.

Obviously, Ax, = (1 — Lyx, and x, = x,_1 + Ax,. These two operations can be usefully
combined, for example, as in

Ax, =1 =L =0 =2L+IPx, =x, —2x_1 +X_2.
Note that
1- L)zxt =(1-0DA-Dx=0-D(x —x-1) = (% — X-1) — (%21 — X¢-2).

The dynamic regression model can be written

X0
v =a+ Zﬁilfx, +& =a+ B(L)x; + &,
i=0

2[f the lag coefficients do not all have the same sign, then these results may not be meaningful. In some contexts,
lag coefficients with different signs may be taken as an indication that there is a flaw in the specification of
the model.
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where B(L) is a polynomial in L, B(L) = By + B1L+ B2L? + ---. A polynomial in the
lag operator that reappears in many contexts is

AL)=1+aL+ @L?+ @L)?+.- = Z (al).
i=0
If |[a] <1, then
1
1—al’

A(L) =

A distributed lag model in the form
> .
p=a+pYy y'Lxnte
i=0
can be written »
w=a+pl -y x +e,

if |y| <1. This form is called the moving-average form or distributed lag form. If we
multiply through by (1 — y L) and collect terms, then we obtain the autoregressive form,

y=al—y)+Bx+yya+ 1 —-yLDe.
In more general terms, consider the pth order autoregressive model,
Ve=a+Bx+ VY1t Va2t o+ VpYi-p &
which may be written
CDy=a+px +¢
where ‘
C(L)y=(1—-nL—pnl>—-- —y,LP).

Can this equation be “inverted” so that y, is written as a function only of current and
past values of x; and ¢,? By successively substituting the corresponding autoregressive
equation for y,_; in that for y,, then likewise for y, , and so on, it would appear so.
However, it is also clear that the resulting distributed lag form will have an infinite
number of coefficients. Formally, the operation just described amounts to writing

v = [C(D)] Y + Bx + &) = AL (a + Bx; +&).

It will be of interest to be able to solve for the elements of A(L) (see, for example,
Section 19.6.6). By this arrangement, it follows that C(L) A(L) = 1 where

ALy = (oL’ — oy L— e [? — - ).
By collecting like powers of L in

A=nL—pl?— -~y I’ +a L+ o[> =) =1,
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we find that a recursive solution for the « coefficients is
I ap =1
LY — o
L% oy — y1a1 — y200

3.
L’ a3 — y1on — 01 — v30g

L% a4 — y1a3 — yaas — Y300 — yadp =0 (19-7)
LP: Up = V1lp—1 — Volp2 — - — VpQo =0

and, thereafter,
LT ag —yi0q-1 — y20q—2 — -+ — yptg—p = 0.

After a set of p — 1 starting values, the « coefficients obey the same difference equation
as y, does in the dynamic equation. One problem remains. For the given set of values, the
preceding gives no assurance that the solution for o, does not ultimately explode. The
equation system above is not necessarily stable for all values of y; (though it certainly
is for some). If the system is stable in this sense, then the polynomial C(L) is said to be
invertible. The necessary conditions are precisely those discussed in Section 19.4.3, so
we will defer completion of this discussion until then.
Finally, two useful results are

BQ) = po1° + pi1' + p1* + - - - = B = long-run multiplier

and
N o0

B (1) =[dB(L)/dLlj=1 = > ifi.
i=0
It follows that B'(1)/B(1) = mean lag.

19.2.83 SPECIFICATION SEARCH FOR THE LAG LENGTH

Various procedures have been suggested for determining the appropriate lag length in
a dynamic model such as

P

y=a+ ) Pixiten (19-8)

i=0

One must be careful about a purely significance based specification search. Let us
suppose that there is an appropriate, “true” value of p > 0 that we seek. A simple-to-
general approach to finding the right lag length would depart from a model with only the
current value of the independent variable in the regression, and add deeper lags until a
simple ¢ test suggested that the last one added is statistically insignificant. The problem
with such an approach is that at any level at which the number of included lagged
variables is less than p, the estimator of the coefficient vector is biased and inconsistent.
[See the omitted variable formula (8-4).] The asymptotic covariance matrix is biased
as well, so statistical inference on this basis is unlikely to be successful. A general-to-
simple approach would begin from a model that contains more than p lagged values—it
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is assumed that though the precise value of p is unknown, the analyst can posit a
maintained value that should be larger than p. Least squares or instrumental variables
regression of y on a constant and (p + d) lagged values of x consistently estimates
0= [a,ﬁg,ﬂl,...,B,,,0,0,...].

Since models with lagged values are often used for forecasting, researchers have
tended to look for measures that have produced better results for assessing “out of
sample” prediction properties. The adjusted R? [see Section 3.5.1] is one possibility.
Others include the Akaike (1973) information criterion, AIC(p),

ee 2p :
AIC(p) =ln — + - 9
(p) =In T + T (19-9)
and Schwartz’s criterion, SC(p):
SC(p) = AIC(p) + (%) (nT -2). (19-10)

(See Section 8.4.) If some maximum P is known, then p < P can be chosen to minimize
AIC(p)or SC(p).> An alternative approach, also based on a known P, is to do sequential
F tests on the last P > p coefficients, stopping when the test rejects the hypothesis that
the coefficients are jointly zero. Each of these approaches has its flaws and virtues. The
Akaike information criterion retains a positive probability of leading to overfitting even
as T'— oo. In contrast, SC(p) has been seen to lead to underfitting in some finite sample
cases. They do avoid, however, the inference problems of sequential estimators. The
sequential F tests require successive revision of the significance level to be appropriate,
but they do have a statistical underpinning.*

.3 SIMPLE DISTRIBUTED LAG MODELS

Before examining some very general specifications of the dynamic regression, we briefly
consider two specific frameworks—finite lag models, which specify a particular value of
the lag length p in 19-8, and an infinite lag model, which emerges from a simple model
of expectations.

19.3.1  FINITE DISTRIBUTED LAG MODELS

An unrestricted finite distributed lag model would be specified as
p \
y=a+) Bxiten | (19-11)
i=0
We assume that x, satisfies the conditions discussed in Section 5.2. The assumption
that there are no other regressors is just a convenience. We also assume that &, is
distributed with mean zero and variance o?. If the lag length p is known, then (19-11)
is a classical regression model. Aside from questions about the properties of the

For further discussion and some alternative measures, sece Geweke and Meese (1981), Amemiya (1985,
pp. 146-147), Diebold (1998a, pp. 85-91), and Judge et al. (1985, pp. 353-355).

4See Pagano and Hartley (1981) and Trivedi and Pagan (1979).
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independent variables, the usual estimation results apply.® But the appropriate length
of the lag is rarely, if ever, known, so one must undertake a specification search, with
all its pitfalls. Worse yet, least squares may prove to be rather ineffective because
(1) time series are sometimes fairly short, so (19-11) will consume an excessive number
of degrees of freedom;® (2) &, will usually be serially correlated; and (3) multicollinearity
is likely to be quite severe.

Restricted lag models which parameterize the lag coefficients as functions of a few
underlying parameters are a practical approach to the problem of fitting a model with
long lags in a relatively short time series. An example is the polynomial distributed
lag (PDL) [or Almon (1965) lag in reference to S. Almon, who first proposed the
method in econometrics]. The polynomial model assumes that the true distribution of
lag coefficients can be well approximated by a low-order polynomial,

Bi=ap+aii it Fayl, i=0,1,...,p>q. (19-12)

After substituting (19-12) in (19-11) and collecting terms, we obtain

p p P
yomy +(z> o (z) ++(z> ‘s
=0 i=0 =0

=Y + ooy + 0121+ g &1

(19-13)

Each z;, is a linear combination of the current and p lagged values of x,. With the
assumption of strict exogeneity of x,, y and (&, a1, . . ., &y) can be estimated by ordinary
or generalized least squares. The parameters of the regression model, 8; and asymptotic
standard errors for the estimators can then be obtained using the delta method (see
Section D.2.7).

The polynomial lag model and other tightly structured finite lag models are only
infrequently used in contemporary applications. They have the virtue of simplicity, al-
though modern software has made this quality a modest virtue. The major drawback is
that they impose strong restrictions on the functional form of the model and thereby
often induce autocorrelation that is essentially an artifact of the missing variables and
restrictive functional form in the equation. They remain useful tools in some forecasting
settings and analysis of markets, as in Example 19.3, but in recent work in macroeco-
nomic and financial modeling, where most of this sort of analysis takes place, the avail-
ability of ample data has made restrictive specifications such as the PDL less attractive
than other tools.

19.3.2 AN INFINITE LAG MODEL: THE GEOMETRIC LAG MODEL

There are cases in which the distributed lag models the accumulation of information.
The formation of expectations is an example. In these instances, intuition suggests that

5The question of whether the regressors are well behaved or not becomes particularly pertinent in this setting,
especially if one or more of them happen to be lagged values of the dependent variable. In what follows, we
shall assume that the Grenander conditions discussed in Section 5.2.1 are met. We thus assume that the usual
asymptotic results for the classical or generalized regression model will hold.

SEven when the time series is long, the model may be problematic—in this instance, the assumption that
the same model can be used, without structural change through the entire time span becomes increasingly
suspect the longer the time series is. See Sections 7.4 and 7.7 for analysis of this issue.
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the most recent past will receive the greatest weight and that the influence of past
observations will fade uniformly with the passage of time. The geometric lag model is
often used for these settings. The general form of the model is

yp=a+pdy (L-MAx+e, 0<i<l,
i=1 (19-14)
=a+ BB(L)x; + &,
where
_1-2a
T 1-AL

The lag coefficients are 8; = (1 — A)A’. The model incorporates infinite lags, but it as-
signs arbitrarily small weights to the distant past. The lag weights decline geometrically;

B(L) =1 =D+ AL+ XL+ AP0+

wi=1=-0A, 0<w; <1.
The mean lag is
w_B/(l)_ A
T B1)  1-A

The median lag is p* such that Zf’;al w; = 0.5. We can solve for p* by using the result

1-— )\p+1

p .
M=

Thus,

_ In0.5
T lna

The impact multiplier is (1 — A). The long run multiplieris 8 >_°, (1 — MAL = B. The
equilibrium value of y; would be found by fixing x, at X and ¢, at zero in (19-14), which
produces y = o + BX.

The geometric lag model can be motivated with an economic model of expectations.
We begin with a regression in an expectations variable such as an expected future price
based on information available at time ¢, x/,,,, and perhaps a second regressor, wy,

*

w=a + le:‘-i-lIt + 8Wt + Et,
and a mechanism for the formation of the expectation,
X = A+ A =x = ALx/ ), + (1= A)x,. (19-15)

The currently formed expectation is a weighted average of the expectation in the previ-
ous period and the most recent observation. The parameter A is the adjustment coeffi-
cient.If A equals 1, then the current datum is ignored and expectations are never revised.
A value of zero characterizes a strict pragmatist who forgets the past immediately. The
expectation variable can be written as

1—-A
X = T = A=Wl +Axo + 2202+ (19-16)
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Inserting (19-16) into (19-15) produces the geometric distributed lag model,
yi=a+ B —W[x +rx_1+ x4 ]+ 6w + &
The geometric lag model can be estimated by nonlinear least squares. Rewrite it as
vi=a+yz(A)+8w, +e&, yv=B1-21. (19-17)

The constructed variable z;(A) obeys the recursion z,(A) = x; + Az,_1(&). For the first
observation, we use zi(A) = xjjp=x1/ (1 — A). If the sample is moderately long, then
assuming that x, was in long-run equilibrium, although it is an approximation, will not
unduly affect the results. One can then scan over the range of i from zero to one to locate
the value that minimizes the sum of squares. Once the minimum is located, an estimate of
the asymptotic covariance matrix of the estimators of («, y, 8, &) can be found using (9-9)
and Theorem 9.2. For the regression function 4, (data|a, y, 8, 1), x4 = 1, x5 = z/(}).
and x% = w,. The derivative with respect to A can be computed by using the recursion
d,(0) = 3z,(W)/0r = z_1 (W) + A0z (M) /dr. If 71 = x1 /(1 — ), thendi (W) = z1/(1 — 4).
Then, x& = d,(»). Finally, we estimate 8 from the relationship g = y/(1 — A) and use
the delta method to estimate the asymptotic standard error.

For purposes of estimating long- and short-run elasticities, researchers often use a
different form of the geometric lag model. The partial adjustment model describes the
desired level of y,,

Vi =+ Bx, + 0w, +e,

and an adjustment equation,

yvi—y1=(1- }\)(yt* = Yi-1).
If we solve the second equation for y, and insert the first expression for y;, then we
obtain
ye=al =2+ B0 —1x +801—1w,+Ary1+ (1 =L
=o' + B'x + 8w +Ay_1 + €.

This formulation offers a number of significant practical advantages. It is intrinsically
linear in the parameters (unrestricted), and its disturbance is nonautocorrelated if &,
was to begin with. As such, the parameters of this model can be estimated consistently
and efficiently by ordinary least squares. In this revised formulation, the short-run
multipliers for x;, and w, are g’ and §'. The long-run effects are g=p'/(1 — A) and

§=458/(1 — ). With the variables in logs, these effects are the short- and long-run
elasticities.

Example 19.2 Expectations Augmented Phillips Curve
In Example 12.3, we estimated an expectations augmented Phillips curve of the form

Apr — E[Ap | Wr_q] = Bluy — U™ + &

This model assumes a particularly simple model of expectations, E [Ap; | ¥;_1] = Ap:_4. The
least squares results for this equation were

Ap: — Apr_1 = 0.49189 — 0.090136 U, + &
(0.7405) (0.1257) R? = 0.002561, T = 201.
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The implied estimate of the natural rate of unemployment is —(0.49189/—0.090136) or about
5.46 percent. Suppose we allow expectations to be formulated less pragmatically with the
expectations model in (19-15). For this setting, this would be

E[Apt | W] = AE[Ap—1 | Wr2] + (1 = A) APy,

The strict pragmatist has A = 0.0. Using the method set out earlier, we would compute this
for different values of i, recompute the dependent variable in the regression, and locate the
value of A which produces the lowest sum of squares. Figure 19.2 shows the sum of squares
for the values of A ranging from 0.0 to 1.0.

The minimum value of the sum of squares occurs at A = 0.66. The least squares regression
results are

AP — Apr1 = 1.69453 — 0.30427 u; + &
(0.6617) (0.11125) T = 201.

The estimated standard errors are computed using the method described earlier for the
nonlinear regression. The extra variable described in the paragraph after (19-17) accounts
for the estimated i. The estimated asymptotic covariance matrix is then computed using
(e’e/201)[WW]~! where wy = 1, w, = u; and ws = dAp,_1/3x. The estimated standard error
for 2 is 0.04610. Since this is highly statistically significantly different from zero (t = 14.315),
we would reject the simple model. Finally, the implied estimate of the natural rate of unemploy-
mentis —(—1.69453/.30427) or about 5.57 percent. The estimated asymptotic covariance of
the slope and constant term is —0.0720293, so, using this value and the estimated standard
errors given above and the delta method, we obtain an estimated standard error for this es-
timate of 0.5467. Thus, a confidence interval for the natural rate of unemployment based on
these results would be (4.49%, 6.64%) which is in line with our prior expectations. There are
two things to note about these results. First, since the dependent variables are different, we
cannot compare the R?s of the models with A = 0.00 and 1 = 0.66. But, the sum of squares
for the two models can be compared; they are 1592.32 and 1112.89, so the second model
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Partial Adjustment

Expectations

Coefficient Unrestricted Estimated Derived Estimated  Derived

Constant —18.165 —18.080 —5.133 —-14.102

Ln Pnc 0.190 —0.0592 —0.139 —0.382

Ln Puc 0.0802 0.370 0.126 0.346

Ln Ppt —0.0754 0.116 0.051 0.140

Trend —0.0336 —0.0399 —0.0106 —0.029

Ln Pg -0.209 — -0.171* —0.118 —0.118

Ln Pg[-1] -0.133 — -0.113 — —0.075

Ln Pg[-2] 0.0820 — -0.074 — —0.048

Ln Pg[-3] 0.0026 — —0.049 — —0.030

Ln Pg[—4] —0.0585 — —0.032 — —0.019

Ln Pg[-5] 0.0455 — —0.021 — —0.012

Ln income 0.785 — 0.877* 0.772 0.772

Ln Y[-1] —0.0138 — 0.298 — 0.491

Ln Y[-2] 0.696 — 0.101 — 0.312

Ln Y[-3] 0.0876 — 0.034 — 0.199
' Ln Y[-4] 0.257 — 0.012 — 0.126

Ln Y[-5] 0.779 — 0.004 — 0.080

Zt(price G) — -0.171 — 0.051

Zt(income) — 0.877 -

Ln G/pop[—1] — — 0.636

B — —0.502 —

y 2.580 —

A — 0.66 ' 0.636

ee 0.001649509 0.0098409286 0.01250433

T 31 36 35

*Estimated directly.

fits far better. One of the payoffs is the much narrower confidence interval for the natural
rate. The counterpart to the one given above when i = 0.00 is (1.13%, 9.79%). No doubt
the model could be improved still further by expanding the equation. (This is considered in
the exercises.)

Example 19.3 Price and Income Elasticities of Demand for Gasoline

We have extended the gasoline demand equation estimated in Examples 2.3, 4.4, and 7.6
to allow for dynamic effects. Table 19.1 presents estimates of three distributed lag models
for gasoline consumption. The unrestricted model allows 5 years of adjustment in the price
and income effects. The expectations model includes the same distributed lag () on price
and income but different long-run multipliers (854 and g;). [Note, for this formulation, that the
extra regressor used in computing the asymptotic covariance matrix is o() = BrgQorice( A) +
Bi Gncome(#) ] Finally, the partial adjustment model implies lagged effects for all the variables
in the model. To facilitate comparison, the constant and the first four slope coefficients in the
partial adjustment model have been divided by the estimate of (1 — ). The implied long- and
short-run price and income elasticities are shown in Table 19.2. The ancillary elasticities for
the prices of new and used cars and for public transportation vary surprisingly widely across
the models, but the price and income elasticities are quite stable.

As might be expected, the best fit to the data is provided by the unrestricted lag model.
The sum of squares is far lower for this form than for the other two. A direct comparison is
difficult, because the models are not nested and because they are based on different numbers
of observations. As an approximation, we can compute the sum of squared residuals for
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imated Elasticities

Short Run Long Run
Price Income Price Income
Unrestricted model —0.209 0.785 —0.270 2.593
Expectations model - =0170 0.901 —0.502 2.580
Partial adjustment model ~ —0.118 0.772 —0.324 2118

the estimated distributed lag model, using only the 31 observations used to compute the
unrestricted model. This sum of squares is 0.009551995087. An F statistic based on this
sum of squares would be

(0.009551995 — 0.0016495090) /9
0.0016495090/14

The 95 percent critical value for this distribution is 2.646, so the restrictions of the distributed
lag model would be rejected. The same computation (same degrees of freedom) for the partial
adjustment model produces a sum of squares of 0.01215449 and an F of 9.68. Once again,
these are only rough indicators, but they do suggest that the restrictions of the distributed
lag models are inappropriate in the context of the model with five lagged values for price and
income.

=7.4522.

F[17 —8,31 - 17] =

19.4 AUTOREGRESSIVE DISTRIBUTED

i

LAG MODELS

Both the finite lag models and the geometric lag model impose strong, possibly in-
correct restrictions on the lagged response of the dependent variable to changes in
an independent variable. A very general compromise that also provides a useful plat-
form for studying a number of interesting methodological issues is the autoregressive
distributed lag (ARDL) model,

p r
W =M+ZVin—i +Z,3jxt—j + ow; + &, (19-18)
i1 i=0

in which ¢, is assumed to be serially uncorrelated and homoscedastic (we will relax both
these assumptions in Chapter 20). We can write this more compactly as

C(Dy, = pu+ B(L)x; +dw, + &
by defining polynomials in the lag operator,
CD)=1—yL—y,[? = —y,LP
and
B(L) =B+ pL+pl*+---+5L.

The model in this form is denoted ARDL(p, r) to indicate the orders of the two poly-
nomials in L. The partial adjustment model estimated in the previous section is the
special case in which p equals 1 and r equals 0. A number of other special cases are also
intcresting, including the familiar model of autocorrelation (p = 1,7 =1, 1 = —y180),
the classical regression model (p = 0, r = 0), and so on.
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19.4.1 ESTIMATION OF THE ARDL MODEL

Save for the presence of the stochastic right-hand-side variables, the ARDL is a linear
model with a classical disturbance. As such, ordinary least squares is the efficient esti-
mator. The lagged dependent variable does present a complication, but we considered
thisin Section 5.4. Absent any obvious violations of the assumptions there, least squares
continues to be the estimator of choice. Conventional testing procedures are, as before,
asymptotically valid as well. Thus, for testing linear restrictions, the Wald statistic can
be used, although the F statistic is generally preferable in finite samples because of its
more conservative critical values.

One subtle complication in the model has attracted a large amount of attention
in the recent literature. If C(1) = 0, then the model is actually inestimable. This fact
is evident in the distributed lag form, which includes a term p/C(1). If the equivalent
condition X;y; = 1 holds, then the stochastic difference equation is unstable and a host
of other problems arise as well. This implication suggests that one might be interested
in testing this specification as a hypothesis in the context of the model. This restriction
might seem to be a simple linear constraint on the alternative (unrestricted) model in
(19-18). Under the null hypothesis, however, the conventional test statistics do not have
the familiar distributions. The formal derivation is complicated [in the extreme, see
Dickey and Fuller (1979) for example], but intuition should suggest the reason. Under
the null hypothesis, the difference equation is explosive, so our assumptions about well
behaved data cannot be met. Consider a simple ARDL(1, 0) example and simplify it
even further with B(L) = 0. Then,

Ve =K+ YY1+ &
If y equals 1, then

Vi=uU+Y-1+5&.

Assuming we start the time series at time ¢ = 1,
Ve =t + Eggg =t + vy

The conditional mean in this random walk with drift model is increasing without limit,
so the unconditional mean does not exist. The conditional mean of the disturbance, v,,is
zero, butits conditional variance is o2, which shows a peculiar type of heteroscedasticity.
Consider least squares estimation of p with m = (t'y)/(t't), where t = [1,2,3,..., T].
Then E[m] = p+ E[¥'t)"'(t'v)] = u, but

_etylid oahy 1
Varlml = (ZLI tz)z EADI ¢ (ﬁ) '

So, the variance of this estimator is an order of magnitude smaller than we are used to
seeing in regression models. Not only is m mean square consistent, it is “superconsis-
tent.” As such, without doing a formal derivation, we conclude that there is something
“unusual” about this estimator and that the “usual” testing procedures whose distribu-
tions build on the distribution of +/T(m — ) will not be appropriate; the variance of
this normalized statistic converges to zero.
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This result does not mean that the hypothesis y = 1 is not testable in this model.
In fact, the appropriate test statistic is the conventional one that we have computed for
comparable tests before. But the appropriate critical values against which to measure
those statistics are quite different. We will return to this issue in our discussion of the
Dickey-Fuller test in Section 20.3.4.

19.4.2 COMPUTATION OF THE LAG WEIGHTS IN THE ARDL MODEL
The distributed lag form of the ARDL model is

_ & B L 1
Y=CTh C(L)x’ teo™ e

= —f-}:a,xz ,+8291Wz I+Z'918t I

1_yl _yp o

This model provides a method of approximating a very general lag structure. In
Jorgenson’s (1966) study, in which he labeled this model a rational lag model, he demon-
strated that essentially any desired shape for the lag distribution could be produced with
relatively few parameters.’

The lag coefficients on x;, x;_1, ... in the ARDL model are the individual terms in
the ratio of polynomials that appear in the distributed lag form. We denote these as
coefficients

oo, o1, &y, ... = the coefficienton 1, L, L%, ... i gEL; (19-19)
A convenient way to compute these coefficients is to write (19-19) as A(L)C(L) = B(L).
Then we can just equate coefficients on the powers of L. Example 19.4 demonstrates
the procedure.
The long-run effect in a rational lag model is } ;2 «;. This result is easy to compute
since it is simply '

i=0 o C(l).

A standard error for the long-run effect can be computed using the delta method.

19.4.3 STABILITY OF A DYNAMIC EQUATION

In the geometric lag model, we found that a stability condition |A| <1 was necessary
for the model to be well behaved. Similarly, in the AR(1) model, the autocorrelation
parameter p must be restricted to |p| < 1 for the same reason. The dynamic model in
(19-18) must also be restricted, but in ways that are less obvious. Consider once again
the question of whether there exists an equilibrium value of y;.

In (19-18), suppose that x; is fixed at some value ¥, w, is fixed at zero, and the distur-
bances ¢, are fixed at their expectation of zero. Would y, converge to an equilibrium?

7A long literature, highlighted by Griliches (1967), Dhrymes (1971), Nerlove (1972), Maddala (1977a), and
Harvey (1990), describes estimation of models of this sort.
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The relevant dynamic equation is

y=a+ VY1 + Y2+t VpYi-ps
where @ = u + B(D)x. If y, converges to an equilibrium, then, that equilibrium is

p+BDHX @
cqy — cqy

Stability of a dynamic equation hinges on the characteristic equation for the autore-
gressive part of the model. The roots of the characteristic equation,

C=1-yiz—pe ——ypf =0, (19-20)

y=

must be greater than one in absolute value for the model to be stable. To take a simple
example, the characteristic equation for the first-order models we have examined thus
faris

Cizy=1-21z=0.

The single root of this equation is z = 1/A, which is greater than one in absolute value if
|»|is less than one. The roots of amore general characteristic equation are the reciprocals
of the characteristic roots of the matrix

_Vl Y2 V3 Yp-1 Vp
1 0 0 0 0
0 1 0 0 0
C=1lo 0 1 0 0 as-21)
0 0 0 ... 1 0]

Since the matrix is asymmetric, its roots may include complex pairs. The reciprocal of
the complex number a + bi is a/ M — (b/ M)i, where M = a? + b? and i* = —1. We thus
require that M be less than 1.

The case of z = 1, the unit root case, is often of special interest. If one of the
roots of C(z) = 01is 1, then it follows that 3_7_; ; = 1. This assumption would appear
to be a simple hypothesis to test in the framework of the ARDL model. Instead, we
find the explosive case that we examined in Section 19.4.1, so the hypothesis is more
complicated than it first appears. To reiterate, under the null hypothesis that C(1) = 0.
it is not possible for the standard F statistic to have a central F distribution because of
the behavior of the variables in the model. We will return to this case shortly.

The univariate autoregression,

Yi=p+yYY—1+VeYeat+--FVpY—pt+&s,
can be augmented with the p — 1 equations
Ye-1 = Ye-1,
Ye—2 = V-2,
and so on to give a vector autoregression, VAR (to be considered in the next section):

Yye=p+Cy,_; +e€,
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where y, has p elements &, = (&,,0,...) and x = (1, 0,0, ...Y. Since it will ultimately
not be relevant to the solution, we will let £, equal its expected value of zero. Now, by
successive substitution, we obtain

Y=pn+Cu+Cpu+-,

which may or may not converge. Write Cin the spectral form C = PAQ, where QP =1
and A is a diagonal matrix of the characteristic roots. (Note that the characteristic roots
in A and vectors in P and Q may be complex.) We then obtain

iPAiQ
i=0

It all the roots of C are less than one in absolute value, then this vector will converge to
the equilibrium

Y= . (19-22)

Yoo =A—C)'p.

Nonexplosion of the powers of the roots of C is equivalent to [A,| < 1, 0r [1/4,] > 1,
which was our original requirement. Note finally that since g is a multiple of the first
column of I, it must be the case that each element in the first column of (I — C)lis
the same. At equilibrium, therefore, we must have y, = y,_1 = - -+ = yuo.

Example 19.4 A Rational Lag Model
Appendix Table F5.1 lists quarterly data on a number of macroeconomic variables including
consumption and disposable income for the U.S. economy for the years 1950 to 2000, a
total of 204 quarters. The model

Ct =38+ Boyr + B1¥e—1 + BaYr_2 + BaYr_3 + Y1Ct—1 + VoCr—o + y3Ct_3 + &

is estimated using the logarithms of consumption and disposable income, denoted ¢; and
¥:- Ordinary least squares estimates of the parameters of the ARDL(3,3) model are

¢t = 0.7233¢:_¢1 + 0.3914¢,_», — 0.2337¢;_3
+ 05651}/( — 03909}/{—1 - 02379}6;2 + 0.902}/[*3 + &;.

(A full set of quarterly dummy variables is omitted.) The Durbin-Watson statistic is 1.78957,
$0 remaining autocorrelation seems unlikely to be a consideration. The lag coefficients are
given by the equality

(o + ol +anl®+ ) (1 —y1L — yoL 2 ~ y5L%) = (Bo + BiL + L2 + B5L5).

Note that A(L) is an infinite polynomial. The lag coefficients are

1. a = fo (which will always be the case),
L' —agyr + o = B orar = By + ooy,
L% —opys — aryr + a2 : = fo Or oz = B + aoy2 + a1 11,
L3 —apys —a1ye — a2y + a3 = f3 Of a3 = B3 + apys + a1y2 + a2y,
L% —arys — ays —asyr + s = 00oray = yo3 + a0 + yaaq,

L —Qj 3Y3 —Qj 2V —Oj Y1t = Oor o = YAj_1 + Yet; 2 + V3 3, j=5,6,...

and so on. From the fifth term onward, the series of lag coefficients follows the recursion
o] = y1aj1 + yerj_o + yauj_g, Which is the same as the autoregressive part of the ARDL
model. The series of lag weights follows the same difference equation as the current and
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Lag 0 1 2 3 4 5 6 7
ARDL 565 018  —004 062 039 054 039 041
Unrestricted ~ .954  —090  —063  .100  —.024 057  -112 236

lagged values of y; after r initial values, where r is the order of the DL part of the ARDL
model. The three characteristic roots of the C matrix are 0.8631, —0.5949, and 0.4551. Since
all are less than one, we conclude that the stochastic difference equation is stable.

The first seven lag coefficients of the estimated ARDL model are listed in Table 19.3 with
the first seven coefficients in an unrestricted lag model. The coefficients from the ARDL model
only vaguely resemble those from the unrestricted model, but the erratic swings of the latter
are prevented by the smooth equation from the distributed lag model. The estimated long-
term effects (with standard errors in parentheses) from the two models are 1.0634 (0.00791)
from the ARDL model and 1.0570 (0.002135) from the unrestricted model. Surprisingly, in view
of the large and highly significant estimated coefficients, the lagged effects fall off essentiaily
to zero after the initial impact.

19.4.4 FORECASTING

Consider, first, a one-period-ahead forecast of y, in the ARDL(p, ) model. It will be
convenient to collect the terms in w, x,, w;, and so on in a single term,

r
e =p +Zﬂjxt—j + dwy.
=0

Now, the ARDL model is just

Y=+ VYe-1+ -+ VpYipt+ &

Conditioned on the full set of information available up to time T and on forecasts of
the exogenous variables, the one-period-ahead forecast of y, would be

Yot = bryr +viyr + -+ VpYr-pit + 81407

To form a prediction interval, we will be interested in the variance of the forecast error,

ery T = Y74UT — Y741

This error will arise from three sources. First, in forecasting u,, there will be two sources
of error. The parameters, i, §, and By, ..., B, will have been estimated, so firyq 7 will
differ from p 7. because of the sampling variation in these estimators. Second, if the
exogenous variables, x741 and wr.1 have been forecasted, then to the extent that these
forecasts are themselves imperfect, yet another source of error to the forecast will result.
Finally, although we will forecast .| with its expectation of zero, we would not assume
that the actual realization will be zero, so this step will be a third source of error. In
principle, an estimate of the forecast variance, Var{ey,q,7], would account for all three
sources of error. In practice, handling the second of these errors is largely intractable
while the first is merely extremely difficult. [See Harvey (1990) and Hamilton (1994,
especially Section 11.7) for useful discussion. McCullough (1996) presents results that
suggest that “intractable” may be too pessimistic.] For the moment, we will concentrate
on the third source and return to the other issues briefly at the end of the section.
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Ignoring for the moment the variation in fi7,,7—that is, assuming that the param-
eters are known and the exogenous variables are forecasted perfectly—the variance of
the forecast error will be simply

Varler1 7 | X131, Wrs1, i, B, 8, y7s .. ] = Var[ery1] = o2,

so at least within these assumptions, forming the forecast and computing the forecast
variance are straightforward. Also, at this first step, given the data used for the forecast,

the first part of the variance is also tractable. Let zr 1 = [1, X741, X7y - - - . XT—ri1, WT, YT,
Y71, ..., YT-p+1), and let @ denote the full estimated parameter vector. Then we would
use

Est. Var[eryi 7| zr41] = s> + 2, ; { Est. Asy. Var[é]}znl.
Now, consider forecasting further out beyond the sample period:
Y11 = brear +nidrenr + o+ YpYr—pr2 + EriaT

Note that for period T + 1, the forecasted yr,; is used. Making the substitution for
97417, we have

Yriar = Ry +ilhrayr +viyr+- -+ vpyr—pa FETrT) + - F VpYr—pr2 HETHT

and, likewise, for subsequent periods. Our method will be simplified considerably if we
use the device we constructed in the previous section. For the first forecast period, write
the forecast with the previous p lagged values as

Yyt ATyt iy e v | T Eryr
yr 0 1 0 ... 0ol |y 0
yr-1 | < 0 Tlo 1 ... of |yr==|T] O

The coefficient matrix on the right-hand side is C, which we defined in (19-21). To
maintain the thread of the discussion, we will continue to use the notation jir.qr for
the forecast of the deterministic part of the model, although for the present, we are
assuming that this value, as well as C, is known with certainty. With this modification,
then, our forecast is the top element of the vector of forecasts,

f’r+1rT = IALT-HIT +Cyr + éryuT-

Since we are assuming that everything on the right-hand side is known except the period
T + 1 disturbance, the covariance matrix for this p + 1 vector is

6?2 0
E[Grir —yr+DGFrsyr —yre)]= |0 0 |,

and the forecast variance for y7,7 is just the upper left element, o2
Now, extend this notation to forecasting out to periods 7'+ 2, T + 3, and so on:

Yrear = Ry + C¥rar + 127

= frigr + Chryyr + Cyr + érr + Céryyr.
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Once again, the only unknowns are the disturbances, so the forecast variance for this
two-period-ahead forecasted vector is

o2 0 ... g2 0

Var[ér+2|r + CéT+1|T] =10 0 cl+C|o0 0 | C.

Thus, the forecast variance for the two-step-ahead forecast is o2[1 + W(1)11], where
W(l)yy is the 1, 1 element of ¥ (1) = Cjj'C’, where j’ = [0.0, ..., 0]. By extending this
device to a forecast F periods beyond the sample period, we obtain
F F
Sremr = C g poyr + Clyr + ) C ey (19-23)
f=1 =1
This equation shows how to compute the forecasts, which is reasonably simple. We also
obtain our expression for the conditional forecast variance,

Conditional Var[jzr+p|r] = 02[1 +¥MDy +¥YQ i+ +W(F - 1)11], (19-24)

where W (i) = C'jj’C".

The general form of the F-period-ahead forecast shows how the forecasts will
behave as the forecast period extends further out beyond the sample period. If the
equation is stable—that is, if all roots of the matrix € are less than one in absolute
value—then C will converge to zero, and since the forecasted disturbances are zero.
the forecast will be dominated by the sum in the first term. If we suppose, in addition.
that the forecasts of the exogenous variables are just the period T + 1 forecasted values
and not revised, then, as we found at the end of the previous section, the forecast will
ultimately converge to

lim § irayr = - Cl iy .
Fgrgo)’nmﬂﬂnur I—C] frenr

To account fully for all sources of variation in the forecasts, we would have to revise the
forecast variance to include the variation in the forecasts of the exogenous variables
and the variation in the parameter estimates. As noted, the first of these is likely to
be intractable. For the second, this revision will be extremely difficult, the more so
when we also account for the matrix C, as well as the vector g, being built up from the
estimated parameters. One consolation is that in the presence of a lagged value of the
dependent variable, as y approaches one, the parameter variances tend to order 1/ 7~
rather than the 1/ 7 we are accustomed to. With this faster convergence, the variation
due to parameter estimation becomes less important. (See Section 20.3.3 for related
results.) The level of difficulty in this case falls from impossible to merely extremely
difficult. In principle, what is required is

Est.Conditional Var[$7, 7] = o?[1 + W(1)1; + W11 + - + W(F — D]
+ g'Est.Asy. Var[, B.7le,
where
_ Pryr
STy )
[See Hamilton (1994, Appendix to Chapter 11) for formal derivation.
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One possibility is to use the bootstrap method. For this application, bootstrapping
would involve sampling new sets of disturbances from the estimated distribution of ¢,
and then repeatedly rebuilding the within sample time series of observations on y, by
using

=+t VY p +en(m),

where ey, (m) is the estimated “bootstrapped” disturbance in period ¢ during replica-
tion m. The process is repeated M times, with new parameter estimates and a new
forecast generated in each replication. The variance of these forecasts produces the
estimated forecast variance.®

5 METHODOLOGICAL ISSUES IN THE ANALYSIS
OF DYNAMIC MODELS

19.5.1 AN ERROR CORRECTION MODEL

Consider the ARDL(1, 1) model, which has become a workhorse of the modern lit-
erature on time-series analysis. By defining the first differences Ay, = y, — y,—1 and
AXx; = x; — x;—1 We can rearrange ‘

Ve =u+ YY1+ Boxe + prx1 + &

to obtain
Ay, =+ BoAx: + (1 — D(yio1 — 0x21) + &1, (19-25)

where 6 = —(By + B1)/(y1 — 1). This form of the model is in the error correction
form. In this form, we have an equilibrium relationship, Ay, = u+ ByAx; +¢;, and
the equilibrium error, (y; — 1)(y,—; — @x,_1), which account for the deviation of the
pair of variables from that equilibrium. The model states that the change in y; from
the previous period consists of the change associated with movement with x; along the
long-run equilibrium path plus a part (y; — 1) of the deviation (y,_; — 8x,_1) from the
equilibrium. With a model in logs, this relationship would be in proportional terms.

It is useful at this juncture to jump ahead a bit—we will return to this topic in some
detail in Chapter 20—and explore why the error correction form might be such a useful
formulation of this simple model. Consider the logged consumption and income data
plotted in Figure 19.3. It is obvious on inspection of the figure that a simple regression
of the log of consumption on the log of income would suggest a highly significant
relationship; in fact, the simple linear regression produces a slope of 1.0567 with a ¢
ratio of 440.5 (1) and an R’ of 0.99896. The disturbing result of a line of literature in
econometrics that begins with Granger and Newbold (1974) and continues to the present
is that this seemingly obvious and powerful relationship might be entirely spurious.
Equally obvious from the figure is that both ¢; and y, are trending variables. If, in fact,
both variables unconditionally were random walks with drift of the sort that we met
at the end of Section 19.4.1—that is, ¢; = t/t. + v, and likewise for y,—then we would
almost certainly observe a figure such as 19.3 and compelling regression results such
as those, even if there were no relationship at all. In addition, there is ample evidence

8Bernard and Veall (1987) give an application of this technique. See, also, McCullough (1996).
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in the recent literature that low-frequency (infrequently observed, aggregated over
long periods) flow variables such as consumption and output are, indeed, often well
described as random walks. In such data, the ARDL(1, 1) model might appear to be
entirely appropriate even if it is not. So, how is one to distinguish between the spurious
regression and a genuine relationship as shown in the ARDL(1, 1)? The first difference
of consumption produces A¢; = u.+ v, —v,_;. If the random walk proposition is indeed
correct, then the spurious appearance of regression will not survive the first differencing.
whereas if there is a relationship between ¢, and y;, then it will be preserved in the error
correction model. We will return to this issue in Chapter 20, when we examine the issue
of integration and cointegration of economic variables.

Example 19.5 An Error Correction Model for Consumption
The error correction model is a nonlinear regression model, although in fact it is intrinsically
linear and can be deduced simply from the unrestricted form directly above it. Since the
parameter 6 is actually of some interest, it might be more convenient to use nonlinear least
squares and fit the second form directly. (Since the model is intrinsically linear, the nonlinear
least squares estimates will be identical to the derived linear least squares estimates.) The
logs of consumption and income data in Appendix Tabie F5.1 are plotted in Figure 19.3. Not
surprisingly, the two variables are drifting upward together.
The estimated error correction model, with estimated standard errors in parentheses, is

Ct — Ct-1 = —0.08533 + (0.90458 — 1)[ct_1 — 1.06034y;_1] + 0.58421(y; — y:_1).
(0.02899) (0.03029) (0.01052) (0.05090)
The estimated equilibrium errors are shown in Figure 19.4. Note that they are all positive,
but that in each period, the adjustment is in the opposite direction. Thus (according to this

model), when consumption is below its equilibrium value, the adjustment is upward, as might
be expected.
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19.5.2 AUTOCORRELATION

The disturbance in the error correction model is assumed to be nonautocorrelated. As
we saw in Chapter 12, autocorrelation in a model can be induced by misspecification. An
orthodox view of the modeling process might state, in fact, that this misspecification is the
only source of autocorrelation. Although admittedly a bit optimistic in its implication,
this misspecification does raise an interesting methodological question. Consider once
again the simplest model of autocorrelation from Chapter 12 (with a small change in
notation to make it consistent with the present discussion),

=B+, Ve = pU—1 + &1, (19-26)
where ¢ is nonautocorrelated. As we found earlier, this model can be written as
— Yot = B — pxi_1) + & (19-27)
or
Vi = pYi—1 + Bxy — Bpxi—1 + & ‘ (19-28)

This model is an ARDL(1, 1) model in which B; = —y1 . Thus, we can view (19-28) as
a restricted version of

Ye = Y1V + Boxe + Bixe—1 + & (19-29)

The crucial point here is that the (nonlinear) restriction on (19-29) is testable, so there is
no compelling reason to proceed to (19-26) first without establishing that the restriction
is in fact consistent with the data. The upshot is that the AR(1) disturbance model, as a
general proposition, is a testable restriction on a simpler, linear model, not necessarily
a structure unto itself,
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Now, let us take this argument to its logical conclusion. The AR(p) disturbance
model, :

V=11 + -+ PpUp + &1,

or R(L)v, = &, can be written in its moving average form as
&y

R(L)

[Recall, in the AR(1) model, that &; = u, + pu;—y + p°us—2 + - - - .| The regression model
with this AR(p) disturbance is, therefore,

ye = Px R( L)
But consider instead the ARDL(p, p) model

C(Lyy, = BB(L)x; +¢;.

These coefficients are the same model if B(L) = C(L). The implication is that any model
with an AR(p) disturbance can be interpreted as a nonlinearly restricted version of an
ARDL(p, p) model.

The preceding discussion is a rather orthodox view of autocorrelation. It is pred-
icated on the AR(p) model. Researchers have found that a more involved model for
the process generating ¢, is sometimes called for. If the time-series structure of &, is not
autoregressive, much of the preceding analysis will become intractable. As such, there
remains room for disagreement with the strong conclusions. We will turn to models
whose disturbances are mixtures of autoregressive and moving-average terms, which
would be beyond the reach of this apparatus, in Chapter 20.

Uy =

19.5.3 SPECIFICATION ANALYSIS

The usual explanation of autocorrelation is serial correlation in omitted variables. The
preceding discussion and our results in Chapter 12 suggest another candidate: misspec-
ification of what would otherwise be an unrestricted ARDL model. Thus, upon finding
evidence of autocorrelation on the basis of a Durbin—-Watson statistic or an LM statistic.
we might find that relaxing the nonlinear restrictions on the ARDL model is a prefer-
able next step to “correcting” for the autocorrelation by imposing the restrictions and
refitting the model by FGLS. Since an ARDL(p, r) model with AR disturbances, even
with p = 0, is implicitly an ARDL(p + d, r + d) model, where d is usually one, the ap-
proach suggested is just to add additional lags of the dependent variable to the model.
Thus, one might even ask why we would ever use the familiar FGLS procedures. [See,
e.g., Mizon (1995).] The payoff is that the restrictions imposed by the FGLS procedure
produce a more efficient estimator than other methods. If the restrictions are in fact
appropriate, then not imposing them amounts to not using information.

A related question now arises, apart from the issue of autocorrelation. In the context
of the ARDL model, how should one do the specification search? (This question is not
specific to the ARDL or even to the time-series setting.) Is it better to start with a small
model and expand it until conventional fit measures indicate that additional variables
are no longer improving the model, or is it better to start with a large model and pare
away variables that conventional statistics suggest are superfluous? The first strategy,
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going from a simple model to a general model, is likely to be problematic, because the
statistics computed for the narrower model are biased and inconsistent if the hypothesis
isincorrect. Consider, for example, an LM test for autocorrelation in a model from which
important variables have been omitted. The results are biased in favor of a finding of
autocorrelation. The alternative approach is to proceed from a general model to a simple
one. Thus, one might overfit the model and then subject it to whatever battery of tests
are appropriate to produce the correct specification at the end of the procedure. In this
instance, the estimates and test statistics computed from the overfit model, although
inefficient, are not generally systematically biased. (We have encountered this issue at
several points.)

The latter approach is common in modern analysis, but some words of caution are
needed. The procedure routinely leads to overfitting the model. A typical time-series
analysis might involve specifying a model with deep lags on all the variables and then
paring away the model as conventional statistics indicate. The danger is that the resulting
model might have an autoregressive structure with peculiar holes in it that would be
hard to justify with any theory. Thus, a model for quarterly data that includes lags of 2,
3, 6, and 9 on the dependent variable would look suspiciously like the end result of a
computer-driven fishing trip and, moreover, might not survive even moderate changes
in the estimation sample. [As Hendry (1995) notes, a model in which the largest and
most significant lag coefficient occurs at the last lag is surely misspecified.]

19.56.4 COMMON FACTOR RESTRICTIONS

The preceding discussion suggests that evidence of autocorrelation in a time-series
regression model might signal more than merely a need to use generalized least squares
to make efficient use of the data. [See Hendry (1993).] If we find evidence of autocor-
relation based, say, on the Durbin—-Watson statistic or on Durbin’s # statistic, then it
would make sense to test the hypothesis of the AR(1) model that might normally be
the next step against the alternative possibility that the model is merely misspecified.
The test is suggested by (19-27) and (19-28). In general, we can formulate it as a test of

Hy:yi =xB+pyic1 — p(X;_1B) + &

Vversus

Hyy, =xB+py-1+X_1y +&.

The null model is obtained from the alternative by the nonlinear restriction y = —pp.
Since the models are both classical regression models, the test can be carried out by
referring the F statistic,

(epeq —efer)/J
ele)/(T—-K)’

to the appropriate critical value from the F distribution. The test is only asymptotically
valid because of the nonlinearity of the restricted regression and because of the lagged
dependent variables in the models. There are two additional complications in this proce-
dure. First, the unrestricted model may be unidentified because of redundant variables.
For example, it will usually have two constant terms. If both z; and z,_; appear in the
restricted equation, then z,_; will appear twice in the unrestricted model, and so on.

F[J,T-K{]=
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The solution is simple; just drop the redundant variables. The sum of squares without
the redundant variables will be identical to that with them. Second, at first blush, the
restrictions in the nonlinear model appear complicated. The restricted model, however,
is actually quite straightforward. Rewrite it in a familiar form:

Hoy = pyic1 + (X — pX-1)' B + &4,

Given p, the regression is linear. In this form, the grid search over the values of p can
be used to obtain the full set of estimates. (Cochrane—Orcutt and the other two-step
estimators are likely not to be the best solution.) Also, it is important to search the full
[0, 1] range to allow for the possibility of local minima of the sum of squares. Depending
on the available software, it may be equally simple just to fit the nonlinear regression
model directly.

Higher-order models can be handled analogously. In an AR(1) model, this “com-
mon factor” restriction (the reason for the name will be clear shortly) takes the form

A—=yDy =B+ pilyx1+e&, B1=—vho.

Consider, instead, an AR(2) model. The “restricted” and unrestricted models would

appear as
Hy:(1—piL—p2 [Py = 1—piL— p [H)xB + &,
H: Vi =iy vy X B+ X B+ X B8, &
so the full set of restrictions is $; = —y1 8, and 8, = —y28,. This expanded model can

be handled analogously to the AR(1) model. Once again, an F test of the nonlinear
restrictions can be used.

This approach neglects another possibility. The restricted model above goes the full
distance from the unrestricted model to the AR(2) autocorrelation model. There is an
intermediate possibility. The polynomials in the lag operator, C(1) and B(L), can be
factored into products of linear, primitive terms. A quadratic equationin L, for example.
may always be written as

C(L) =1 -y L—pI?=1-xrxL)1-iL),

where the A’s are the roots of the characteristic polynomial C(z) = 0. Here, B(L) may
be factored likewise, say into (1 — 1y L)(1 — o L). (These “roots” may include pairs
of imaginary values.) With these results in hand, rewrite the basic model C(L)y, =
B(L)x; + &; in the form

1-mDA-2Dy=0-uD)d -nlxp +s.

Now suppose that &y = 7; = p. Dividing through both sides of the equation by (1 — p L)
produces the restricted model

&
1—-pL’
The restricted model is a lower-order autoregression, which has some virtue, but now.
by construction, its disturbance is an AR(1) process in p. (This conclusion was expected,
of course, since we reached it in reverse at the beginning of this section.) The restricted
model is appropriate only if the two polynomials have a common factor, (1 — ;) =
(1 — 1), hence the name for the procedure.

a1- ML)y, = a- ‘L'zL)X;,B +
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It is useful to develop this procedure in more detail for an ARDL(2, 2) model.
Write the distributed lag part, B(L), as Bo(1 — 1L — B, L?). Multiplying out the factors,
we see that the unrestricted model, '

Ve =+ YY1+ Vayiea + o = BLL — B LP)x; + &4,

can be written as
Ye=n+ A1+ 2A2)yi—1 — (MA2)yi—2 + Boxr — o1 + T2)x_1 + Bo(TiT2) X0 + &1

Despite what appears to be extreme nonlinearity, this equation is intrinsically linear.
In fact, it cannot be estimated in this form by nonlinear least squares, since any pair
of values %1, A, that one might find can just be reversed and the function and sum of
squares will not change. The same is true for pairs of 7y, 1o. Of course, this information
is irrelevant to the solution, since the model can be fit by ordinary linear least squares
in the ARDL form just above it, and for the test, we only need the sum of squares. But
now impose the common factor restriction (1 —x;) = (1 — 7;), or A; = ;. The now very
nonlinear regression model

Ye=p+ (Tt +2A2)Yi-1 — (mA2)yi—2 + Boxr — Po(t1 + 2)xi_1 + Bo(TiTa)Xi_o + &

has six terms on the right-hand side but only five parameters and is overidentified. This
model can be fit as is by nonlinear least squares. The F test of one restriction suggested
earlier can now be carried out. Note that this test of one common factor restriction is
a test of the hypothesis of the ARDL(1, 1) model with an AR(1) disturbance against
the unrestricted ARDL(2, 2) model. Turned around, we note, once again, a finding of
autocorrelation in the ARDL(1, 1) model does not necessarily suggest that one should
just use GLS. The appropriate next step might be to expand the model. Finally. testing
both common factor restrictions in this model is equivalent to testing the two restrictions
y1 = p1 and y, = p; in the model

Ye = V1Ye-1 + VoY + B(X — pixi—1 — paxe—2) + &

The unrestricted model is the linear ARDL(2, 2) we used earlier. The restricted model
is nonlinear, but it can be estimated easily by nonlinear least squares.

The analysis of common factors in models more complicated than ARDL/(2, 2) is
extremely involved. [See Hendry (1993) and Hendry and Doornik (1996).]

Example 19.6 Testing Common Factor Restrictions
The consumption and income data used in Example 19.5 (quarters 1950.3 to 2000.4) are
used to fit an unrestricted ARDL(2, 2) model, .

Ct =+ y1Ct—1 + ¥2C2 + Bo¥t + BiYi-1 + BoYi—o + &1

Ordinary least squares estimates of the parameters appear in Table 19.4. For the one common
factor model, the parameters are formulated as

Ce=p+(t1 + A2)Ct1 — (T122)Cr_z + BoYr — BolT1 + ) Yi_1 + Bo(T1T2) Y2 + &t

The structural parameters are computed using nonlinear least squares and then the ARDL
coefficients are computed from these. A two common factors model is obtained by imposing
the additional restriction A, = 7,. The resulting model is the familiar one,

Ct = [+ P1Ct—1 + p2Cr—2 + Bo(¥e — P1Yi—1 — P2Yi-2) + &1
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ressive Distributed Lag

Parameter

Restrictions | b4 »2 Bo B B2 e'e

2 0.04020 0.6959 0.03044  0.5710 —0.3974 —0.1739  0.0091238
(0.006397) (0.06741)  (0.06747) (0.04229)  (0.04563)  (0.04206)
[Estimated: p; = 0.6959, p, = 0.3044]

1 —0.006499  0.6456 —0.2724 0.5972 0.6104 —0.2596 0.0088736
(0.02959) (0.06866)  (0.06784) (0.04342)  (0.07225)  (0.06685)
[Estimated: 1; = —0.2887, 1, = 0.8992, A, = 0.9433]

0 —0.06628 0.6487 0.2766 0.6126 -0.4004 —0.1329  0.0088626

(0.03014)  (0.07066)  (0.06935) (0.05408)  (0.08759)  (0.06218)

Standard errors are given in parentheses. As expected, they decline generally as the
restrictions are added. The sum of squares increases at the same time. The F statistic for
one restriction is

Fo (0.0088736 — 0.0088626) /1 — 0243,
0.0088626/(202 — 6)
The 95 percent critical value from the F[1, 119] table is 3.921, so the hypothesis of the single
common factor cannot be rejected. The F statistic for two restrictions is 5.777 against a
critical value of 3.072, so the hypothesis of the AR(2) disturbance model is rejected.

19.6 VECTOR AUTOREGRESSIONS

The preceding discussions can be extended to sets of variables. The resulting autore-
gressive model is

Ye=n+Tiy1+--+T,y ,+e, (19-30)

where €, is a vector of nonautocorrelated disturbances (innovations) with zero means
and contemporaneous covariance matrix E [e.e}] = . This equation system is a vector
autoregression, or VAR. Equation (19-30) may also be written as

Iy =p+e

where I' (L) is a matrix of polynomials in the lag operator. The individual equations are

P P p

Ymr = Mm + Z(rj)mlyl,t—j + Z(rj)m2y2.t—j +e Z(rj)mM_YM,tvj + Emes

j=1 j=1 j=1
where (T ;) indicates the (/, m) element of T';.

VARs have been used primarily in macroeconomics. Early in their development, it
was argued by some authors [e.g., Sims (1980), Litterman (1979, 1986)] that VARs would
forecast better than the sort of structural equation models discussed in Chapter 15. One
could argue that as long as p includes the current observations on the (truly) relevant
exogenous variables, the VAR is simply an overfit reduced form of some simultaneous
equations model. [See Hamilton (1994, pp. 326-327).] The overfitting results from the
possible inclusion of more lags than would be appropriate in the original model. (See
Example 19.8 for a detailed discussion of one such model.) On the other hand, one of the
virtues of the VAR is that it obviates a decision as to what contemporaneous variables
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are exogenous; it has only lagged (predetermined) variables on the right-hand side, and
all variables are endogenous.

The motivation behind VARs in macroeconomics runs deeper than the statistical
issues.” The large structural equations models of the 1950s and 1960s were built on a the-
oretical foundation that has not proved satisfactory. That the forecasting performance
of VARS surpassed that of large structural models—some of the later counterparts to
Klein’s Model I ran to hundreds of equations—signaled to researchers a more fun-
damental problem with the underlying methodology. The Keynesian style systems of
equations describe a structural model of decisions (consumption, investment) that seem
loosely to mimicindividual behavior; see Keynes’s formulation of the consumption func-
tion in Example 1.1 that is, perhaps, the canonical example. In the end, however, these
decision rules are fundamentally ad hoc, and there is little basis on which to assume
that they would aggregate to the macroeconomic level anyway. On a more practical
level, the high inflation and high unemployment experienced in the 1970s were very
badly predicted by the Keynesian paradigm. From the point of view of the underlying
paradigm, the most troubling criticism of the structural modeling approach comes in the
form of “the Lucas critique” (1976) in which the author argued that the parameters of
the “decision rules” embodied in the systems of structural equations would not remain
stable when economic policies changed, even if the rules themselves were appropriate.
Thus, the paradigm underlying the systems of equations approach to macroeconomic
modeling is arguably fundamentally flawed. More recent research has reformulated
the basic equations of macroeconomic models in terms of a microeconomic optimiza-
tion foundation and has, at the same time, been much less ambitious in specifying the
interrelationships among economic variables.

The preceding arguments have drawn researchers to less structured equation
systems for forecasting. Thus, itis not just the form of the equations that has changed. The
variables in the equations have changed as well; the VAR is not just the reduced form
of some structural model. For purposes of analyzing and forecasting macroeconomic
activity and tracing the effects of policy changes and external stimuli on the economy,
researchers have found that simple, small-scale VARs without a possibly flawed theo-
retical foundation have proved as good as or better than large-scale structural equation
systems. In addition to forecasting, VARs have been used for two primary functions,
testing Granger causality and studying the effects of policy through impulse response
characteristics.

19.6.1 MODEL FORMS

To simplify things for the present, we note that the pth order VAR can be written as a
first-order VAR as follows:

¥: n Iy Iy - T, Y1 &
Yi-p+1 0 0 - I 0] V- 0

% An extremely readable, nontechnical discussion of the paradigm shift in macroeconomic forecasting is given
in Diebold (1998b). See also Stock and Watson (2001).
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This means that we do not lose any generality in casting the treatment in terms of a first
order model

Yye=pn+Ty 1 +e,.

In Section 18.5, we examined Dahlberg and Johansson’s model for municipal finances
in Sweden, in which y, = [AS;, AR,, AG,] where S, is spending, R, is receipts and G,
is grants from the central government, and p = 3. We will continue that application in
Example 19.8 below.

In principle, the VAR model is a seemingly unrelated regressions model—indeed,
a particularly simple one since each equation has the same set of regressors. This is
the traditional form of the model as originally proposed, for example, by Sims (1980).
The VAR may also be viewed as the reduced form of a simultaneous equatlons model;
the corresponding structure would then be

Oy =0+ Vy,_1 +o;

where O is a nonsingular matrix and Var[w] = X. In one of Cecchetti and Rich’s (2001)

formulations, for example, y, = [Ay;, Am,] where y, is the log of aggregate real output,

7, is the inflation rate from time ¢ —1 to time t, @ = [_éﬂ —flz} and p=8. (We will

examine their model in Section 19.6.8.) In this form, we have a conventional simul-
taneous equations model, which we analyzed in detail in Chapter 15. As we saw, in
order for such a model to be identified—that is, estimable—certain restrictions must
be placed on the structural coefficients. The reason for this is that ultimately, only the
original VAR form, now the reduced form, is estimated from the data; the structural
parameters must be deduced from these coefficients. In this model, in order to deduce
these structural parameters, they must be extracted from the reduced form parame-
ters, T =0 "W =0 'a,and = 'O . We analyzed this issue in detail in
Section 15.3. The results would be the same here. In Cecchetti and Rich’s application,
certain restrictions were placed on the lag coefficients in order to secure identification.

19.6.2 ESTIMATION

In the form of (19-30)—that is, without autocorrelation of the disturbances—VARs
are particularly simple to estimate. Although the equation system can be exceedingly
large, it is, in fact, a seemingly unrelated regressions model with identical regressors.
As such, the equations should be estimated separately by ordinary least squares. (See
Section 14.4.2 for discussion of SUR systems with identical regressors.) The disturbance
covariance matrix can then be estimated with average sums of squares or cross-products
of the least squares residuals. If the disturbances are normally distributed, then these
least squares estimators are also maximum likelihood. If not, then OLS remains an
efficient GMM estimator. The extension to instrumental variables and GMM is a bit
more complicated, as the model now contains multiple equations (see Section 14.4),
but since the equations are all linear, the necessary extensions are at least relatively
straightforward. GMM estimation of the VAR system is a special case of the model
discussed in Section 14.4. (We will examine an application below in Example 20.8.)
The proliferation of parameters in VARSs has been cited as a major disadvantage
of their use. Consider, for example, a VAR involving five variables and three lags. Each
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I’ has 25 unconstrained elements, and there are three of them, for a total of 75 free
parameters, plus any others in g, plus 5(6)/2 = 15 free parameters in €. On the other
hand, each single equation has only 25 parameters, and at least given sufficient degrees
of freedom—there’s the rub—a linear regression with 25 parameters is simple work.
Moreover, applications rarely involve even as many as four variables, so the model-size
issue may well be exaggerated.

19.6.3 TESTING PROCEDURES

Formal testing in the VAR setting usually centers either on determining the appropriate
lag length (a specification search) or on whether certain blocks of zeros in the coefficient
matrices are zero (a simple linear restriction on the collection of slope parameters).
Both types of hypotheses may be treated as sets of linear restrictions on the elements
iny =vec[u,I['1,Ty,..., T,

We begin by assuming that the disturbances have a joint normal distribution. Let
W be the M x M residual covariance matrix based on a restricted model, and let W* be
its counterpart when the model is unrestricted. Then the likelihood ratio statistic,

A = T(In|W| — In|W*)),

can be used to test the hypothesis. The statistic would have a limiting chi-squared dis-
tribution with degrees of freedom equal to the number of restrictions. In principle, one
might base a specification search for the right lag length on this calculation. The proce-
dure would be to test down from, say, lag ¢ to lag to p. The general-to-simple principle
discussed in Section 19.5.3 would be to set the maximum lag length and test down from
ituntil deletion of the last set of lags leads to a significant loss of fit. At each step at which
the alternative lag model has excess terms, the estimators of the superfluous coefficient
matrices would have probability limits of zero and the likelihood function would (again,
asymptotically) resemble that of the model with the correct number of lags. Formally,
suppose the appropriate lag length is p but the model is fit with ¢ > p+ 1 lagged terms.
Then, under the null hypothesis, '

. d
Ag = T[In|W(p,Ty,....Tg)| — InfW* (s, Ty, ..., THI] == x*[M?).

The same approach would be used to test other restrictions. Thus, the Granger causality
test noted below would fit the model with and without certain blocks of zeros in the
coefficient matrices, then refer the value of 1 once again to the chi-squared distribution.

For specification searches for the right lag, the suggested procedure may be less
effective than one based on the information criteria suggested for other linear models
(see Section 8.4.) Lutkepohl (1993, pp. 128-135) suggests an alternative approach based
on the minimizing functions of the information criteria we have considered earlier;

A = In(|W)) + (pM? + M)IC(T)/ T

where T is the sample size, p is the number of lags, M is the number of equations and
IC(T) = 2 for the Akaike information criterion and In T for the Schwartz (Bayesian)
information criterion. We should note, this is not a test statistic; it is a diagnostic tool
that we are using to conduct a specification search. Also, as in all such cases, the testing
procedure should be from a larger one to a smaller one to avoid the misspecification
problems induced by a lag length that is smaller than the appropriate one.
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The preceding has relied heavily on the normality assumption. Since most recent
applications of these techniques have either treated the least squares estimators as
robust (distribution free) estimators, or used GMM (as we did in Chapter 18), it is
necessary to consider a different approach that does not depend on normality. An
alternative approach which should be robust to variations in the underlying distributions
is the Wald statistic. [See Lutkepohl (1993, pp. 93-95).] The full set of coefficients in the
model may be arrayed in a single coefficient vector, y. Let ¢ be the sample estimator of
y and let V denote the estimated asymptotic covariance matrix. Then, the hypothesis
in question (lag length, or other linear restriction) can be cast in the form Ry — q = 0.
The Wald statistic for testing the null hypothesis is

W = (Re — )'[RVR']"/(Re — q).

Under the null hypothesis, this statistic has a limiting chi-squared distribution with de-
grees of freedom equal to J, the number of restrictions (rows in R). For the specification
search for the appropriate lag length (or the Granger causality test discussed in the next
section), the null hypothesis will be that a certain subvector of y, say y,, equals zero.
In this case, the statistic will be ‘

_ vl
Wo = ¢, Vg €o

where V¥, denotes the corresponding submatrix of V.

Since time series data sets are often only moderately long, use of the limiting
distribution for the test statistic may be a bit optimistic. Also, the Wald statistic does
not account for the fact that the asymptotic covariance matrix is estimated using a finite
sample. In our analysis of the classical linear regression model, we accommodated these
considerations by using the F distribution instead of the limiting chi-squared. (See Sec-
tion 6.4.) The adjustment made was to refer W/J to the F[J, T — K] distribution. This
produces a more conservative test—the corresponding critical values of JF converge
of to those of the chi-squared from above. A remaining complication is to decide what
degrees of freedom to use for the denominator. It might seem natural to use M7 minus
the number of parameters, which would be correct if the restrictions are imposed on
all equations simultaneously, since there are that many “observations.” In testing for
causality, as in Section 19.6.5 below, Lutkepohl (1993, p. 95) argues that M T is excessive,
since the restrictions are not imposed on all equations. When the causality test involves
testing for zero restrictions within a single equation, the appropriate degrees of freedom
would be T — Mp — 1 for that one equation.

19.6.4 EXOGENEITY

In the classical regression model with nonstochastic regressors, there is no ambiguity
about which is the independent or conditioning or “exogenous” variable in the model

Vo = B + Poxi + &1 ' (19-31)

Thisis the kind of characterization that might apply in an experimental situation in which
the analyst is choosing the values of x;. But, the case of nonstochastic regressors has
little to do with the sort of modeling that will be of interest in this and the next chapter.
There is no basis for the narrow assumption of nonstochastic regressors, and, in fact,
in most of the analysis that we have done to this point, we have left this assumption
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far behind. With stochastic regressor(s), the regression relationship such as the one
above becomes a conditional mean in a bivariate distribution. In this more realistic
setting, what constitutes an “exogenous” variable becomes ambiguous. Assuming that
the regression relationship is linear, (19-31) can be written (trivially) as

ye=Ely | x]+ (y—E[)th])

where the familiar moment condition E [x¢;] = 0 follows by construction. But, this form
of the model is no more the “correct” equation than would be

X =6 +8&hy+to
which is (we assume)

x = E[x|y]+ (x — E[x | y])

and now, E[y;»,;] =0. Since both equations are correctly specified in the context of the
bivariate distribution, there is nothing to define one variable or the other as “exoge-
nous.” This might seem puzzling, but it is, in fact, at the heart of the matter when one
considers modeling in a world in which variables are jointly determined. The definition
of exogeneity depends on the analyst’s understanding of the world they are modeling,
and, in the final analysis, on the purpose to which the model is to be put.

The methodological platform on which this discussion rests is the classic paper
by Engle, Hendry, and Richard (1983) where they point out that exogeneity is not an
absolute concept at all; it is defined in the context of the model. The central idea, which
will be very useful to us here, is that we define a variable (set of variables) as exogenous
in the context of our model if the joint density may be written

FOux) = f B, x) x f(0,x)

where the parameters in the conditional distribution do not appear in and are func-
tionally unrelated to those in the marginal distribution of x;. By this arrangement, we
can think of “autonomous variation” of the parameters of interest, 8. The parameters
in the conditional model for y, | x; can be analyzed as if they could vary independently
of those in the marginal distribution of x,. If this condition does not hold, then we
cannot think of variation of those parameters without linking that variation to some
effect in the marginal distribution of x,. In this case, it makes little sense to think of x,
as somehow being determined “outside” the (conditional) model. (We considered this
issue in Section 15.8 in the context of a simultaneous equations model.)

A second form of exogeneity we will consider is strong exogeneity, which is some-
times called Granger noncausality. Granger noncausality can be superficially defined
by the assumption

E[)’t | Yi—1, Xt—1, X -2, - - ] =FE [Yt | }’z—l]-

That is, lagged values of x, do not provide information about the conditional mean of
¥ once lagged values of y,, itself, are accounted for. We will consider this issue at the
end of this chapter. For the present, we note that most of the models we will examine
will explicitly fail this assumption.

To put this back in the context of our model, we will be assuming that in the model

Yr = P1+ Boxi + Baxi—1 + Yyio1 + &
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and the extensions that we will consider, x, is weakly exogenous—we can meaningfully
estimate the parameters of the regression equation independently of the marginal dis-
tribution of x;, but we will allow for Granger causality between x; and y,, thus generally
not assuming strong exogeneity.

19.6.5 TESTING FOR GRANGER CAUSALITY

Causality in the sense defined by Granger (1969) and Sims (1972) is inferred when
lagged values of a variable, say x;, have explanatory power in a regression of a variable
y: on lagged values of y; and x,. (See Section 15.2.2.) The VAR can be used to test
the hypothesis.!? Tests of the restrictions can be based on simple F tests in the single
equations of the VAR model. That the unrestricted equations have identical regressors
means that these tests can be based on the results of simple OLS estimates. The notion
can be extended in a system of equations to attempt to ascertain if a given variable is
weakly exogenous to the system. If lagged values of a variable x, have no explanatory
power for any of the variables in a system, then we would view x as weakly exogenous
to the system. Once again, this specification can be tested with a likelihood ratio test as
described below—the restriction will be to put “holes” in one or more I' matrices—or
with a form of F test constructed by stacking the equations.

Example 19.7 Granger Causality’’
All but one of the major recessions in the U.S. economy since World War Il have been
preceded by large increases in the price of crude oil. Does movement of the price of oil
cause movements in U.S. GDP in the Granger sense? Let y, = [GDP, crude oil price];. Then,

a simple VAR would be
A a2 et
= =+ 4+ .
g H L% ﬂj"” H

To assert a causal relationship between oil prices and GDP, we must find that o, is not zero;
previous movements in oil prices do help explain movements in GDP even in the presence
of the lagged value of GDP. Consistent with our earlier discussion, this fact, in itself, is not
sufficient to assert a causal relationship. We would also have to demonstrate that there were
no other intervening explanations that would explain movements in oil prices and GDP. (We
will examine a more extensive application in Example 19.9.)

To establish the general result, it will prove useful to write the VAR in the multi-
variate regression format we used in Section 14.4.2. Partition the two data vectors y;
and x; into [yi, y2] and [xy,, X5]. Consistent with our earlier discussion, x; is lagged
values of y; and x; is lagged values of y,. The VAR with this partitioning would be

e [ R R

y2 'y Tyl X% €7 € Yo Xx

We would still obtain the unrestricted maximum likelihood estimates by least squares
regressions. For testing Granger causality, the hypothesis T'j; =0 is of interest. (See
Example 19.7.) This model is the block of zeros case examined in Section 14.2.6. The

full set of results we need are derived there. For testing the hypothesis of interest,
I';; = 0, the second set of equations is irrelevant. For testing for Granger causality in

108ee Geweke, Meese, and Dent (1983), Sims (1980), and Stock and Watson (2001).
WThis example is adapted from Hamilton (1994, pp. 307-308).
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the VAR model, only the restricted equations are relevant. The hypothesis can be tested
using the likelihood ratio statistic. For the present application, testing means computing

$11 = residual covariance matrix when current values of y: are regressed on
values of both x; and x;,

$11(0) = residual covariance matrix when current values of y; are regressed only
on values of x;.

The likelihood ratio statistic is then
A = T(In[811(0)| —In|Sy ).

The number of degrees of freedom is the number of zero restrictions.

As discussed earlier, the fact that this test is wedded to the normal distribution
limits its generality. The Wald test or its transformation to an approximate F statistic as
described in Section 19.6.3 is an alternative that should be more generally applicable.
When the equation system is fit by GMM, as in Example 19.8, the simplicity of the
likelihood ratio test is lost. The Wald statistic remains usable, however. Another possi-
bility is to use the GMM counterpart to the likelihood ratio statistic (see Section 18.4.2)
based on the GMM criterion functions. This is just the difference in the GMM criteria.
Fitting both restricted and unrestricted models in this framework may be burdensome,
but having set up the GMM estimator for the (larger) unrestricted model, imposing the
zero restrictions of the smaller model should require only a minor modification.

There is a complication in these causality tests. The VAR can be motivated by
the Wold representation theorem (see Section 20.2.5, Theorem 20.1), although with
assumed nonautocorrelated disturbances, the motivation is incomplete. On the other
hand, there is no formal theory behind the formulation. As such, the causality tests
are predicated on a model that may, in fact, be missing either intervening variables or
additional lagged effects that should be present but are not. For the first of these, the
problem is that a finding of causal effects might equally well result from the omission
of a variable that is correlated with both of (or all) the left-hand-side variables.

19.6.6 IMPULSE RESPONSE FUNCTIONS

Any VAR can be written as a first-order model by augmenting it, if necessary, w1th
additional identity equations. For example, the model

Ye=p+Tya+Dyo+w

b = o) [ SR TE)
Yi-1 0 I 0|y 0
which is a first-order model. We can study the dynamic characteristics of the model in

either form, but the second is more convenient, as will soon be apparent.
As we analyzed earlier, in the model

can be written

Ye=p+Ty_1+v,

dynamic stability is achieved if the characteristic roots of I have modulus less than one.
(The roots may be complex, because T need not be symmetric. See Section 19.4.3 for
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the case of a single equation and Section 15.9 for analysis of essentially this model in a
simultaneous-equations context.)

Assuming that the equation system is stable, the equilibrium is found by obtaining
the final form of the system. We can do this step by repeated substitution, or more
simply by using the lag operator to write

yy=pn+TDy +wv
or

(M-T(LDy. =n+v.
With the stability condition, we have
| Yo = L= LD e +v)

=A-D)7u+> Ty
i=0

)
=¥+ Z Iy,
i=0

=¥+vi+ TV +T% 4.

(19-32)

The coefficients in the powers of T are the multipliers in the system. In fact, by
renaming things slightly, this set of results is precisely the one we examined in Sec-
tion 15.9 in our discussion of dynamic simultaneous-equations models. We will change
the interpretation slightly here, however. As we did in Section 15.9, we consider the con-
ceptual experiment of disturbing a system in equilibrium. Suppose that v has equaled
0 for long enough that y has reached equilibrium, y. Now we consider injecting a shock
to the system by changing one of the v’s, for one period, and then returning it to zero
thereafter. As we saw earlier, y,, will move away from, then return to, its equilibrium.
The path whereby the variables return to the equilibrium is called the impulse response
of the VAR.!?

In the autoregressive form of the model, we can identify each innovation, v,,,, with
a particular variable in y;, say v,,. Consider then the effect of a one-time shock to the
system, dv,, . As compared with the equilibrium, we will have, in the current period,

Yot — Ym = At = G (0)dv;.
One period later, we will have
Ymie1 = Im = (D)mmdvp = Gpum(Ddvy.
Two periods later,
Ymirz = Imn = TV = Gram(2)dvr,

and so on. The function, ¢, (i) gives the impulse response characteristics of variable
Ym to innovations in v,. A useful way to characterize the system is to plot the im-
pulse response functions. The preceding traces through the effect on variable m of a

128ee Hamilton (1994, pp. 318-323 and 336-350) for discussion and a number of related results.
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one-time innovation in v,,. We could also examine the effect of a one-time innovation
of v; on variable m. The impulse response function would be

¢m (i) = element (m, [) in T

Point estimation of ¢,,;(i) using the estimated model parameters is straightforward.
Confidence intervals present a more difficult problem because the estimated functions
dmi(i, B) are so highly nonlinear in the original parameter estimates. The delta method
has thus proved unsatisfactory. Killian (1998) presents results that suggest that boot-
strapping may be the more productive approach to statistical inference regarding im-
pulse response functions.

19.6.7 STRUCTURAL VARs

The VAR approach to modeling dynamic behavior of economic variables has provided
some interesting insights and appears [see Litterman (1986)] to bring some real benefits
for forecasting. The method has received some strident criticism for its atheoretical
approach, however. The “unrestricted” nature of the lag structure in (19-30) could be
synonymous with “unstructured.” With no theoretical input to the model, it is difficult
to claim that its output provides much of a theoretically justified result. For example,
how are we to interpret the impulse response functions derived in the previous section?
What lies behind much of this discussion is the idea that there is, in fact, a structure
underlying the model, and the VAR that we have specified is a mere hodgepodge of all
its components. Of course, that is exactly what reduced forms are. As such, to respond
to this sort of criticism, analysts have begun to cast VARs formally as reduced forms
and thereby attempt to deduce the structure that they had in mind all along.

A VAR model y, = p + I'y,_; + v, could, in principle, be viewed as the reduced
form of the dynamic structural model

@y; =o+ q)y[_l + &,

where we have embedded any exogenous variables x; in the vector of constants . Thus,
A=0""9.p=0"a,v=0"l¢,and 2 = o lzey. Perhaps it is the structure,
specified by an underlying theory, that is of interest. For example, we can discuss the
impulse response characteristics of this system. For particular configurations of @, such
as a triangular matrix, we can meaningfully interpret innovations, €. As we explored at
great length in the previous chapter, however, as this model stands, there is not suffi-
cient information contained in the reduced form as just stated to deduce the structural
parameters. A possibly large number of restrictions must be imposed on @, ®, and X
to enable us to deduce structural forms from reduced-form estimates, which are always
obtainable. The recent work on “structural VARs” centers on the types of restrictions
and forms of the theory that can be brought to bear to allow this analysis to proceed.
See, for example, the survey in Hamilton (1994, Chapter 11). At this point, the literature
on this subject has come full circle because the contemporary development of “unstruc-
tured VARS” becomes very much the analysis of quite conventional dynamic structural
simultaneous equations models. Indeed, current research [e.g., Diebold (1998a)] brings
the literature back into line with the structural modeling tradition by demonstrating
how VARs can be derived formally as the reduced forms of dynamic structural models.
Thatis, the most recent applications have begun with structures and derived the reduced
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forms as VARs, rather than departing from the VAR as a reduced form and attempting
to deduce a structure from it by layering on restrictions.

19.6.8 APPLICATION: POLICY ANALYSIS WITH A VAR

Cecchetti and Rich (2001) used a structural VAR to analyze the effect of recent disin-
flationary policies of the Fed on aggregate output in the U.S. economy. The Fed'’s policy
of the last two decades has leaned more toward controlling inflation and less toward
stimulation of the economy. The authors argue that the long-run benefits of this policy
include economic stability and increased long-term trend output growth. But, thereis a
short-term cost in lost output. Their study seeks to estimate the “sacrifice ratio,” which
is a measure of the cumulative cost of this policy. The specific indicator they study mea-
sures the cumulative output loss after t periods of a policy shock at time ¢, where the
(persistent) shock is measured as the change in the level of inflation.

19.6.8a A VAR Model for the Macroeconomic Variables
The model proposed for estimating the ratio is a structural VAR,

p 14
Ay, = Z by Ay + b Am + Z by Am; + &

i=1 i=l1

p p
Aﬂ't = bgl Ayt + Z blzl Ayt—i + Z blzzAjT[—i + 8;1
i=1 i=1

where y, is aggregate real output in period ¢ and 7, is the rate of inflation from period
t — 1 to ¢t and the model is cast in terms of rates of changes of these two variables.
(Note, therefore, that sums of Az, measure accumulated changes in the rate of inflation,
not changes in the CPL) The innovations, &, = (¢, e¥)’ is assumed to have mean 0,
contemporaneous covariance matrix E [e,&]] = € and to be strictly nonautocorrelated.
(We have retained Cecchetti and Rich’s notation for most of this discussion, save for
the number of lags, which is denoted r in their paper and p here, and some other minor
changes which will be noted in passing where necessary.)!? The equation system may

also be written
A 24
B(L)[ y’} - [ ;]
A, &

where B(L) is a 2 x 2 matrix of polynomials in the lag operator. The components of
the disturbance (innovation) vector &, are identified as shocks to aggregate supply and
aggregate demand respectively.

19.6.8b The Sacrifice Ratio
Interest in the study centers on the impact over time of structural shocks to output
and the rate of inflation. In order to calculate these, the authors use the vector moving

13The authors examine two other VAR models, a three-equation model of Shapiro and Watson (1988), which
adds an equation in real interest rates (i — 7;) and a four-equation model by Gali (1992), which models
Ay, Aiy, (i; — my), and the real money stock, (Am; — ;). Among the foci of Cecchetti and Rich’s paper was
the surprisingly large variation in estimates of the sacrifice ratio produced by the three models. In the interest
of brevity, we will restrict our analysis to Cecchetti’s (1994) two-equation model.
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average (VMA) form of the model, which would be

Ay, e & [AH(L) Alz(L)} &
= [B(L =A(L =
[A”t] [BLL)] Lf} ( )[857 (D) An(L)] | &

00 i .Y 0o i x
Do diE  DimoAE

o} I LY 00 i .7
Doic0 @Eiy Doig AEl;

[T¥E2]
l

(Note that the superscript in the last form of the model above is not an exponent;
it is the index of the sequence of coefficients.) The impulse response functions for the
model corresponding to (19-30) are precisely the coefficients in A(L). In particular, the
effect on the change in inflation r periods later of a change in & in period ¢ is a,.
The total effect from time ¢ + 0 to time ¢ + v would be the sum of these, Y"[_, a5,. The
counterparts for the rate of output would be Y"7_, a},. However, what is needed is not
the effect only on period t’s output, but the cumulative effect on output from the time
of the shock up to period 7. That would be obtained by summing these period specific
effects, to obtain y_7_, >';_¢ aj,. Combining terms, the sacrifice ratio is

a .
Z;:O yti’ 0 4 L T ST Zi a
S (1) = def  _ Dot i@t 0an | 2z 2j=0%0
£n - o - T - T :
rr PHYCH 2oi=09%
el

The function S(r) is then examined over long periods to study the long term effects of
monetary policy.

19.6.8c Identification and Estimation of a Structural VAR Model
Estimation of this model requires some manipulation. The structural model is a con-
ventional linear simultaneous equations model of the form

Boy, = Bx; + ¢,

where y, is (Ay,, Am;)" and x, is the lagged values on the right-hand side. As we saw
in Section 15.3.1, without further restrictions, a model such as this is not identified
(estimable). A total of M? restrictions— M is the number of equations, here two—are
needed to identify the model. In the familiar cases of simultaneous-equations models
that we examined in Chapter 15, identification is usually secured through exclusion
restrictions, that is zero restrictions, either in By or B. This type of exclusion restriction
would be unnatural in a model such as this one—there would be no basis for poking
specific holes in the coefficient matrices. The authors take a different approach, which
requires us to look more closely at the different forms the time-series model can take.
Write the structural form as :

Boy: =Biy: 1+ Boy, 2+ -+ Bpy_p + &1
where
1 b,

By, =
0 _ b(2)1 1

Asnoted, this is in the form of a conventional simultaneous equations model. Assuming
that By is nonsingular, which for this two-equation system requires only that 1 — b),5,
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not equal zero, we can obtain the reduced form of the model as
¥ =By Biyi + By Boyia + - + By By, + By e
=Dy +Doy2+ -+ Dy + ity

where p, is the vector of reduced form innovations. Now, collect the terms in the equiv-
alent form

(19-33)

[I—DL-DyI?— ..y, = p,.

The moving average form that we obtained earlier is
yy=[I-DL—DoL?— .- ] lp,.
Assuming stability of the system, we can also write this as
yi=[I-DiL—Dyl? —...] 1y,

=[1-DL-DyL%— .. ] 'Bjle,

= [+ CL+ Cl? + -,

=p,+Cip, 1 +Copy ...

= Bale, +Cip 1 +Cpy ...

So, the C; matrices correspond to our A; matrices in the original formulation. But,
this manipulation has added something. We can see that Ay =B, '. Looking ahead, the
reduced form equations can be estimated by least squares. Whether the structural pa-
rameters, and thereafter, the VM A parameters can as well depends entirely on whether
By can be estimated. From (19-33) we can see that if By can be estimated, then B, ... B,
can also just by premultiplying the reduced form coefficient matrices by this estimated
By. So, we must now consider this issue. (This is precisely the conclusion we drew at the
beginning of Section 15.3.)

Recall the initial assumption that E[e,e;] = . In the reduced form, we assume
E[u.pn)] = X. Asweknow, reduced forms are always estimable (indeed, by least squares
if the assumptions of the model are correct). That means that X is estimable by the least
squares residual variances and covariance. From the earlier derivation, we have that
T = B;'Q(B;') = A;RA). (Again, see the beginning of Section 15.3.) The authors
have secured identification of the model through this relationship. In particular, they
assume first that € = I. Assuming that € = I, we now have that AgAj, = X, where X is
an estimable matrix with three free parameters. Since Ay is 2 x 2, one more restriction
is needed to secure identification. At this point, the authors, invoking Blanchard and
Quah (1989), assume that “demand shocks have no permanent effect on the level of
output. Thisis equivalent to A2(1) = 372, aiz =0.” This might seem like a cumbersome
restriction to impose. But, the matrix A(1)is (I~ D; — D, —--- — D,]7'A; = FA, and
the components, D; have been estimated as the reduced form coefficient matrices, so
A12(1) = 0 assumes only that the upper right element of this matrix is zero. We now
obtain the equations needed to solve for A. First,

2 2
(ah)” + (ad)"  ahad, +adyad, _ {on 012]

J12 o1

AA) =X = (19-34)

a?lagl +a%ya, (“(2)1)2 + (“gz)z
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which provides three equations. Second, the theoretical restriction is

FA, = * flla?z + f12ag2] _ [* 0:! .
* * ok

This provides the four equations needed to identify the four elements in Ay.!*

Collecting results, the estimation strategy is first to estimate Dy, ... D, and X in the
reduced form, by least squares. (They set p = 8.) Then use the restrictions and (19-34)
to obtain the elements of Ag = By ! and, finally, B; = Ay D i

The last step is estimation of the matrices of impulse responses, which can be done
as follows: We return to the reduced form which, using our augmentation trick, we write
as

Vi D; D, --- D, Yio1 Age;
Yoo |=|1 0 g Yea| 4| O | (19-35)
t—p+1 0 .- I 0] L-p 0

For convenience, arrange this result as

Y, =DL)Y, +w,.
Now, solve this for Y, to obtain the final form

Y, =[1-DL] 'w,.

Write this in the spectral form and expand as we did earlier, to obtain

Y =) PAQw,_;. (19-36)
i=0

14 At this point, an intriguing loose end arises. We have carried this discussion in the form of the original
papers by Blanchard and Quah (1989) and Cecchetti and Rich (2001). Returning to the original structure,
however, we see that since Ag = B, Tt actually does not have four unrestricted and unknown elements;
it has two. The model is overidentified. We could have predicted this at the outset. As in our conventional
simultaneous equations model, the normalizations in By (ones on the diagonal) provide two restrictions of
the M? = 4 required. Assuming that = I provides three more, and the theoretical restriction provides a
sixth. Therefore, the four unknown elements in an unrestricted By are overidentified. The assumption that
@ = L in itself, may be a substantive, and strong restriction. In the original data that Cecchetti and Rich
used, over the period of their estimation, the unconditional variances of Ay, and A, are 0.923 and 0.676.
The latter is far enough below one that one might expect this assumption actually to be substantive. It might
seem convenient at this point to forego the theoretical restriction on long-term impacts, but it seems more
natural to omit the restrictions on the scaling of 2. With the two normalizations already in place, assuming
that the innovations are uncorrelated (€ is diagonal) and “demand shocks have no permanent effect on
the level of output” together suffice to identify the model. Blanchard and Quah appear to reach the same
conclusion (page 656), but then they also assume the unit variances [page 657, equation (1).] They argue that
the assumption of unit variances is just a convenient normalization, but this is not the case. Since the model
is already identified without the assumption, the scaling restriction is substantive. Once again, this is clear
from alook at the structure. The assumption that By has ones on its diagonal has already scaled the equation.
In fact, this is logically identical to assuming that the disturbance in a conventional regression model has
variance one, which one normally would not do.
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We will be interested in the uppermost subvector of Y,, so we expand (19-36) to yield

y: o Ape,_;
o= D
t—p+1 =0 0

The matrix in the summation is Mp x Mp. The impact matrices we seek are the M x M
matrices in the upper left corner of the spectral form, multiplied by Ag.

19.6.8d Inference

As noted at the end of Section 19.6.6, obtaining usable standard errors for estimates of
impulse responsesis a difficult (as yet unresolved) problem. Killian (1998) has suggested
that bootstrapping is a preferable approach to using the delta method. Cecchetti and
Rich reach the same conclusion, and likewise resort to a bootstrapping procedure. Their
bootstrap procedure is carried out as follows: Let § and ¥ denote the full set of estimated
coefficients and estimated reduced form covariance matrix based on direct estimation.
As suggested by Doan (1996), they construct a sequence of N draws for the reduced
form parameters, then recompute the entire set of impulse responses. The narrowest
interval which contains 90 percent of these draws is taken to be a confidence interval
for an estimated impulse function.

19.6.8e Empirical Results

Cecchetti and Rich used quarterly observations on real aggregate output and the con-
sumer price index. Their data set spanned 1959.1 to 1997.4. This is a subset of the
data described in the Appendix Table F5.1. Before beginning their analysis, they sub-
jected the data to the standard tests for stationarity. Figures 19.5 through 19.7 show
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the log of real output, the rate of inflation, and the changes in these two variables.
The first two figures do suggest that neither variable is stationary. On the basis of the
Dickey—Fuller (1981) test (see Section 20.3), they found (as might be expected) that the
y, and 7, series both contain unit roots. They conclude that since output has a unit root,
the identification restriction that the long run effect of aggregate demand shocks on
output is well defined and meaningful. The unit root in inflation allows for permanent
shifts in its level. The lag length for the model is set at p = 8. Long-run impulse response
function are truncated at 20 years (80 quarters). Analysis is based on the rate of change
data shown in Figure 19.7.

As a final check on the model, the authors examined the data for the possibility of
a structural shift using the tests described in Section 7.5. None of the Andrews/Quandt
supremum LM test, Andrews/Ploberger exponential LM test, or the Andrews/Ploberger
average LM test suggested that the underlying structure had changed (in spite of what
seems likely to have been a major shift in Fed policy in the 1970s). On this basis, they
concluded that the VAR is stable over the sample period.

Figure 19.8 (Figures 3A and 3B taken from the article) shows their two separate
estimated impulse response functions. The dotted lines in the figures show the bootstrap
generated confidence bounds. Estimates of the sacrifice ratio for Cecchetti’s model are
1.3219 for v = 4, 1.3204 for T = 8, 1.5700 for t = 12, 1.5219 for r = 16, and 1.3763 for
T =20.

The authors also examined the forecasting performance of their model compared
to Shapiro and Watson’s and Gali’s. The device used was to produce one step ahead.
period T + 1| T forecasts for the model estimated using periods 1..., T. The first
reduced form of the model is fit using 1959.1 to 1975.1 and used to forecast 1975.2.
Then, it is reestimated using 1959.1 to 1975.2 and used to forecast 1975.3, and so on.
Finally, the root mean squared error of these out of sample forecasts is compared for
three models. In each case, the level, rather than the rate of change of the inflation rate
is forecasted. Overall, the results suggest that the smaller model does a better job of
estimating the impulse responses (has smaller confidence bounds and conforms more
nearly with theoretical predictions) but performs worst of the three (slightly) in terms of
the mean squared error of the out-of-sample forecasts. Since the unrestricted reduced
form model is being used for the latter, this comes as no surprise. The end result follows
essentially from the result that adding variables to a regression model improves its fit.

19.6.9 VARs IN MICROECONOMICS

VARs have appeared in the microeconometrics literature as well. Chamberlain (1980)
suggested that a useful approach to the analysis of panel data would be to treat each
period’s observation as a separate equation. For the case of 7' = 2, we would have

!

yit = o + B'xi1 + i,
’

yi2 = o; + B'xi2 + €,

where i indexes individuals and «; are unobserved individual effects. This specification
produces a multivariate regression, to which Chamberlain added restrictions related to
the individual effects. Holtz-Eakin, Newey, and Rosen’s (1988) approach is to specify



CHAPTER 19 4+ Models with Lagged Variables 603

A:Dynamic Response to a Monetary Policy Shock

Real GDP— Cecchetti
0.6 -

04

0.2

0.0

02}

Log

—0.6 g

-0.8

-1.0

14 | i L i
0 5 10 15 20

B: Dynamic Response to a Monetary Policy Shock

Inflation— Cecchetti
0.75 -

0.00

-1.75 i j |
0 5 10 15 20

ted Impulse Response Functions.




604 CHAPTER 19 ¢ Models with Lagged Variables

the equation as

m m
Yir = oo + Zaltyi,t—l + Z SieXig—t + Ve fi + i
=1 I=1
In their study, y;; is hours worked by individual i in period ¢ and x;, is the individual’s
wage in that period. A second equation for earnings is specified with lagged values of
hours and earnings on the right-hand side. The individual, unobserved effects are f;.
This model is similar to the VAR in (19-30), but it differs in several ways as well. The
number of periods is quite small (14 yearly observations for each individual), but there
are nearly 1000 individuals. The dynamic equation is specified for a specific period,
however, so the relevant sample size in each case is n, not 7. Also, the number of lags
in the model used is relatively small; the authors fixed it at three. They thus have a two-
equation VAR containing 12 unknown parameters, six in each equation. The authors
used the model to analyze causality, measurement error, and parameter stability—that
is, constancy of ¢, and &, across time.

Example 19.8 VAR for Municipal Expenditures
In Section 18.5, we examined a model of municipal expenditures proposed by Dahlberg and
Johansson (2000): Their equation of interest is

m m m
ASit =+ Z BiASit—j + Z VAR + Z 8;AGis_j + Uy

i=1 i=1 j=1

fori =1,...,N=265andt =m=+1,...,9. S;, R; and G;; are municipal spending,
receipts (taxes and fees) and central government grants, respectively. Analogous equations
are specified for the current values of R;; and G; ;. This produces a vector autoregression for
each municipality,

AS ey Bs1 vs1 8s1\ [ASit—
AR+l =\ wrt | + | Br1 ¥R1 SR AR 4|+ -+

AGi: Kait Be1 ve1 8g1/ LAGi i+

Bsm VYsm dsm\ [ASit-m Uy

+| Bam vam Sam | | ARtm |+ (Ul

Bem Yam dam/ LAGii-m Uy

The model was estimated by GMM, so the discussion at the end of the preceding section
applies here. We will be interested in testing whether changes in municipal spending, AS;
are Granger caused by changes in revenues, AR ; and grants, AG; ;. The hypothesis to be
tested is ys, = 8s,; = O for all j. This hypothesis can be tested in the context of only the first
equation. Parameter estimates and diagnostic statistics are given in Section 17.5. We can
carry out the test in two ways. In the unrestricted equation with all three lagged values of all
three variables, the minimized GMM criterion is g = 22.8287. If the lagged values of AR and
AG are omitted from the A Sequation, the criterion rises to 42.9182."° There are 6 restrictions.
The difference is 20.090 so the F statistic is 20.09/6 = 3.348. We have over 1,000 degrees of
freedom for the denominator, with 265 municipalities and 5 years, so we can use the limiting
value for the critical value. This is 2.10, so we may reject the hypothesis of noncausality
and conclude that changes in revenues and grants do Granger cause changes in spending.

150nce again, these results differ from those given by Dahlberg and Johansson. As before, the difference
results from our use of the same weighting matrix for all GMM computations in contrast to their recomputation
of the matrix for each new coefficient vector estimated.
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(This seems hardly surprising.) The alternative approach is to use a Wald statistic to test the
six restrictions. Using the full GMM results for the AS equation with 14 coefficients we obtain
a Wald statistic of 15.3030. The critical chi-squared would be 6 x 2.1 = 12.6, so once again,
the hypothesis is rejected.

Dahlberg and Johansson approach the causality test somewhat differently by using a
sequential testing procedure. (See their page 413 for discussion.) They suggest that the
intervening variables be dropped in turn. By dropping first G, then R and G and then first
R then G and R, they conclude that grants do not Granger cause changes in spending
(Ag =only .07) but in the absence of grants, revenues do (Ag|grants excluded) = 24.6. The
reverse order produces test statistics of 12.2 and 12.4, respectively. Our own calculations
of the four values of g yields 22.829 for the full model, 23.1302 with only grants excluded,
23.0894 with only R excluded, and 42.9182 with both excluded, which disagrees with their
results but is consistent with our earlier ones.

Instability of a VAR Model
The coefficients for the three-variable VAR model in Example 19.8 appear in Table 18.4. The
characteristic roots of the 9 x 9 coefficient matrix are —0.6025, 0.2529, 0.0840, (1.4586 +
0.6584i), (—0.6992 + 0.2019i) and (0.0611 £ 0.6291i). The first pair of complex roots has mod-
ulus greater than one, so the estimated VAR is unstable. The data do not appear to be con-
sistent with this result, though with only five useable years of data, that conclusion is a bit
fragile. One might suspect that the model is overfit. Since the disturbances are assumed
to be uncorrelated across equations, the three equations have been estimated separately.
The GMM criterion for the system is then the sum of those for the three equations. For
m=3,2,and 1, respectively, these are (22.8287 + 30.5398 + 17.5810) =70.9495, 30.4526 +
34.2590 4 20.5416) = 85.2532, and (34.4986 + 53.2506 + 27.5927) = 115.6119. The differ-
ence statistic for testing down from three lags to two is 14.3037. The critical chi-squared
for nine degrees of freedom is 19.62, so it would appear that m = 3 may be too large. The
results clearly reject the hypothesis that m = 1, however. The coefficients for a model with
two lags instead of one appear in Table 17.4. If we construct T’ from these results instead,
we obtain a 6 x 6 matrix whose characteristic roots are 1.5817, —0.2196, —0.3509 + 0.4362i
and 0.0968 4+ 0.2791i. The system remains unstable. )

19.7 SUMMARY AND CONCLUSIONS

This chapter has surveyed a particular type of regression model, the dynamic regres-
sion. The signature feature of the dynamic model is effects that are delayed or that
persist through time. In a static regression setting, effects embodied in coefficients are
assumed to take place all at once. In the dynamic model, the response to an innovation
is distributed through several periods. The first three sections of this chapter examined
several different forms of single equation models that contained lagged effects. The pro-
gression, which mirrors the current literature is from tightly structured lag “models”
(which were sometimes formulated to respond to a shortage of data rather than to
correspond to an underlying theory) to unrestricted models with multiple period lag
structures. We also examined several hybrids of these two forms, models that allow
long lags but build some regular structure into the lag weights. Thus, our model of the
formation of expectations of inflation is reasonably flexible, but does assume a specific
behavioral mechanism. We then examined several methodological issues. In this context
as elsewhere, there is a preference in the methods toward forming broad unrestricted
models and using familiar inference tools to reduce them to the final appropriate spec-
ification. The second half of the chapter was devoted to a type of seemingly unrelated
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regressions model. The vector autoregression, or VAR, has been a major tool in recent
research. After developing the econometric framework, we examined two applications,
one in macroeconomics centered on monetary policy and one from microeconomics.

Key Terms and Concepts

¢ Autocorrelation

» Autoregression

¢ Autoregressive distributed
lag

o Finite lags

¢ General-to-simple method
¢ Granger noncausality

¢ Impact multiplier

¢ Polynomial in lag operator
¢ Polynomial lag model

e Random walk with drift

¢ Rational lag

¢ Autoregressive form

¢ Autoregressive model
¢ Characteristic equation
¢ Common factor

e Impulse response
¢ Infinite lag model
¢ Infinite lags
¢ Innovation

¢ Simple-to-general approach
o Specification

o Stability

e Stationary

e Distributed lag e Invertible o Strong exogeneity

¢ Dynamic regression model ¢ Lagged variables e Structural model

o Elasticity ¢ Lag operator o Structural VAR

¢ Equilibrium o Lag weight ¢ Superconsistent

¢ Equilibrium error e Mean lag e Univariate autoregression
¢ Equilibrium multiplier ¢ Median lag e Vector autoregression

¢ Equilibrium relationship ¢ Moving-average form (VAR)
¢ Error correction ¢ One period ahead forecast ¢ Vector moving average
« Exogeneity e Partial adjustment (VMA)

» Expectation o Phillips curve
Exercises
1. Obtain the mean lag and the long- and short-run multipliers for the following

distributed lag models:

a. y; = 0.55(0.02x, + 0.15x,_1 + 0.43x,_ + 0.23x,_3 + 0.17x,_4) + &:.
b. The model in Exercise 5.

c. The model in Exercise 6. (Do for either x or z.)

Explain how to estimate the parameters of the following model:

Ve=a+Bx+yy1t+énate,

e = pe1 +U;.

Is there any problem with ordinary least squares? Let y, be consumption and let x;
be disposable income. Using the method you have described, fit the previous model
to the data in Appendix Table F5.1. Report your results.

Show how to estimate a polynomial distributed lag model with lags of six periods
and a third-order polynomial.

Expand the rational lag model y, = [(0.6 +2L)/(1 — 0.6L + 0.512)]x; + e;. What
are the coefficients on x;, x;_1, Xi—2, X;_3, and x;_4?

Suppose that the model of Exercise 4 were specified as

B+vL

S Y 5>

X; + €.
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Describe a method of estimating the parameters. Is ordinary least squares consis-
tent?

Describe how to estimate the parameters of the model

X 2
y:=(>l+,31_t +51 d + &,

yL —¢L
where &, is a serially uncorrelated, homoscedastic, classical disturbance.
We are interested in the long run multiplier in the model

6
Yo =P80+ Z,Bjxt—j + &
j=0

Assume that x, is an autoregressive series, x; = rx;_1 + v, Where |r| < 1.

a. What is the long run multiplier in this model?

b. How would you estimate the long-run multiplier in this model?

¢. Suppose you that the preceding is the true model but you linearly regress y, only
on a constant and the first 5 lags of x,. How does this affect your estimate of the
long run multiplier?

d. Same as c. for 4 lags instead of 5.

e. Using the macroeconomic data in Appendix F5.1, let y, be the log of real in-
vestment and x, be the log of real output. Carry out the computations suggested
and report your findings. Specifically, how does the omission of a lagged value
affect estimates of the short-run and long-run multipliers in the unrestricted lag
model?
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