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THE USE OF HURST AND EFFECTIVE RETURN IN INVESTING 
 

Abstract 
 

We present a look at the pathwise properties of mutual funds via the Hurst exponent, as 
well as ways to evaluate performance via Effective Return.  Both methodologies are 
examined in the context of distributional properties and tail analysis, as well as the linear 
and nonlinear dependence of the volatility of returns in time.   
 
Empirical tests comparing the use of Hurst and Effective Return against more traditional 
measures such as the Sharpe Ratio and Mean-Variance Optimization are done.  These 
tests indicate that both Hurst and Effective Return are more robust to the clustering of 
losses than traditional measures and have the ability to fully characterize the behavior of 
mutual funds. 
 
The author would like to thank Raymond Johnson, Edgar Peters, and Christopher May 
for helpful comments.  Conversations with John Nolan in the earlier parts of these 
investigations were also helpful.  The author would also like to thank three anonymous 
referees for their comments (This paper was initially presented at the 51st Annual 
Midwest Finance Association Conference in March 2002). 
 
 
 
Introduction 
 
Empirical finance focuses on the study, from a statistical point of view, of the behavior of 
data obtained from financial markets in the form of time series.  This paper will provide a 
brief introduction to the field, which will supply the necessary background to introduce 
two new measures that can be used to make more effective investment decisions. 
 
Since the statistical study of market prices has gone on for more than half a century, one 
might wonder whether there is anything new to say about the topic today.  The answer is 
definitely yes, for various reasons. 
 
The first is that, with the advent of electronic trading systems and the computerization of 
market transactions, quotes and transactions are now systematically recorded in major 
financial markets all over the world, resulting in a database size surpassing any 
econometricians may have dreamed of in the 1970s. 
 
Moreover, whereas previous data sets were weekly or daily reports of prices and trading 
volumes, these new data sets record all transactions and contain details of intraday tick-
by-tick price dynamics, thus providing a wealth of information that can be used to study 
the role of market micro-structure in price dynamics.  At the same time, these high-
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frequency data sets have complicated seasonalities and new statistical features, the 
modeling of which has stimulated new methods in time series analysis. 
 
Last, but not least, the availability of cheap computing power has enabled researchers and 
practitioners to apply various nonparametric methods based on numerical techniques for 
analyzing financial time series.  These methods constitute a conceptual advance in the 
understanding of the properties of these time series, since they make very few adhoc 
hypotheses about the data and reveal some important qualitative properties on which 
models can then be based. 
 
The Hurst exponent and Effective Return are examples of these nonparametric techniques 
that are uniquely qualified to “let the data speak for itself.”  And while, like other 
nonparametric techniques, Hurst and Effective Return provide qualitative information 
about financial time series, they can be converted into semiparametric techniques that 
can, without completely specifying the form of the price process, imply the existence of a 
parameter that does describe the process. 
 
In Section 2 of this paper we will cover the statistical analysis of asset price variation, 
specifically mutual fund price variation.  In Section 3 equity curves and Effective Return 
will be discussed.  In Section 4 tests will be conducted that show the robustness of the 
measure(s) versus traditional measures.  Section 5 is the conclusion. 
 
 
2.  Statistical Analysis of Asset Price Variations 
 
In this section we will describe some of the statistical properties of log return series 
obtained from mutual funds.  The properties of these time series can be separated into 
two types: marginal properties and dependence properties.  Section 2.1 focuses on the 
marginal distribution of mutual fund returns.  Section 2.2 discusses the dependence 
properties of mutual funds across time. 
 
 
2.1  Distributional Properties of Mutual Fund Returns 
 
Empirical research in financial econometrics in the 1970s concentrated mostly on 
modeling the unconditional distribution of returns, defined as: 
 

FT(u) = P(r(t,T) ≤ u) 
 

where r(t,T) are the log returns for the financial asset at time t over time horizon T.  One 
can summarize the empirical results by saying the distribution FT tends to be non-
Gaussian, sharp peaked, and heavy tailed, with these properties being more pronounced 
for intraday values of T (T ≤ 1 day).  The methods described below attempt to measure 
these properties and quantify them in a precise way. 
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2.1.2 Marginal distribution features 
 
As early as the 1960s Mandelbrot [1] pointed out the insufficiency of the normal 
distribution for modeling the marginal distribution of asset returns and their heavy-tailed 
character.  Since then the non-Gaussian character of the distribution of price changes has 
been repeatedly observed in various market data.  One way to quantify the deviation from 
the normal distribution is by determining the kurtosis of the distribution FT, defined as: 
 

κ = [E[(r(t,T) – E(r(t,T))4)]>/σ(T)2] – 3 
 

where σ(T)2 is the variance of the log returns r(t,T) = x(t+T) – x(t).  The kurtosis is defined such 
that κ = 0 for a Gaussian distribution, with a positive value of κ indicating a “fat tail,” that is, a 
slow asymptotic decay of the probability distribution function (PDF).  The kurtosis of the 
increments of mutual funds are far from Gaussian values: typical values for T  = 1 day are: κ ≈ 7 
for an S&P 500 fund and κ ≈ 44 for an emerging markets fund. 
 
Figure 1 
 

Density of 1-day increments
S&P 500 Fund
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The non-Gaussian character of the distribution makes it necessary to use other measures 
of dispersion than standard deviation to capture the variability of returns.  More 
generally, one can consider higher-order moments or cumulants as measures of 
dispersion/variability.  The kth central moment of the absolute returns is defined as: 
 

µk(T) = E r(t,T) – Er(t,T) k 
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Under the hypothesis of stationary returns, µk(T) should not be dependent on t.  However, 
it is not obvious a priori whether the moments are well-defined quantities: their existence 
depends on the tail behavior of the distribution FT.  This leads to another measure of 
variability, the tail index of the distribution of returns (defined as the order of the highest 
finite absolute moment): 
 

α(T) = sup{k>0, µk(T)<+∞} 
 

Note that α(T) depends a priori on the time resolution T.  One can define in an analogous 
way a left tail index and a right tail index by taking one-sided moments.  There are many 
estimators for α(T), the best known being the Hill and the Pickands estimators [2].  In the 
case of daily returns for mutual funds, one obtains an estimator between 1.5 and 4 [paper 
by Clark, forthcoming], indicating heavy tails of regularly varying type.  The 
implications of these values are that most funds on a daily basis have a finite variance, 
but the kurtosis of the fourth moment is apparently infinite/unbounded.   

 
However the Hill estimator and Pickands estimators are very sensitive to dependence in 
the data [2] as well as to sample size.  It has been our experience, as well as others [2], 
that tail estimation methods do not allow for a precise conclusion concerning estimates of 
α(T) either at individual or across different time scales, so these results must be 
interpreted with caution. 
 
 
2.1.3 Scaling Properties 
 
Most econometric studies of financial time series in the 1980s dealt with asset returns on 
a single time scale, typically daily.  Although daily returns are frequently used by the 
market to measure investment turnover, investors and market operators are also 
concerned with price variations on other time horizons, ranging from intraday time 
scales, e.g., several minutes for traders to several weeks or months for fund managers.  
An interesting and relevant question to study then is how FT changes with T.  More 
specifically, one would like to identify statistical quantities that are scale-invariant, i.e. 
have the same value across different time resolutions, which would lead to interesting 
links between the statistical behavior of the returns at different time scales. 
 
While the variance of FT is observed to be approximately linear as a function of T - for at 
least 80% of mutual funds – higher cumulants and moments exhibit behaviors deviating 
from the random walk model.  These deviations are linked to the dependence structure of 
the returns (see Section 2.2).  In the case of the 20% of mutual funds that do not scale 
linearly, this is because the underlying PDF of r(t,T) apparently follows a pure Levy 
process - the variance is infinite if the characteristic index α is between [1,2) while a 
Levy process with an α less than 1 has an infinite mean and an infinite variance though 
the median still exists.  And these 20% of funds do indeed have an α less than 1. 
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2.2 Dependence properties 
 
2.2.1 Absence of linear correlations 
 
It is a well known fact that price movements in liquid markets do not exhibit any 
significant autocorrelations; the autocorrelation function of the price changes: 
 

C(τ) = [E(r(t,T)r(t+τ,T)) – E(r(t,T)E(r(t+τ,T)]/var[r(t,T)] 
 

rapidly decaying to zero in a few minutes.  For T ≥ 15 minutes it can be safely assumed to 
be zero for all practical purposes [3].  The absence of significant linear correlations in 
price increments has been widely documented [4, 5] and is often cited as support for the 
Efficient Market Hypothesis (EMH).  The absence of correlation is easy to understand: if 
the price changes exhibit significant correlation, this correlation may be used to conceive 
a simple strategy with positive expected earnings.  Such strategies, termed arbitrage, will 
therefore tend to reduce correlations except for very short time intervals, which represent 
the time the market takes to react to new information.  This correlation time for organized 
futures markets is typically several minutes and for foreign exchange markets even 
shorter. 
 
The fast decay of the autocorrelation function implies the additivity of variances; for 
uncorrelated variables the variance of the sum is the sum of the variances.  The absence 
of linear correlation is thus consistent with the observed linear increases of variance with 
respect to time scale.  
 
Figure 2 
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2.2.2 Volatility Clustering 
 
However, the absence of serial correlations does not imply the independence of the 
increments; for example, the square of the absolute value of price changes exhibits slowly 
decaying serial correlations.  This can be measured by the autocorrelation function g(τ) of 
the absolute value of the increments, defined as: 
 

g(τ) = [E(abs(r(t,T))abs(r(t+τ,T))) – E(abs(r(t,T))E(abs(r(t+τ,T))]/var[abs(r(t,T))] 
 

For the S&P 500 fund examined before, the slow decay of g(τ) is well represented by a 
power law [6]: 
 

g(τ) = g0/τH    H = 0.35 ± 0.034 
 

Figure 3 

Autocorrelation function of absolute price changes
S&P 500 Fund
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This slow relaxation of the correlation function g of the absolute value of returns 
indicates persistence in the scale of fluctuations.  This phenomenon can be related to the 
clustering of volatility, well known in the financial literature, where a large price 
movement tends to be followed by another large price movement but not necessarily in 
the same direction. 
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2.3 Pathwise Properties 
 
One of the main issues in financial econometrics is to quantify the notion of risk 
associated with a financial asset or portfolio of assets.  The risky character of a financial 
asset is associated with the irregularity of the variations of its market price: risk is 
therefore related to the (un)smoothness of the trajectory.  This is one crucial aspect of the 
empirical data one would like to have a mathematical model to reproduce. 
 
Each class of stochastic models generates sample paths with certain local regularity 
properties.  In order for the model to adequately represent the intermittent character of 
price variations, the local regularity of the sample paths should try to reproduce those 
empirically observed price trajectories. 
 
 
2.3.1  Holder Regularity 
 
In mathematical terms the regularity of any function may be characterized by its local 
Holder exponents.  A function f is h-Holder continuous at point t0 if and only if there 
exists a polynomial of degree < h such that 
 

f(t) –P(t- t0)≤ Kt t- t0h 
 

Let Ch( t0) be the space of real-valued functions that verify the above property at t0.  A 
function f is said to have a local Holder exponent α if for h<α, f ∈ Ch( t0) and h>α, f ∉ 
Ch( t0).  Let hf(t) denote the local Holder exponent of f at point t. 
 
In the case of sample path Xt(ϖ) of a stochastic process, Xt, hX(ϖ)(t) = hϖ(t) depends on the 
particular sample path considered, i.e., on ϖ.  However, there are some famous 
exceptions: for example, Fractional Brownian Motion (FBM) with the self-similarity 
parameter hB = 1/H with probability 1, i.e., for almost all sample paths.  Note that no 
such results hold for sample paths of Levy processes or even stable Levy processes. 
 
Given that the local Holder exponent may vary from sample path to sample path in the 
case of a stochastic process, it is not a robust statistical tool for characterizing signal 
roughness.  The notion of the singularity spectrum of a signal was introduced to give a 
less detailed but more stable characterization of the local smoothness structure of a 
function in the statistical sense. 
 
Definition:  Let f: R → R be a real-valued function, and for each α > 0 define the set of 
points at which f has a local Holder exponent h: 
 

Ω(α) = {t,hf(t) = α} 
 

    Page 7 of 21 
 



Lipper Research Series 
FundIndustry Insight Report 

May 6, 2003   
 
 
 
The singularity spectrum of f is the function D: R+ → R, which associates to each α > 0 
the Hausdorff-Besicovich dimension of Ω(α): 
 

D(α) = dimHBΩ(α) 
 
 

2.3.2 Singularity Spectrum of a Stochastic Process 
 
Using the above definition one may associate to each sample path Xt(ω)ο a stochastic 
process Xt singularity spectrum dω(α).  If dω is “strongly dependent” on ω, then the 
empirical estimation of the singularity spectrum is not likely to give much information 
about the properties of the process Xt. 
 
Fortunately, this turns out not to be the case: it has been shown that, for large classes of 
stochastic processes, the singularity spectrum is the same for almost all sample paths.  
Results from S. Jaffard [7] show that a large class of Levy processes verifies this 
property. 
 
These results show the statistical robustness of the singularity spectrum as a 
nonparametric tool for distinguishing classes of stochastic processes.  For example, it can 
be used as an explanatory statistical tool for determining the class of stochastic models 
that is likely to reproduce well the regularity properties of a given sample empirical path.  
But first one most know a method to estimate the singularity spectrum empirically. 
 
 
2.3.3 Multifractal formalism 
 
As defined above the singularity spectrum of a function does not appear to be of any 
practical use, since its definition involves first the ∆t → 0 limit for determining the local 
Holder exponents and second the determination of the Hausdorff dimension of the sets 
Ω(α), as remarked by Halsey et al. [8], may be intertwined fractal sets with complex 
structures and impossible to separate on a point-by-point basis. 
 
The work of Halsey et al. stimulated interest in the area of singularity spectra and a new 
multifractal formalism [8, 9, 10, 11] was subsequently defined and developed using the 
wavelet transform of Muzy et al. [12]. 
 
Three methods of calculation were developed: structure function method, wavelet 
partition function method, and wavelet transform modulus maxima.  A detailed 
mathematical account of all three methods is given in [10], and their validity for a wide 
class of self-similar functions was proven by Jaffard [11]. 
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2.3.4 Singularity Spectra of Asset Price Series 
 
A first surprising result is that the shape of the singularity spectrum does not depend on 
the asset considered: all series exhibit the same “inverted parabola” shape observed by 
Fisher, Calvert, and Mandelbrot [13].  The spectra have support from 0.3 to 0.9 (with 
some variations depending on the data set) with a maximum centered between 0.55 – 
0.60.  Note that the 0.55 – 0.60 is the range of values of the Hurst exponent reported in 
many studies of financial time series using R/S or similar techniques, which is not 
surprising since the maximum D(h) represents the “almost everywhere” Holder exponent 
that is the one detected by “global” estimators such as R/S (methods for computing Hurst 
are defined in the Appendix).  The Hurst exponent then is a global measure of risk, 
defined as the smoothness or unsmoothness an asset exhibits. 
 
As in [13] we have supplemented our studies of the global estimators by applying the 
same techniques to Monte Carlo simulations of various stochastic models in order to 
check whether the peculiar shape of the spectra obtained is due to artifacts or small 
sample size or discretization.  Using both daily and weekly log returns on a randomly 
selected set of 200 mutual funds from a population of 3,579, our results seem to rule out 
such possibilities.  In addition, on our set of 200 funds we destroyed all the time 
dependencies that might exist in the data by shuffling the time series of each price return 
19 times, thereby creating 19 new time series that contained statistically independent 
returns.  The same global estimator routines were then run against these data (19 x 200), 
and in each case the Hurst exponent was not statistically different from 0.50, as expected.  
This was another confirmation that time-dependent volatility was the cause of the scaling 
behavior captured by Hurst. 
 
3. Equity Curves and Risk-Adjusted Return 
 
An appropriate performance measure is the most crucial determinant in judging the 
performance of investment strategies.  Whether one is running a desk, investing on one’s 
own or managing a pension fund, return on capital and the risk incurred to reach that 
return on capital must be measured together. 
 
Ideally, a good performance measure should show high performance when the return on 
capital is high, when the equity/return curve increases linearly over time, and when loss 
periods (if any) are not clustered.   
 
Unfortunately, common measurement tools such as the Sharpe Ratio (SR), Tracking Error 
(TE), and the Information Ratio (IR) do not entirely satisfy these requirements. 
 
First, SR and IR put the variance of the return in the denominator, which makes the ratio 
numerically unstable at extremely large values when the variance of the return is close to 
zero.  Second, SR, TE, and IR are unable to consider the clustering of profits and losses.  
An even mixture of profits and losses is normally preferred to clusters of losses and 
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clusters of profits, provided the total set of profit and loss trades is the same in both cases.  
Third, all three measures treat the variability of profitable returns the same way as the 
variability of losses.  Most investors, portfolio managers, and traders are more concerned 
about the variability of losses than they are about the variability of profitable returns. 
 
 
3.1  Equity Curves 
 
The equity curve is the cumulative value of all closed trades.  Therefore, the equity curve 
on a monthly basis is the sum of all the closed trades over the trading horizon, while the 
equity curve on a yearly basis is the sum of all closed trades on a yearly basis.   
 
To evaluate any fund’s performance, the equity curve must be taken into account.  The 
reasons for this are several.  Perfect profit, which is defined as buying every valley and 
selling every peak that occurs in the price movement: 
 

PP = Σabs[(NAVt – NAVt-1)/ NAVt-1] 
 

where NAVt and NAVt-1 are the net asset values (NAVs) of the fund (with distributions 
reinvested) at t and t-1, is one of the tools used on trading desks to evaluate trader 
performance.  As noted above, mathematically perfect profit is the sum of the absolute 
price differences and, obviously, impossible to obtain (hence the name perfect profit).  
 
 A desk manager could use the perfect profit and the equity curve of any trader and 
compute the correlation coefficient of the two.  A value near plus 1 would indicate that as 
perfect profit is increasing, so is the trader’s equity curve.  A value of minus 1 would 
indicate that as perfect profit is increasing, the equity curve is decreasing.  Desk 
managers consider this tool of value because perfect profit is a cumulative measure and 
will therefore be growing throughout the trading period.  A good trader, and for that 
matter, a good pension fund manager or a good portfolio manager, will show a steadily 
rising equity curve.  If the growth in the market becomes quiet, growth in perfect profit 
will tend to increase at a slower rate.  The best trader will also share a similar flattening 
or slow growth instead of a dip in the equity curve over the period.  This measure then, 
unlike common standalone measures such as net profit and loss, rate of return, and 
maximum drawdown will favor traders that steadily profit at the same pace as the perfect 
profit growth and do not lose much when perfect profit slows.  As a sole guide of 
performance it is very valuable, and it is also a good candidate for a desk or firm with a 
low threshold for risk. 
 
In the area of mutual fund or pension fund manager performance, it is well nigh 
impossible to compute perfect profit, since most funds do not release their securities 
holdings on a monthly basis (and when they do, it is with some delay), and also because 
taking a short position in the market is either severely limited or banned entirely.  A 
different tool that uses the equity curve but can take these data and policy limitations into 
account is needed. 
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3.2  Effective Return 
 
Effective Return (ER) was introduced in a paper by Dacorogna et al. [14].  Their 
performance measure is based on some assumptions that are different from those found in 
the literature.  SR, as a conventional measure, stays approximately constant if the 
leverage of an investment is changed.  Therefore, it cannot be used as a criterion to 
decide on the choice of leverage. 
 
Real investors, however, care about the optimal choice of leverage because they do not 
have an infinite tolerance for losses.   
 
Finding the maximum of ER for a mutual fund in a set of investment strategies is 
equivalent to portfolio optimization, where the allocation size (leverage) of different 
funds is determined.  There is a strong relationship between the ER measure and classical 
portfolio theory.  The main goal of portfolio optimization is to find the maximum of the 
return r(t,T) for a given variance σ, or, equivalently, the maximum of the joint target 
function: 
 

Max = E(r(t,T)) – λσ2 
 

where λ is the Lagrange multiplier.  ER, in its constant risk aversion form, is: 
 

ER = E(r(t,T)) – (γσ2/2∆t) 
 

The risk aversion parameter γ plays a role analogous to the Lagrange multiplier λ and the 
second term, – λσ2, in the Markowitz model, performs the same task as the corresponding 
term in ER and both have a natural interpretation: it is the risk premium associated with 
the investment. 
 
In general, as shown above in Section 2, returns cannot be expected to be serially 
independent.  Loss returns may be clustered to form drawdowns.  The clustering of losses 
varies, i.e., it may be stronger for certain markets and/or investment strategies versus 
others.  The ER measure has been designed with special attention to drawdowns, since 
these are the worst events for investors.  The “badness” of a drawdown is mainly 
determined by the size of the total loss.  Local details of the equity curve and the duration 
of the drawdown are viewed as less important.  Multiple holding periods are examined 
because a constant/single holding period, i.e., choosing just a single monthly, daily, or 
yearly holding period, may miss drawdown periods when the interval size is too small for 
the full clustering of losses or too large, thus diluting the drawdown with surrounding 
profitable periods.  The multi-horizon feature of ER ensures the worse drawdown periods 
cannot be missed, whatever their duration.   
 
ER, in both Dacorogna et al. and the tests below, has been shown to be a more stringent 
performance measure relative to SR, net profit and loss, and maximum drawdown 
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because it utilizes more points of the equity curve.  The complete development of the 
measure is presented in [14], while in the Appendix of this paper the base methodology 
or single-horizon effective return methodology is developed.  
 
4. Methodological Tests 
 
In this section the results of two methodological tests will be presented:  first, a test using 
the Hurst Exponent (H) and standard deviation as a way of constructing mean-variance 
portfolios, and second, a test of H versus SR in determining what funds to buy.  Data 
sources and filters used to “scrub” the data will also be described. 
 
 
4.1  Data 
 
The source of all the data used in this section is Lipper, a fund analysis service provider.  
Lipper tracks both U.S. and non-U.S. funds on a daily, weekly, and monthly basis.  Its 
database is quite extensive; it includes not just return data but expenses, manager tenure, 
and type of fund as well as many other measures. 
 
The Lipper data used here are the universe of open-end equity funds that have at least 
three years of daily NAV data.  Daily log returns r(t,T) are computed using NAVs 
adjusted for the reinvestment of distributions.  Where a fund has multiple classes of 
shares, the share class with the oldest FPO (first public offering) date is used.  Also, 
institutional classes of shares are excluded so the results presented are for retail funds 
only. 
 
 
4.2 Mean-Variance Test 
 
The first test examines the use of H as the quantity to be minimized in a mean-variance 
portfolio.  Since the higher the H value the lower the risk, H is inverted as an input to the 
allocation methodology to preserve its properties. 
 
The measure-variance allocation methodology was executed in Excel and then checked 
against a similar routine available as an applet on Bill Sharpe’s Web site.  The results of 
the optimization routine were found to be the same, so no optimization methodological 
breaks were found. 
 
The portfolio to be optimized is the whole market, i.e., funds that represents the complete 
stock, bond, and real estate markets.  Both Vanguard and Fidelity offer funds that track 
the indices representing the complete markets: the Wilshire 5000, the Lehman Brothers 
Aggregate Bond Index, and the Morgan Stanley REIT Index.  Vanguard funds were 
chosen over Fidelity funds, since they had the most complete history over the test 
horizon.  The NASDAQ tickers for the funds are: VGSIX for the REIT series, VTSMX 
for the Wilshire 5000 series, and VBMFX for the Lehman Brothers Aggregate Bond 
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series.  The Vanguard REIT fund started in May 1996, so data runs prior to that date were 
supplemented with data from the Morgan Stanley index itself. 
 
The parameters of the mean-variance input for the funds were average daily log returns 
over the prior three years, the linear correlation coefficient of each fund versus the other 
funds, and either H based on three years of daily data or the sample standard deviation 
based on three years of daily data. 
 
Cash was assumed to be a minimum 5% of the portfolio and was represented by the rate 
on 3 month U.S. T-Bills, the most common choice for this variable.  The risk aversion 
parameter was varied between 8.0 and 12.5 to test different risk aversion levels.  The 12.5 
parameter was chosen as the maximum level, since levels beyond that, in most cases, 
produced identical portfolios. 
     
Portfolios were formed on a monthly basis from 1996 through 2000.  Each portfolio was 
evaluated after 12 months via its SR levels as well as its maximum drawdown.  The 
results are given in Table 1 with monthly results averaged across risk aversion levels and 
net profit and loss annualized: 
 
Table 1 
 
PASSIVE INVESTING - BUYING THE DOMESTIC MARKET 
(12 month holding periods) 

  
1996 Results Net profit/loss Max. Drawdown Sharpe ratio 

 Minimizing Stdev 21.73 13.67 2 
 Minimizing H 33.2 9.12 2.18 
     

1997 Results Net profit/loss Max. Drawdown Sharpe ratio 
 Minimizing Stdev 23.34 13.78 1.58 
 Minimizing H 28.86 12.65 1.92 
     

1998 Results Net profit/loss Max. Drawdown Sharpe ratio 
 Minimizing Stdev 14.3 21.27 0.77 
 Minimizing H 9.49 7.46 1.31 
     

1999 Results Net profit/loss Max. Drawdown Sharpe ratio 
 Minimizing Stdev 6.94 8.54 0.79 
 Minimizing H 4.57 0.15 2.92 
     

2000 Results Net profit/loss Max. Drawdown Sharpe ratio 
 Minimizing Stdev -5.35 19.68 -0.23 
 Minimizing H 0 0.53 1.78 
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As can be seen, in each year the H minimized portfolios outperformed the standard 
deviation portfolios on a risk-adjusted basis and they also had the smaller maximum 
drawdowns.  Though only summary data are presented here, in most months the H 
minimized portfolio bested the standard deviation portfolio on the same two measures. 
 
Though the most obvious explanation for this would be H’s superior ability to detect the 
clustering of losses (tests were run over the same period, choosing portfolios based on ER 
with similar results), another explanation is possible as well. 
 
In recent work by Johansen et al. [15], several U.S. and ex-U.S. equity indices were 
found to follow power-law/scaling behavior with superimposed log periodic oscillations.  
The power-law/scaling behavior is adequately captured by H, but log periodic oscillations 
would seem to be beyond the ken of H.  However, judging from the limited tests done 
here, it appears that H, via its almost-everywhere smoothness computation, began to 
detect the growing volatility of the stock index by late 1999 and began to make the shift 
out of stocks and into REITs and bonds by late 1999.  By mid- to late-2000, the bull 
market in bonds was detected by H, and a second shift occurred, with cash and bonds 
getting the largest allocations.  Sample portfolios are shown below to illustrate this (the 
first line in each quarter is the standard deviation portfolio, while the second line in each 
quarter is the H portfolio). 

Table 2 
What was bought:   
Oct-99    

Wilshire 5000 REITs Lehman Agg Tbills
46% 7% 42% 5% 
38% 57% 0 5% 

    
Dec-99    

Wilshire 5000 REITs Lehman Agg Tbills
66% 29% 0 5% 
15% 54% 27% 5% 

    
Mar-00    

Wilshire 5000 REITs Lehman Agg Tbills
82% 13% 0 5% 
5% 42% 25% 28%

    
Jun-00    

Wilshire 5000 REITs Lehman Agg Tbills
46% 0 40% 14%

0 15% 35% 50%
    

Sep-00    
Wilshire 5000 REITs Lehman Agg Tbills

85% 15% 0 0 
0 3% 25% 85%
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This is not to say the log periodic oscillations described by Johansen et al. are completely 
captured by H, but H does appear to have some “early warning” signal abilities if this 
limited test is correct. 
 
 
4.3 Hurst, Effective Return, and the Sharpe Ratio 
 
Our second test was to see if a commonly used technique to evaluate funds, SR, was 
superior to, the same as, or worse than using H and ER together. 
 
Again, Lipper data were used to compute log returns, and this time excess returns, i.e., 
the fund’s daily return versus three-month T-Bills (as measured by the Merrill Lynch 
index), were used. 
 
Again, the universe of open-end equity funds with at least three years of daily NAVs was 
used with the filters mentioned above, e.g., oldest FPO date for a multiple share-class 
fund, implemented. 
 
As in the mean-variance tests, portfolios were formed on a monthly basis from 1998 
through 2000, and their 12-month performance was evaluated. 
 
For the H/ER funds, the minimum H value allowable was 0.70, and the minimum ER 
allowable was 1%, i.e., with an upwardly sloping equity curve/P&L. 
 
ER was computed on three years of daily excess returns (as was H), with ER horizons 
chosen based on 2n, i.e., 2 days, 4 days, 8 days, …, 512 days.  The weightings were 
centered on n = 8 or 256 days, approximately 1 year.  
 
The Sharpe Ratio (SR) was computed via: 
  

SR = E(X – B)/σ(X – B) 
 

where X is equal to the daily log returns of the fund, and B is equal to the daily log 
returns of the three-month T-bill. 
 
A minimum of three funds was chosen in each month, with the maximum number of 
funds set equal to ten. 
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Results of the tests were averaged across months with net profit and loss annualized. 
 
Table 3 
 
 Net profit/loss Max. drawdown Sharpe ratio 
1998    
H/ER 12.21 11.02 1.87 
Sharpe 11.09 17.73 1.30 
    
1999    
H/ER 1.50 11.37 0.21 
Sharpe -1.50 12.03 -0.30 
    
2000    
H/ER -10.21 13.06 0.35 
Sharpe -20.02 16.08 -1.69 
 
As can be seen, the results of these tests again show the efficacy of H and ER versus a 
traditional tool such as the SR.  Though the H/ER outperforms SR in each of the three 
years, it is the last year, 2000, that shows H/ER’s robustness in countering downdrafts.  
Note how the average maximum drawdown is substantially better for the H/ER funds 
versus the SR in each of the years. 
 
 
5. Conclusions 
 
As the above tests show H, either by itself or coupled with ER, is an effective means of 
choosing funds on an unconditional basis.  It can also be said that H is probably more 
effective in terms of protecting an investor from downdrafts–the clustering of losses– 
than a traditional measure like SR.  H and the ER methodology used here are 
conservative tools.  What we mean by this is that for those investors who have a low 
threshold for risk, i.e., a moderate level of risk aversion, H and/or ER are good choices 
for screening funds. 
 
We also think our tests agree with the statement by Mandelbrot that H is the intrinsic 
measure of volatility when volatility is defined as the variability or (un)smoothness of the 
sample path. 
 
Given that on a daily basis markets are clearly not Gaussian or even random independent 
and identically distributed (i.i.d.), the methodologies outlined in this paper and elsewhere 
need to be used to evaluate and manage market risk and should also be used as the 
starting points for elaborating on stochastic models of asset prices. 
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Our continuing work on time intervals other than daily, i.e., weekly and monthly holding 
periods, have shown that for mutual funds the assumption of a normal distribution is not 
justified in as many as 50% of all cases.  New tools are being developed to work with 
these emerging facts, and new economic theory, especially a revision to the EMH, is 
called for.  To paraphrase Andrew Lo, EMH does not necessarily imply random and i.i.d.  
Modifications are called for.  Interested readers are referred to Olsen et al. [18] for the 
direction that explanation might take. 
 
Andrew Clark 
Senior Analyst 
Denver 
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APPENDIX 

A. Computing Hurst: from Taqqu et al. [16] 
 

• For time series data the rescaled range statistic (R/S) is computed in the 
following manner: for a time series of length N, fit an AR(1) process to the 
data, take the N-1 or M residuals, and subdivide the residual series into K 
blocks, each of size M/K.  Then for each lag n, compute R(ki,n)/S(ki,n), 
starting at points  ki = iM/K + 1, I = 1,2,…, such that ki + n ≤ M.  
R(ki,n)/S(ki,n) is equal to the partial sum of the M residuals: Y(n) = Σn

i=1Mi 
and sample variance: S2(n) = (1/n) Σn

i=1Mi
2 – (1/n)2Y(n)2.  R(ki,n)/S(ki,n)  

is computed via: 
 

R(ki,n)/S(ki,n) = 1/S(n)[max(Y(t)-t/nY(n))-min(Y(t)-t/nY(n))] 
 

For values of n smaller than M/K, one gets K different estimates of 
R(n)/S(n).  For values of n approaching M, one gets fewer values (as few 
as 1 when n ≥ M-M/K).   
 
Choosing logarithmically spaced values of n, plot log R(ki,n)/S(ki,n) versus 
log n and get, for each n, several points on the plot.  H can be estimated by 
fitting a line to the points of the log-log plot.  Since any short-range 
dependence typically results in a transient zone at the low end of the plot, 
set a cut-off point, and do not use the low-end values of the plot for 
computing H.  Often, the high-end values of the plot are also not used 
because there are too few points with which to make reliable estimates.   
The values of n then lie between the lower and higher cut-off points, and it 
is these points that are used to estimate H.  A routine such as Least-
Trimmed Squares Regression (LTS) has been used by the author to fit the 
data successfully. 
 
 

• In the periodogram method, one first calculates: 
 

I(λ) = 1/2πMΣXjeijλ2 
 

 
where λ is a frequency, N is the number of terms in the series, and Xj

 is the residual data 
as computed above.  Because I(λ) is an estimator of the spectral density, a series with 
long-range dependence should have a periodogram that is proportional to λ1-2H close 
to the origin.  Therefore, a regression of the log of the periodogram versus the log λ 
should give the coefficient 1-2H.  This provides an approximation of H.  In practice the 
author has used only the lowest 10% of the roughly N/2 = 378 frequencies for the 
regressions calculated in Section 4 above.  This is because the above proportionality 
holds only for λ close to the origin. 

    Page 20 of 21 
 



Lipper Research Series 
FundIndustry Insight Report 

May 6, 2003   
 
 
 

The Hurst computed in Section 4 was the average H based on the R/S and 
periodogram values using 756 or three years of data points. 
 
The Hurst tests discussed in Section 2.1.5 used eight years or 2,016 data 
points and were also the average Hurst as mentioned above. 

 
B. Computing Effective Return from Dacorogna et al.[14] 

 
• For effective return (ER) we shall assume that the investor has a stronger 

risk aversion to the clustering of losses, as was found by Benartzi and 
Thaler [17].  Thus the algorithm has two levels of risk aversion: a low one 
ξ+ for positive profit intervals (∆R) and a high one ξ- for negative ∆R 
(drawdowns): 

 
ξ = ξ+ for ∆R ≥ 0 and ξ- for ∆R < 0 where ξ+ < ξ- 

 
The utility function is obtained by inserting the above equation into the 
definition of ∆R and integrating twice over ∆R: 
 

U = U(∆R) = -e-ξ+∆R/ξ+ for ∆R ≥ 0  
 

or 
 

U = U(∆R) =(1/ξ-) – (1/ξ+) - ( -e-ξ-∆R/ξ-) for ∆R < 0 
 

   The return is obtained by inverting the utility function so that: 
 

∆R = ∆R(u) = -log(-ξ+u)/ ξ+  for u ≥ -1/ξ+ 
 

or 
 

∆R = ∆R(u) = -log(1 -ξ-/ξ+ -ξ-u)/ ξ-  for  u< -1/ξ- 
 

This is the complete development of the single horizon ER measure.  The 
expansion of ER to a multiple horizon measure will not be given here.  It is 
fully developed in [14], pages 10-11, and is based on the derivation of ER 
used here. 

- END - 
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